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Abstract

Conventional modelling of complex energy systems often focuses on
efficiency, capacity, and stability. However, many failures and perfor-
mance degradations arise not merely from material or energetic losses,
but from phase mismatch and coherence breakdown across in-
teracting subsystems. This paper proposes a coherence-preserving
modelling framework, introducing a mathematical index to quantify
synchronization across scales. Building on the Kuramoto model, we
demonstrate how coherence functions as both a diagnostic and predic-
tive tool, with applications to power grids, energy storage interfaces,
and thermal transport systems.

1 Introduction

Energy storage and transmission are typically evaluated through capacity,
efficiency, and degradation rates. Yet, the hidden bottleneck often lies in the
loss of coherence—the inability of subsystems to maintain phase alignment.
We argue that coherence should be treated as a fundamental modelling di-
mension, complementing conventional efficiency and stability analysis.

2 Theoretical Framework

2.1 Multi-Scale Definition of Coherence

e Microscopic: phase stability of individual particles or units (e.g., local
ion migration).



e Mesoscopic: synchronization of groups of units (e.g., battery cell clus-
ters).

e Macroscopic: global phase relations across entire systems (e.g., fre-
quency synchronization in power grids).

2.2 Relation to Stability

Traditional stability theory (e.g., Lyapunov methods) focuses on convergence
to equilibria. Coherence instead emphasizes relative synchrony among sub-
systems.

e A system may be globally stable but incoherent (e.g., local oscillations
in a grid).
e High coherence enhances resilience, as phase mismatch amplifies per-

turbations.

Thus, coherence acts as a leading indicator of stability.

2.3 Coherence and Phase Transition

The Kuramoto model shows that coherence undergoes a transition as cou-
pling strength K increases:

e K < K,.: incoherent state, C' = 0.

e K > K_.: synchronized state, C' — 1.

The critical coupling is approximated by:
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where g(w) is the probability density of natural frequencies.

2.4 Extensions of Coherence Index
e Local coherence: synchronization within subgroups or subnetworks.
e Weighted coherence: incorporating heterogeneous coupling strengths.

e Time-varying coherence: capturing dynamic rather than steady-
state behavior.



3 Mathematical Model

We adopt the Kuramoto model of coupled oscillators:

do; K~
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where 6; is the phase of oscillator 7, w; its natural frequency, K the coupling
constant, and N the system size.
The global coherence is measured by the order parameter:

(3)
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with C' =~ 1 indicating high synchrony and C' =~ 0 indicating incoherence.

4 Numerical Validation Method

To verify the effectiveness of the coherence index, we propose the following
simulation scheme:

e System size: N = 20.
e Natural frequencies: sampled from a normal distribution N(0, 1).

Initial phases: uniform distribution in [0, 27].

e Integration method: 4th-order Runge-Kutta, At = 0.01, 7" = 50.
e Coupling strengths: K = 0.5,1.0,2.0,3.0,5.0.
Outputs:
1. Phase evolution of oscillators.
2. Time evolution of C'(t).

3. Average coherence (C) vs. coupling strength K.



Phase evolution (K = 0.5, incoherent)
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Figure 1: Phase evolution for K = 0.5 (top, incoherent) and K = 5.0 (bot-

tom, synchronized).

5 Results

5.1 Phase Evolution

Figure 1 compares the phase trajectories of N = 20 oscillators. At K = 0.5,
oscillators drift apart over time, showing incoherent dynamics. At K = 5.0,
phases converge rapidly into a locked state, indicating strong synchronization.



Coherence index C(t) for different K
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Figure 2: Time evolution of coherence index C(t) under different coupling
strengths.

5.2 Time Evolution of Coherence Index

Figure 2 plots C(t) for different K. At K = 0.5, C(t) fluctuates at low
values (< 0.4). At K = 2.0, partial synchrony emerges with C(¢) in the
0.6-0.8 range. At K = 5.0, C(t) saturates near 1.0, reflecting near-perfect
coherence.

5.3 Synchronization Transition

Figure 7?7 shows (C) as a function of K. A sharp increase occurs near
K =~ 2.0, consistent with the predicted synchronization threshold. Beyond
this, (C) approaches unity.

6 Applications

e Power grids: generators as oscillators, coupling as line admittance.
Low K = loss of C', blackout risk.

e Energy storage: ion migration and interfacial dynamics mapped as
phase coupling. Reduced C' = higher impedance.



Order parameter <C> vs K (synchronization transition)
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Figure 3: Enter Caption

e Thermal transport: lattice vibration mismatch lowers C, correlating
with increased thermal resistance.

7 Discussion and Conclusion

This coherence-preserving framework extends conventional modelling of com-
plex systems by introducing synchronization as a quantifiable dimension.
Theoretical analysis shows that coherence is not only a complement to effi-
ciency and stability but also a precursor of systemic resilience. Numerical
validation demonstrates its ability to capture the transition from disorder to
synchrony. Future work will integrate this framework with quantum simula-
tion and high-performance computing for broader applications in energy and
material sciences.
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