A Coherence-Preserving Modelling Framework for Multi-Scale Energy Systems

Pingxin Wang LFR Resonance Systems Ltd

Abstract

Conventional modelling of complex energy systems often focuses on efficiency, capacity, and stability. However, many failures and performance degradations arise not merely from material or energetic losses, but from **phase mismatch and coherence breakdown** across interacting subsystems. This paper proposes a coherence-preserving modelling framework, introducing a mathematical index to quantify synchronization across scales. Building on the Kuramoto model, we demonstrate how coherence functions as both a diagnostic and predictive tool, with applications to power grids, energy storage interfaces, and thermal transport systems.

1 Introduction

Energy storage and transmission are typically evaluated through capacity, efficiency, and degradation rates. Yet, the hidden bottleneck often lies in the loss of *coherence*—the inability of subsystems to maintain phase alignment. We argue that coherence should be treated as a fundamental modelling dimension, complementing conventional efficiency and stability analysis.

2 Theoretical Framework

2.1 Multi-Scale Definition of Coherence

• **Microscopic**: phase stability of individual particles or units (e.g., local ion migration).

- **Mesoscopic**: synchronization of groups of units (e.g., battery cell clusters).
- Macroscopic: global phase relations across entire systems (e.g., frequency synchronization in power grids).

2.2 Relation to Stability

Traditional stability theory (e.g., Lyapunov methods) focuses on convergence to equilibria. Coherence instead emphasizes *relative synchrony* among subsystems.

- A system may be globally stable but incoherent (e.g., local oscillations in a grid).
- High coherence enhances resilience, as phase mismatch amplifies perturbations.

Thus, coherence acts as a **leading indicator** of stability.

2.3 Coherence and Phase Transition

The Kuramoto model shows that coherence undergoes a transition as coupling strength K increases:

- $K < K_c$: incoherent state, $C \approx 0$.
- $K > K_c$: synchronized state, $C \to 1$.

The critical coupling is approximated by:

$$K_c = \frac{2}{\pi g(0)} \tag{1}$$

where $g(\omega)$ is the probability density of natural frequencies.

2.4 Extensions of Coherence Index

- Local coherence: synchronization within subgroups or subnetworks.
- Weighted coherence: incorporating heterogeneous coupling strengths.
- Time-varying coherence: capturing dynamic rather than steadystate behavior.

3 Mathematical Model

We adopt the Kuramoto model of coupled oscillators:

$$\frac{d\theta_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_j - \theta_i)$$
 (2)

where θ_i is the phase of oscillator i, ω_i its natural frequency, K the coupling constant, and N the system size.

The global coherence is measured by the order parameter:

$$C = \left| \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j} \right| \tag{3}$$

with $C \approx 1$ indicating high synchrony and $C \approx 0$ indicating incoherence.

4 Numerical Validation Method

To verify the effectiveness of the coherence index, we propose the following simulation scheme:

- System size: N = 20.
- Natural frequencies: sampled from a normal distribution N(0,1).
- Initial phases: uniform distribution in $[0, 2\pi]$.
- Integration method: 4th-order Runge-Kutta, $\Delta t = 0.01$, T = 50.
- Coupling strengths: K = 0.5, 1.0, 2.0, 3.0, 5.0.

Outputs:

- 1. Phase evolution of oscillators.
- 2. Time evolution of C(t).
- 3. Average coherence $\langle C \rangle$ vs. coupling strength K.

Figure 1: Phase evolution for K=0.5 (top, incoherent) and K=5.0 (bottom, synchronized).

5 Results

5.1 Phase Evolution

Figure 1 compares the phase trajectories of N=20 oscillators. At K=0.5, oscillators drift apart over time, showing incoherent dynamics. At K=5.0, phases converge rapidly into a locked state, indicating strong synchronization.

Figure 2: Time evolution of coherence index C(t) under different coupling strengths.

5.2 Time Evolution of Coherence Index

Figure 2 plots C(t) for different K. At K=0.5, C(t) fluctuates at low values (< 0.4). At K=2.0, partial synchrony emerges with C(t) in the 0.6–0.8 range. At K=5.0, C(t) saturates near 1.0, reflecting near-perfect coherence.

5.3 Synchronization Transition

Figure ?? shows $\langle C \rangle$ as a function of K. A sharp increase occurs near $K \approx 2.0$, consistent with the predicted synchronization threshold. Beyond this, $\langle C \rangle$ approaches unity.

6 Applications

- Power grids: generators as oscillators, coupling as line admittance. Low $K \Rightarrow$ loss of C, blackout risk.
- Energy storage: ion migration and interfacial dynamics mapped as phase coupling. Reduced $C \Rightarrow$ higher impedance.

Figure 3: Enter Caption

• Thermal transport: lattice vibration mismatch lowers C, correlating with increased thermal resistance.

7 Discussion and Conclusion

This coherence-preserving framework extends conventional modelling of complex systems by introducing synchronization as a quantifiable dimension. Theoretical analysis shows that coherence is not only a complement to efficiency and stability but also a precursor of systemic resilience. Numerical validation demonstrates its ability to capture the transition from disorder to synchrony. Future work will integrate this framework with quantum simulation and high-performance computing for broader applications in energy and material sciences.

References

- 1. Kuramoto, Y. Self-entrainment of a population of coupled nonlinear oscillators. Lecture Notes in Physics, 1975.
- 2. Strogatz, S.H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D, 2000.
- 3. Dörfler, F., Bullo, F. Synchronization in complex networks of oscillators: A survey. Automatica, 2014.

4. Motter, A.E., Myers, S.A., Anghel, M., Nishikawa, T. Spontaneous synchrony in power-grid networks. Nature Physics, 2013.