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Abstract

We examine the information content of option and equity volumes when trade di-
rection is unobserved. In a multimarket asymmetric information model, we show that
equity short-sale costs result in a negative relation between relative option volume
and future �rm value. In our empirical tests, �rms in the lowest decile of the option
to stock volume ratio (O/S) outperform the highest decile by 1.47% per month on a
risk-adjusted basis. Our model and empirics both indicate that O/S is a stronger sig-
nal when short-sale costs are high or option leverage is low. O/S also predicts future
�rm-speci�c earnings news, consistent with O/S re�ecting private information.
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1. Introduction

In recent decades, the availability of derivative securities has rapidly expanded. This

expansion is not limited to equity options and now includes a vast array of securities ranging

from currency options to credit default swaps. Derivatives contribute to price discovery

because they allow traders to better align their strategies with the sign and magnitude

of their information. The leverage in derivative securities, combined with this alignment,

creates additional incentives to generate private information. In this way, trades in derivative

markets may provide more re�ned and precise signals of the underlying asset's value than

trades of the asset itself. Understanding how and why derivatives a�ect price discovery is

therefore vital to understanding how information comes to be in asset prices.

This study focuses on the information content of trading volumes. Observed transactions

play an important role in price discovery because order �ow imbalances can re�ect the sign

and magnitude of private information. While market makers can observe these imbalances,

most outside observers cannot, which makes the problem of inferring private information

more complex. Techniques to empirically estimate order �ow imbalances are computation-

ally intensive, typically requiring the pairing of intraday trades and quotes. This problem

is exacerbated when agents have access to multiple trading venues because the mapping

between transactions and private information becomes more di�cult to identify. In this pa-

per, we address the inference problem of the outside observer by examining the information

content of option and equity volumes when agents are privately informed but trade direction

is unobserved.

We provide theoretical and empirical evidence that informed traders' private information

is re�ected in O/S, the ratio of total option market volume (aggregated across calls and

puts) to total equity market volume. The O/S measure was �rst coined and studied by

Roll, Schwartz, and Subrahmanyam (2010), whose �ndings suggest that cross-sectional and

time-series variation in O/S may be driven by informed trade. As a natural extension of
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these �ndings, we examine the relation between O/S and future returns. Empirically, we �nd

that contrasting publicly available totals of �rm-speci�c option and equity volume portends

directional prices changes, in particular that low O/S �rms outperform the market while

high O/S �rms underperform. At the end of each month we sort �rms by O/S and compute

the average return of a portfolio consisting of a short position in stocks with high O/S and a

long position in stocks with low O/S. This portfolio provides an average risk-adjusted hedge

return of 1.47% in the month following the formation date.

If option volume is concentrated among risky �rms with higher return volatility, one

might anticipate the opposite result, namely that �rms with higher O/S earn higher future

returns. While our �nding is inconsistent with this risk-based explanation, we take several

steps to mitigate concerns that exposure to other forms of risk, for example liquidity risk,

explains the O/S-return relation. First, we show that the relation holds after controlling for

exposure to the three Fama-French, momentum, and Pastor-Stambaugh liquidity factors.

Second, we show that the predictive power of O/S for future returns is relatively short-lived,

failing to predict returns beyond the second month following portfolio formation. Third, we

show that a decile strategy using changes in O/S also generates positive risk-adjusted alphas.

We argue that the negative relation between O/S and future returns is driven by short-

sale costs in equity markets, which make option markets an attractive venue for traders with

negative news. Motivated by this story, we model the capital allocation decision of privately

informed traders who can trade in option and equity markets. Capital constraints and equity

short-sale costs lead informed agents to trade options more frequently for negative signals

than positive ones, thus predicting a negative relation between relative option volume and

future equity value. An important innovation of our paper is that this relation does not

require classifying trades as being buyer- versus seller-initiated. Instead, our theoretical

predictions and empirical tests rely on publicly available volume totals.

Having established the negative cross-sectional relation between O/S and future returns,

we next test our model's prediction that this relation is stronger when short-sale costs are
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high. As short-sale costs increase, informed traders are more likely to switch from equities

to options for negative signals, which strengthens the O/S-return relation. We test this

prediction using three di�erent measures of short-sale costs. The �rst measure is derived

from institutional ownership, as in Nagel (2005), and is available throughout our 1996-2008

sample window. We also use two direct measures of short-sale costs, transacted loan fees and

available loan supply, from a proprietary database of institutional lending that is available

on a monthly basis from 2002 through 2008. Across all three measures, we �nd that portfolio

alphas associated with O/S are increasing in the cost of shorting.

An additional empirical prediction arising from our model is that the O/S-return rela-

tion is weaker when option leverage is high. As option leverage increases, bid-ask spreads in

options markets increase, which weakens the O/S-return relation because the bid-ask spread

acts like a switching cost for traders considering the use of options to avoid short-sale costs.

When the bid-ask spread is larger, fewer traders switch from equities to options for nega-

tive signals, and the O/S-return relation is therefore weaker. Empirically, we �nd that the

portfolio alphas associated with O/S are monotonically decreasing across option leverage

quintiles.

It may be initially puzzling why we do not �nd a relation between the ratio of call to put

volume and future returns. Our model demonstrates that O/S provides a clearer signal of

private information than the ratio of call to put volume because call volume could be good

news (if informed traders are buying) or bad news (if informed traders are selling), and put

volume is similarly ambiguous. Thus, in the absence of information about the sign of each

trade (i.e. buy vs. sell), O/S is an indication of the sign of private information while the ratio

of call to put volume is not. Our model does, however, predict a positive relation between

call-put volume di�erences and future return skewness because informed traders buy calls

(puts) for extremely good (bad) news and sell calls (puts) for moderately bad (good) news.

Consistent with this prediction, we show empirically that the ratio of call volume to put

volume predicts return skewness in the subsequent month.
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We also �nd that O/S predicts the sign and magnitude of earnings surprises, standard-

ized unexplained earnings, and abnormal returns at quarterly earnings announcements in the

following month. These tests show that the same O/S measure we use to predict monthly

returns also contains information about future earnings announcements that occur in the

subsequent month. This is consistent with O/S re�ecting private information that is incor-

porated into equity prices following a subsequent public disclosure of the news.

The rest of the paper is organized as follows. We begin in Section 2 by discussing our

results in the context of existing literature. We model the multimarket price discovery process

and formalize the equilibrium strategy of informed traders in Section 3. The model results

in four main �ndings regarding the information content of relative trading volumes, which

we translate into empirical predictions. In Section 4, we describe the data, methodology,

empirical results, and robustness checks. Finally, we present results pertaining to quarterly

earnings announcements in Section 5 and conclude in Section 6.

2. Relation to literature

The two immediate antecedents of our work are Easley, O'Hara, and Srinivas (1998),

hereafter referred to as EOS, and Roll, Schwartz, and Subrahmanyam (2010), hereafter

RSS. EOS contains a multimarket equilibrium model wherein privately informed traders are

allowed to trade in both option and equity markets.1 The EOS model highlights conditions

under which informed traders transact in both option and equity markets, and predicts

that directional option volume signals private information not yet re�ected in equity prices.

Speci�cally, their model predicts that positive trades (i.e. buying calls and selling puts)

are positive signals of equity value and that negative trades (i.e. selling calls and buying

puts) are negative signals of equity value. An interesting but otherwise unexplored empirical

�nding in EOS is that negative option market activity carries greater predictive power for

1The authors point out that asymmetric information violates the standard assumptions underlying com-
plete markets and, therefore, the option trading process is not redundant. Consistent with this idea, Bakshi,
Cao, and Chen (2000) �nd that S&P500 options frequently move in the opposite direction of equity prices.
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future price changes. EOS comment on this �nding in the following excerpt:

An interesting feature of our results is the asymmetry between the negative- and
positive-position e�ects . . . suggesting that options markets may be relatively
more attractive venues for traders acting on `bad' news. An often-conjectured
role for options markets is to provide a means of avoiding short-sales constraints
in equity markets . . . Our results support this conjecture, suggesting a greater
complexity to the mechanism through which negative information is impounded
into stock prices [Page 458].

We provide a formal means of understanding their �nding by introducing short-sale costs

into a microstructure framework with asymmetric information. Like EOS, informed agents

trade with a risk neutral market maker, and can buy or sell shares of stock, buy or sell calls,

or buy or sell puts. Unlike EOS, we impose capital constraints and short-sale costs that play a

central role in determining which assets informed traders choose to trade. It is comparatively

cheaper to capitalize on bearish private signals in option markets because traders can buy

puts or sell calls, and in both cases they can create new option contracts without �rst

borrowing them from a third party. In our model's equilibrium, the costs associated with

short-selling make informed traders more likely to use options for bad signals than for good

ones and, as a result, high O/S indicates negative private information and low O/S indicates

positive private information.

Like EOS, we solve a static model and therefore need the additional assumption that some

friction prevents equity prices from immediately re�ecting the information in option volumes

in order for the model's prediction about the conditional mean equity value to translate into

return predictability. Our main empirical prediction, that O/S is a negative cross-sectional

signal of future returns, di�ers from EOS in that it can be tested empirically without signing

the direction of trades. We predict and con�rm that contrasting publicly available totals of

�rm-speci�c option and equity volume portends directional price changes.

Empirically, our study of the relation between O/S and future returns is a natural ex-

tension of the work in RSS, which introduces the option to stock volume ratio, and coins it

O/S. The authors �nd substantial intertemporal and cross-sectional variation in O/S, and
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explain a signi�cant part this variation in a regression framework. In particular, O/S is

increasing in �rm size and implied volatility but decreasing in option bid-ask spreads and in-

stitutional holdings. Our results shed additional light on the variation in O/S by examining

the theoretical determinants of relative option volume when a subset of market participants

are privately informed, and the empirical relation between O/S and future returns. RSS

also shows that O/S in the days immediately prior to announcement predicts the magnitude

of returns at earnings announcements, consistent with O/S re�ecting traders' private infor-

mation. Conditional on there being positive (negative) earnings news, they �nd that O/S

predicts higher (lower) announcement returns (see Section 5 for more details). Our analysis

builds upon this �nding by demonstrating an unconditional predictive relation between the

prior month's O/S and earnings surprises.

Another recent paper examining option volume is Roll, Schwartz, and Subrahmanyam

(2009), which shows a positive cross-sectional relation between Tobin's q and unscaled option

volume. The authors interpret this as evidence that liquid option markets increase �rm value

because they help complete markets and generate informed trade. Our model and empirical

tests support this intuition by demonstrating that option markets are an attractive venue

for informed traders.

The results of this paper also relate to the literature on price discovery and information

�ow in multiple markets.2 Pan and Poteshman (2006) use proprietary CBOE option market

data and document strong evidence of informed trading in option markets. The authors

�nd that sorting stocks by the amount of newly initiated positions in puts relative to calls

foreshadows future returns but they conclude the predictability is not due to market ine�-

ciencies and instead re�ects the fact that their volume measure is not publicly observable. A

key innovation of our paper is demonstrating that publicly available, non-directional, volume

2Whether option markets lead equity markets or vice versa remains an open question. Anthony (1988)
examines the interrelation of stock and option market volume and �nds that call-option market activity
predicts volume in the underlying equity with a one-day lag. Similar �ndings are reported in Manaster and
Rendleman Jr. (1982). In contrast, Stephan and Whaley (1990) �nd no evidence that option markets lead
equity markets. While our results do little to resolve this debate, they demonstrate that combined signals
from option and equity markets serve as a leading indicator of future equity market returns.
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totals predict future returns. Similarly, Cremers and Weinbaum (2010) and Zhang, Zhao,

and Xing (2010) �nd that publicly available asymmetries in implied volatility across calls

and puts predict future returns.

Prior research establishes that equity volume, the denominator of our primary return

predictor O/S, is useful by itself in predicting future returns, though the direction depends

on the way volume is measured (see, e.g., Gervais, Kaniel, and Mingelgrin (2001); Lee and

Swaminathan (2000); Brennan, Chordia, and Subrahmanyam (1998)). We decouple O/S

into separate measures of equity and option volume and show that past option volume is

negatively related to future returns incremental to past equity volume. Other extant work

uses equity volume as a conditioning variable for examining the relation between past and

future returns. Speci�cally, Lee and Swaminathan (2000) shows that high (low) volume

winners (losers) experience faster momentum reversals, and Llorente et al. (2002) show that

the relation between equity volume and return autocorrelation changes sign depending on

the amount of informed trading for a given equity.

During the 2008 �nancial crisis, the SEC banned short sales for 797 `�nancial' stocks,

providing an interesting case study of the impact of short-sale costs on options markets.

Both Battalio and Schultz (2011) and Grundy, Lim, and Verwijmeren (2010) �nd that option

market spreads increased and option market volume decreased for �rms subject to the ban

relative to those exempt from it. A key component of our model is that option markets serve

as an alternative venue for negative news when shorting is costly, and at �rst glance the 2008

episode contradicts this premise. However, as emphasized in Battalio and Schultz (2011), the

short-sale ban also imposed costs on option market makers who short equity, making it more

di�cult for them to hedge when selling puts or buying calls. In our model, increasing costs

for market makers who write puts or buy calls will increase spreads and decrease volume

in option markets, while banning shorts will increase both spreads and volume in options

markets. Our model therefore suggests we interpret the decrease in option market volume

during the 2008 ban as a result of the added costs of shorting for market makers outweighing
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the relocation of trades stemming from negative information to option markets.

In modelling the relation between short-sale costs and informed trading, our paper is also

related to Diamond and Verrecchia (1987), who model the impact of short-sale constraints on

the speed of adjustment of security prices to private information when informed traders only

have access to equity markets. In their model, short-sale constraints cause some informed

parties with negative information not to trade. Thus, the absence of trade in their model

is a negative signal of future �rm value. In our model, trading options is an alternative to

abstaining from trade when the cost of shorting is high. As a result, a high option volume

ratio, rather than the absence of trade, re�ects negative private information. Diamond

and Verrecchia (1987) also suggest that the introduction of traded options would e�ectively

lower short-sale costs by providing a lower cost venue to capitalize on negative news. Our

model and empirical results support this intuition by predicting and empirically con�rming

a negative relation between O/S and future equity values.

3. The model

We present a model of informed trading in both equity and options markets in the

presence of short-sale costs and a borrowing constraint. Informed traders build a portfolio

by trading sequentially with a competitive, risk neutral market maker. As argued in Black

(1975), privately informed traders may prefer to trade in options markets because of the

additional leverage they provide. The borrowing constraint makes it impossible for informed

traders to match the leverage in options by using a combination of the risk-free asset and the

stock. As a result, we �nd that option trades are more likely to originate from an informed

trader than stock trades regardless of parameter choices. A key feature of our model is that

traders must pay a lending fee to a third party when shorting stock. Because it is costly to

trade on bad news in the stock market, in equilibrium the mean equity value conditional on

an option trade is lower than the mean equity value conditional on a stock trade.

There are three tradable assets in the model: an equity, a call option, and a put option.
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The stock liquidates for Ṽ at some time t = 2 in the future. The value of Ṽ is unknown

prior to t = 2, but it is common knowledge that

Ṽ = µ+ ε̃+ η̃, (1)

where µ is the exogenous mean equity value, and ε̃ and η̃ are independent, normally dis-

tributed, shocks with zero mean and variances σ2
ε and σ

2
η. The call and put are both struck

at µ, and both expire at time t = 2. We de�ne C̃ and P̃ as the value of the call and put at

t = 2, and note that

C̃ = max(Ṽ − µ, 0) = max(ε̃+ η̃, 0) (2)

P̃ = max(µ− Ṽ , 0) = max(−(ε̃+ η̃), 0). (3)

We focus on the case of a single strike price because our aim is to model the choice between

trading options and trading equities, as opposed to the choice amongst options of di�erent

strikes. We use µ as a strike price so that calls and puts have the same leverage. To avoid

complexities arising from early exercise, we assume that all options are European.

Trade occurs at time t = 1, at which point a fraction θ of the traders (henceforth �informed

traders�) know the realization of ε̃ but the remaining traders, and the market maker, do not.

Informed traders only have a noisy signal of the true value Ṽ since they do not know the

realization of η̃. The distribution of Ṽ conditional on the information that ε̃ = ε is:

Ṽ |(ε̃ = ε) ∼ N(µ+ ε, σ2
η) (4)

Informed traders are risk neutral, and therefore value the stock, call, and put using:
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E(Ṽ |ε̃ = ε) = µ+ ε (5)

E(C̃|ε̃ = ε) = Φ

(
ε

ση

)
ε+ φ

(
ε

ση

)
ση (6)

E(P̃ |ε̃ = ε) = −Φ

(
−ε
ση

)
ε+ φ

(
ε

ση

)
ση (7)

respectively, where Φ is the standard normal's cumulative distribution function, and φ is its

probability distribution function. The �rst term of the informed trader's option valuation,

given in equations (6) and (7), represents the contribution of the conditional mean of Ṽ ,

while the second represents the contribution of the remaining volatility ση. The informed

trader's valuation function for a call is increasing in both ε and ση, while for a put it is

decreasing in ε and increasing in ση.

Informed traders have no endowment and select the portfolio of risky assets and a risk-free

asset that maximizes their expected �nal period wealth. Because they have no endowment,

traders need to borrow to take long positions. All investors have the same maximum bor-

rowing $κ.3 Traders can borrow and short the same number of shares they can buy, and

write ϕ options contracts for every share they can short, where ϕ > 1. The exact value of ϕ

is determined by the margin requirements imposed on the trader.

We require that each trade be in exactly one type of risky asset, resulting in six possible

trades: buy or sell stock, buy or sell calls, and buy or sell puts. At equilibrium prices, the

informed traders have a strict preference among the assets except at 6 cuto� points. Allowing

trades in bundles of multiple assets, for example 1 call and 2 shares, complicates the analysis

without changing our results or providing additional insight. Bundles serve as �intermediate�

portfolios used by the informed trader upon receiving a signal near their indi�erence point

between the two bundled assets. As long as the bundle trades that include a short position

in equities require traders to pay short-sale costs, our model still predicts that equity volume

3Alternatively, we could allow a di�erent maximum borrowing amount for traders buying equities and
traders buying options. In this case, informed trader demand would shift toward whichever asset allowed
more borrowing, but none of our main results would change.
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re�ects positive private information and option volume negative private information.

A fraction 1− θ of the traders are uninformed and trade for reasons outside the model,

possibly a desire for liquidity, the need to hedge other investments or human capital, or

a false belief that they have information. As noted in EOS, hedging is a commonly cited

reason to trade in options markets. Regardless of their motivation, uninformed traders choose

among the same possible portfolios as the informed traders. Uninformed traders' volume is

distributed among these trades (buy and sell stock, calls, and puts) with the probabilities

γ1, γ2, . . . γ6, where
∑6

i=1 γi = 1.

A competitive and risk neutral market maker posts bid and ask prices for all three assets,

along with �xed order sizes, that result in zero expected pro�t for each trade.4 For notation,

we write as, bs, ac bc, ap, and bp for the ask and bid prices of the stock, call, and put,

respectively. Similarly, qbs, qss, qbc, qsc, qbp, and qsp denote the quantities available for each

type of trade. For example, qbs gives the quantity of stock available for the trader to buy.

As in EOS and Glosten and Milgrom (1985), trades occur sequentially and at �xed order

sizes. The key di�erence, however, is that in our model these order sizes are endogenously

determined. The market maker is aware of the traders' budget constraint, and determines

order sizes from the exogenous budget parameter κ and the endogenously determined prices.

With only one chance to trade and in possession of valuable information, informed traders

take the largest position allowed by the capital constraint when choosing to trade. The

traders make their portfolio choice, the market maker decides on prices, and jointly these

determine the quantities traded.

This approach is di�erent from EOS, in which the �xed order sizes are exogenous param-

eters used to capture the leverage available in each asset. In the EOS model and using their

notation, stock trades are in round lots of γ shares, and option trades are in a single contract

controlling θ shares. When θ > γ, options are more levered in the sense that trading options

4In the model, additional market makers have no impact as long as they are risk-neutral and competitive.
In reality, the return predictability evidence in this paper suggests there is some segmentation between option
and equity markets, perhaps because they have di�erent market makers.
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provides more exposure to the underlying than trading the stock itself. When θ < γ, the

opposite is true and stocks have more leverage than options. Con�rming the intuition in

Black (1975), they show that trades carry more information in whichever market has greater

leverage. However, the EOS model provides no guidance on the relation between γ and θ.

We specify a relation between these two by noting that leverage in options is only relevant

when there is a capital constraint or some other cost of borrowing. Modelling this relation

allows us to pin down the order sizes because the total value of each trade must satisfy the

budget constraint; speci�cally, it tells us that at equilibrium trade quantities, options have

more leverage than equities (or θ > γ in the language of EOS)5.

A critical new ingredient in our model is a short-sale cost paid by the trader to a third

party who lends them the shares. The market maker posts a bid price for the stock bs, and

corresponding quantity qss. To sell to the market maker, traders must borrow shares from

an unmodelled third party who charges a lending fee equal to a fraction ρ > 0 of the total

amount shorted qssbs. The lender is able to charge such a fee because they have some market

power, or because there is some counterparty risk. No such fee exists when writing options

because there is no need to �nd a contract to borrow � the market maker can simply create

a new contract. The parameter ρ can also be thought of as a reduced form of any cost to

shorting stock, for example recall risk or the indirect costs described in Nagel (2005). The

result is that the market maker pays qssbs in exchange for qss shares, but the trader only

nets qssbs(1− ρ) from the transaction.

It is important for our argument that option market makers do not pay the short-sale cost

ρ in the course of hedging their position, and therefore embed the short-sale cost in option

prices. If option prices fully re�ected the short-sale cost, option markets would not be an

e�ective alternative to shorting for traders with negative information and our results would

no longer hold. In the model, option prices are set by the equilibrium between informed

5We could use the exogenous order sizes as they do in EOS, and all our results would carry though as
long as options had more leverage than stocks (θ > γ). Using order sizes set endogenously by the budget
constraints allows us to argue that options are more levered than stocks regardless of model parametrization.
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trader demand and bid-ask spreads, and ρ only impacts option prices through informed

trader demand. In reality, market makers hedge their positions using equities and take

into account their cost of shorting when setting prices. However, option market makers

have access to cheaper shorting than ordinary investors, and therefore the option-embedded

short-sale cost is smaller than the actual short-sale cost in equity markets. Moreover, the

evidence in Bakshi, Cao, and Chen (2000) suggests options are not completely redundant

securities, which means the equilibrium between informed trader demand and marker maker

pricing described by our model plays an important role in determining option prices even

when option market makers face short-sale costs.

3.1. Equilibrium

An equilibrium in our model consists of an optimal trading strategy for informed traders

as a function of their signal, and bid-ask prices and quantities that yield zero expected pro�t

for the market maker. In equilibrium, informed traders use the following cuto� strategy f(ε)

that maps the range of possible signals to the space of possible trades:6

f(ε) =



buy puts for ε ≤ k1

sell stock for ε ∈ (k1, k2]

sell calls for ε ∈ (k2, k3]

make no trade for ε ∈ (k3, k4]

sell puts for ε ∈ (k4, k5]

buy stock for ε ∈ (k5, k6]

buy calls for ε > k6

(8)

For extremely good or bad signals, informed traders buy options despite the large information-

based transaction costs in these markets because of the greater leverage they provide. The

large bid-ask spread makes options unattractive for weaker signals, and so informed traders

trade equities instead. For even weaker good or bad signals, however, informed traders value

the stock near its unconditional mean and therefore cannot pro�tably trade stock; however,

6When choosing to trade, the informed trader always borrows the maximum allowed, either directly or
by shorting a security. The uninformed traders choose among the same set of possible trades for simplicity.
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they value the options well below their unconditional mean because extreme outcomes are

unlikely, and therefore sell options. If bid prices are below informed trader's valuation of

both a put and a call for a given signal, the informed traders choose not to trade. The cuto�

points ki arise endogenously in equilibrium and are chosen so that informed traders strictly

prefer writing puts for all ε < k1, selling stock for all k1 < ε < k2, etcetera. Some regions may

be empty in equilibrium, meaning ki = ki+1 for some i. The addition of short-sale costs has

the e�ect of shrinking the region of signals for which informed traders short stock, making

k2 − k1 smaller than it would be otherwise.

The bid and ask prices for each asset (as, bs, ac, bc, ap, and bp), the associated quantities

(qbs, qss, qbc, qsc, qbp and qsp), and the informed traders' cuto� points ki are the 18 equilibrium

parameters. Together they satisfy 18 equations, presented fully in Appendix B, which assure

that the market maker's expected pro�t is zero for each trade, that the quantities and prices

match the budget constraint, and that informed traders are indi�erent between the two

relevant trades at each cuto� point.

3.2. Results and Empirical Predictions

Due to the non-linearity of the simultaneous equations, no closed form solution for the

equilibrium parameters is available. We proceed by �rst deriving results and empirical

predictions which hold generally from the simultaneous equations themselves, and second by

examining a numeric example in Appendix A. The focus of this paper is on the information

content of option volume when there are short-sale costs. To this end, we assume throughout

that ρ > 0. Proofs are in Appendix D.

Result 1. When each asset is equally likely to be bought or sold by an uninformed trader,

the stock is worth less conditional on an option trade than it is conditional on a stock trade.

Empirical Prediction 1. Option volume, scaled by volume in the underlying equity, is

negatively related to future stock returns for the underlying.

The main result is that an option trade is bad news for the value of the stock and a
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stock trade is good news. This result di�ers from EOS in that the conditioning variable is

the location of trade rather than the direction of trade. Option volume corresponds to bad

news because informed traders use stocks more frequently to trade on good news than they

do for bad news due to the extra cost of short selling stock. Therefore, the expected equity

value is lower conditional on an option trade than the unconditional mean, which is in turn

lower than the expectation conditional on a stock trade. Result 1 requires that uninformed

traders buy and sell each asset with equal probability, but holds regardless of how uninformed

traders distribute their demand across the di�erent assets; for example, uninformed traders

may trade stock much more frequently than options or trade calls more than puts.

In order to translate Result 1 into an empirical prediction, we consider the implications of

our static model in a multiperiod setting. If equity markets fully incorporate the information

revealed through options trading into their valuations, stock prices will immediately re�ect

the new conditional expectation of Ṽ after each option trade. Otherwise, stock prices do

not fully re�ect the information content of options trades for the time between when the

informed option market trading occurs and when the information becomes public through

another channel. In this case, there will be a negative relation between option volume and

subsequent returns until the public release of the information. Empirical Prediction 1 is,

therefore, a joint hypothesis that (a) short-sale costs make O/S a negative cross-sectional

predictor of future prices, and (b) some of the information in option volume reaches equities

through other channels, such earnings announcements, that occur after the option is traded.

A common intuition is that call volume re�ects good news and put volume re�ects bad

news. Therefore, a natural question is why we do not examine the call to put volume

ratio, or separate O/S into the call to stock and put to stock volume ratios. Equation

(8) demonstrates that this common intuition does not hold in our setting because informed

traders buy calls and sell puts for good news, and buy puts and sell calls for bad news. Unless

trade direction is observable, it is unclear whether call (put) volume re�ects good or bad

news. Depending on the fraction of informed traders θ, the behavior of uninformed traders
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γi, and the distribution of the underlying asset value, both put and call volume can be good

or bad news about future equity value. Unlike separated call and put volumes, Result 1

illustrates that total option volume is a negative signal of private information regardless of

model parameterization.

Our model makes no prediction about the overall volume in options and stocks together,

only that option trades are bad news relative to stock trades. Our goal is to focus on informed

traders' choice between equities and options, conditional on having a signal about the future

value of a �rm. Therefore, our predictive measure is the ratio of option volume to equity

volume, rather than unscaled option volume.

Result 2. The disparity in conditional mean equity values between option and stock trades,

as a fraction of the mean stock price µ, is weakly increasing in the short-sale cost ρ.7

Empirical Prediction 2. The predictive power of the option volume ratio for future stock

returns is increasing in the cost of shorting equity.

Although Empirical Prediction 1 does not rely on cross-sectional di�erences in short-sale

costs, if such di�erences exist the model predicts that option volume is a worse signal for

high short-sale cost equities than low short-sale cost equities, but is still a valuable signal as

long as short-sale costs exist. When short-sale costs are higher, option volume is worse news

about future equity value because informed traders deviate from shorting stock to trading

options for a larger range of signals. We discuss the empirical proxies for short-sale costs

used to test Empirical Prediction 2 in Section 4.

Result 3. The disparity in conditional mean equity values between option and stock trades,

as a fraction of the mean stock price µ, is weakly decreasing in the option's leverage λ ≡
∂C
∂S

S
C

= µ

2φ(0)
√
σ2
ε+σ2

η

.

7We scale the di�erence in conditional means by µ because we want the conditional mean di�erence to
be relative to the unconditional mean. In the language of investment, we consider returns rather than raw
pro�ts.
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Empirical Prediction 3. The predictive value of relative option volume for future stock

returns is decreasing in the average Black-Scholes λ of options traded.

Result 3 may be surprising at �rst because leverage is usually an attractive feature of

options. Indeed, in our model leverage allows an informed trader's investment to be more

sensitive to their private information on a per dollar basis, and therefore the overall use

of options by informed traders increases with leverage. However, this very attractiveness

creates large information-based transaction costs in options markets. Larger bid-ask spreads

make it more expensive for informed traders to divert their demand from stocks to options

to avoid the short-sale cost, meaning that when option leverage is high, informed traders use

options to avoid short-sale costs for a smaller range of signals. This weakens the O/S-return

relation.

Empirically, Result 3 suggests that volume in options markets with higher leverage pro-

vides a weaker signal than volume in options markets with lower leverage. For a measure

of leverage, we use λ = ∂C
∂S

S
C
, the elasticity of C with respect to S, re�ecting the �bang-

for-the-buck" notion of leverage. We show in Appendix C that ∂C
∂S

S
C

= µ

2φ(0)
√
σ2
ε+σ2

η

in our

model. Empirically, we use the Black-Scholes λ because some of the parameters in the model

λ are unobservable. Result 3 indicates there exists a spread between conditional means of Ṽ

regardless of the leverage λ but that the spread is larger for smaller values of λ. Therefore,

our empirical prediction is that O/S predicts returns for all levels of λ, but most strongly

for low λ.

Result 4. Equity value has higher skewness conditional on a call trade than conditional on

a put trade.8

Empirical Prediction 4. The ratio of call volume to put volume varies positively with the

future skewness of stock returns.

8Our proof of this result requires that the uninformed trader demand for each asset γi does not approach
zero. If it did, markets would begin to fail and the skewness result may reverse.
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Result 4 follows from the equilibrium trading strategy described in Section 3.1. Following

the notation used to describe the informed trader's strategy in equation (8), skewness con-

ditional on a put trade is low because, if informed, it re�ects either moderately good news

(i.e. ε ∈ (k4, k5]) or extremely bad news (i.e. ε ≤ k1). Similarly, skewness conditional on a

call trade is high because, if informed, it re�ects either moderately bad (i.e. ε ∈ (k2, k3]) or

extremely good news (i.e. ε > k6). Empirical Prediction 4 restates Result 4 as a relation

between the ratio of call volume to put volume and future return skewness.

To summarize the results up to this point, our model provides three principle predictions

regarding the price discovery process across option and equity markets. First, we predict that

the concentration of option volume, relative to equity volume, is a negative cross-sectional

signal of future equity returns. Second, relative option volume carries greater predictive

power when short-sale costs are high or leverage is low. Third, call-put volume di�erences

predict the skewness of future returns. In Section 4, we explore these predictions empirically.

4. Empirical tests

The option data for this study comes from the Ivy OptionMetrics database, which pro-

vides end-of-day summary statistics on all exchanged-listed options on U.S. equities. The

summary statistics include option volume, quoted closing prices, and option Greeks. The

OptionMetrics database, and hence the sample for this study, spans from 1996 through 2008.

The �nal sample for this study is dictated by the intersection of OptionMetrics, Compustat

Industrial Quarterly and Center for Research in Security Prices (CRSP) Monthly data. We

restrict the sample to �rm-months with at least 50 call and 50 put contracts traded to reduce

measurement problems associated with illiquid option markets. We also eliminate closed-end

funds, real estate investment trusts, American Depository receipts, and �rms with a stock

price below $1. The intersection of these databases and data restrictions results in 175,654

�rm-months corresponding to approximately 150 months and 1,700 total unique �rms.

For each �rm i in month m, we sum the total option and equity volumes, denoted by
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OPVOLi,m and EQVOLi,m, respectively. Speci�cally, OPVOLi,m equals the total volume in

option contracts across all strikes for options expiring in the 30 trading days beginning 5

days after the trade date.9,10 We report EQVOLi,m in round lots of 100 to make it more

comparable to the quantity of option contracts that each pertain to 100 shares. We de�ne

the option to stock volume ratio, or O/Si,m, as:

O/Si,m =
OPVOLi,m
EQVOLi,m

(9)

Panel A of Table 1 contains descriptive statistics of O/Si,m (hereafter O/S for notational

simplicity) for each year in our sample. The sample size increases substantially over the

1996-2008 window. The number of �rm-months increases from 7,501 in 1996 to 18,363 in

2008. The remainder of Panel A presents descriptive statistics of O/S for each year of the

sample. The mean value of O/S for the entire sample is 4.34%, which indicates that there

are roughly 23 times more equity round lots traded than option contracts with times to

expiration between 5 and 35 trading days. Average O/S has increased in recent years due

to growth in options volume outpacing growth in equity volume. O/S is positively skewed

throughout the sample period due to a high concentration of relative option volume among

a small subset of �rms.

[Insert Table 1 about here]

Panel B of Table 1 presents �rm characteristics by deciles of O/S. SIZE (LBM) equals

the log of market capitalization (book-to-market) corresponding to the �rm's most recent

quarterly earnings announcement. High O/S �rms tend to be larger and have lower book-

9We exclude options expiring within 5 trading days to avoid measuring mechanical trading volume associ-
ated with option traders rolling forward to the next expiration date. The results are qualitatively unchanged
if we include options with longer expirations.

10As a robustness check, we separate option volume into moneyness categories and �nd that at-the-money,
in-the-money, and out-of-the-money option volumes all predict future returns once scaled by equity volume.
This is consistent with the our model's intuition that options, regardless of their moneyness, serve as an
alternative trading venue with symmetric costs for both positive and negative news trades. The consistency
of the O/S-return relation across moneyness categories provides comfort that our model is not omitting
critical determinants of the O/S-return relation by focusing on a single strike price.
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to-market ratios. Although low O/S �rms tend to be smaller, our initial data requirement of

50 calls and 50 puts traded in a month tilts our sample toward larger and more liquid �rms,

which mitigates, but fails to eliminate, concerns that the O/S-return relation is attributable

to transaction costs. The average market capitalization of �rms exceeds $2 billion in each

O/S decile. VLC and VLP indicate the number of call and put contracts traded in a given

month, respectively. Across all deciles of O/S, the number of call contracts traded exceeds the

number of put contracts, which is consistent with calls being more liquid than put contracts.

High O/S �rms also tend to have higher levels of both option and equity volume. In our

model, high O/S re�ects negative private information, and hence our univariate trading

strategy based on O/S consists of taking a short position in higher equity volume stocks (i.e.

high O/S stocks) and a long position in lower equity volume stocks (i.e. low O/S stocks).

This raises concerns that the predictive power of O/S may re�ect compensation for taking

positions in low liquidity �rms. We attempt to mitigate these concerns in several ways,

which are discussed in greater detail below.

[Insert Table 2 about here]

Panel A of Table 2 presents time-series equal-weighted average returns for each O/S decile.

MOMEN equals the cumulative market-adjusted return measured over the 6 months leading

up to portfolio formation. Market-adjusted returns equal the return of �rm iminus the CRSP

value-weighted index inclusive of dividends. RET(m) equals the portfolio's market-adjusted

monthly return m months following portfolio formation, where portfolios are formed on the

last trading day of month 0. To ensure that portfolios are formed on the basis of publicly

available information, we exclude the last trading day of month m = 0 when calculating

O/S. For example, we measure total volume from October 1st to October 30th and match

the observed volume totals with returns accumulated from the close of trading on October

31st. Excluding volume on the last trading day of each month enforces a one-day separation

between observing O/S and the formation of portfolios.11

11This restriction is important because of non-synchronous closing times across option and equity markets.
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Table 2 demonstrates that high O/S �rms tend to have high momentum, suggesting

that a strategy that takes a long position in low O/S �rms and short position in high O/S

�rms results in a momentum reversal bet.12 The RET(1) column contains market-adjusted

returns in the month following portfolio formation, where the bottom row contains one-

month returns resulting from an equal-weighted short position in the highest decile of O/S

and an equal-weighted long position in low O/S �rms. Low O/S �rms outperform high O/S

�rms by 114 basis points per month (14.54% annualized) prior to risk adjustments. The

corresponding t-statistic, based on the monthly time-series, is -2.46 indicating that O/S is

a negative cross-sectional signal of future equity returns. The di�erence in RET(2) across

the extreme deciles of O/S is also negative but statistically insigni�cant, indicating that

univariate return prediction fails in the second month following portfolio formation.

Panel B of Table 2 presents an analogous test where we sort �rms by changes in O/S rather

than levels of O/S. ∆O/S is de�ned as the di�erence between O/S in the portfolio formation

month and its average over the prior six months, all scaled by this average. ∆O/S captures

the extent to which O/S deviates from its historical average. Paralleling the construction of

O/S, all of the information needed to calculate ∆O/S is available at the portfolio formation

date. Return patterns for ∆O/S portfolios are similar to the Panel A results that rely on

O/S. Low ∆O/S �rms outperform high ∆O/S �rms by an average of 1.15% in the month

following portfolio formation with a corresponding t-statistic of -3.07. Our �nding that O/S

and ∆O/S contain comparable predictive power mitigates concerns that the O/S-return

relation re�ects compensation for a static form of risk.

[Insert Figure 1 about here]

Our main analyses focus on the relation between O/S and monthly returns. We chose

Removing this restriction does not materially a�ect our results.
12The negative correlation between pre- and post-formation portfolio returns raises concerns that the

ability of O/S to predict returns is attributable to patterns of short-term momentum reversal shown in
Lehmann (1990) and Jegadeesh (1990). We mitigate this concern by including a short-term reversal factor
in our factor regressions (see footnote 14) and by explicitly controlling for portfolio formation month returns
in our multivariate tests (see discussion of Table 4).
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a monthly horizon, rather than daily or weekly, to mitigate concerns that the pattern of

predictable returns is attributable to portfolio rebalancing costs. Although our model does

not formally de�ne the length of a given period, the endogenous determination of bid-ask

spreads is intuitively linked to short horizons. Consistent with this intuition, EOS focus their

analyses on intraday volumes and RSS focus on O/S at the daily level. We also �nd that the

O/S-return relation holds when both are measured at the daily level. Figure (1) plots equal-

weighted future daily O/S strategy returns corresponding to a long position in the lowest

O/Si,d decile �rms and a short position in the highest O/Si,d decile �rms on day d. We use

two return metrics: four-factor-adjusted and raw returns. To calculate expected returns, we

estimate historical �rm-speci�c factor loadings over the prior year using daily returns, and

apply the estimated coe�cients to contemporaneous daily factors. Factor-adjusted returns

equal raw returns minus historically estimated expected returns.

Figure (1) captures two important patterns. First, O/Si,d possesses strong predictive

power for daily future returns over the 20 trading days following portfolio formation. The

sum of the daily long-short O/S strategy returns is 100 (91) basis points when including

(excluding) returns accrued on the day immediately following portfolio formation. Risk

adjustment increases the returns associated with the O/S strategy, consistent with traders

having private information about the idiosyncratic component of returns. The sum of daily

factor-adjusted returns is 133 (123) basis point when including (excluding) returns accrued

on the day immediately following portfolio formation. Second, the predictive power of O/Si,d

dissipates over time, with most of the predictive power coming in the �rst few days following

portfolio formation. Both of these patterns are consistent with the monthly return results

documented in Table 2.13 Given the similar predictive power of daily and monthly O/S, the

remainder of the analysis is conducted at the monthly level.

[Insert Table 3 about here]

Panel A of Table 3 presents portfolio alphas for each O/S decile using CAPM, four-

13In untabulated results, we �nd that weekly O/S provides similar predictive power for future returns.
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factor, and �ve-factor risk adjustments. To calculate �ve-factor portfolio alphas, we regress

the monthly excess return corresponding to each O/S decile on the three Fama-French,

momentum, and Pastor-Stambaugh liquidity factors. Speci�cally, we estimate three variants

of following regression for each O/S decile:

rpm − rfm = α + β1(rmktm − rfm) + β2HMLm + β3SMBm + β4UMDm + β5LIQm + εm (10)

where rpm is the return on an equal-weighted portfolio of stocks in a given O/S decile, rfm is

the risk-free rate, and rmktm is the market return in month m. HML and SMB correspond

to the monthly returns associated with high-minus-low market-to-book and small-minus-big

strategies. Similarly, UMD and LIQ equal the monthly returns associated with high-minus-

low momentum and Pastor-Stambaugh liquidity strategies, respectively. The CAPM risk-

adjustment omits all factors except for rmktm − rfm and the four factor model omits LIQ. All

factor returns are obtained from Ken French's data library via WRDS.

Panel A contains portfolio alphas corresponding to lagged decile ranks of O/S. A one-

month lag indicates that the portfolio is formed at the conclusion of month m − 1 and the

returns accumulated in monthm. The one-month lag portfolio alphas provide a risk-adjusted

return comparable to the univariate RET(1) results of Table 2. Notice that risk-adjustment

increases the returns associated with the O/S strategy, consistent with the results in Figure

1. Low (High) O/S �rms earn a �ve-factor-adjusted alpha of 87.34 (-59.77) basis points in the

month following portfolio formation with a t-statistic of 3.45 (-3.04). The long-short strategy

results in an average risk-adjusted return of 1.47% per month or, equivalently, 19.15% an-

nualized.14 Return prediction extends into the second month following portfolio formation,

where the long-short strategy results in additional average risk-adjusted return of 0.69% per

month. The long-short strategy fails to accumulate statistically signi�cant abnormal returns

in the third month following the observation of O/S. This short-term predictive power of

14To mitigate concerns that the O/S-return relation is due to short term momentum reversal, we obtain
the short term reversal factor from Ken French's website. In untabulated results, we �nd that the inclusion
of short-term reversal factors in Eq. (10) result in portfolio alphas of similar magnitude and signi�cance.
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O/S is consistent with relative option volume re�ecting private information about near term

changes in price, rather than serving as a proxy for a static risk characteristic that is priced

in the cross-section.

As predicted by our model, in addition to high O/S indicating bad news, low O/S indi-

cates good news: a portfolio of �rms with low O/S has signi�cantly positive alphas in the

month after portfolio formation. In the context of our model, low option volume indicates

good news because informed traders use equity more (and options less) frequently for positive

signals than negative ones due to the equity short-sale costs.

Panel B of Table 3 presents an analogous test where we sort �rms by ∆O/S. Firms in the

lowest decile of ∆O/S earn a factor-adjusted alpha of 1.13% per month with a corresponding

t-statistic of 4.28. Similarly, �rms in the highest decile of ∆O/S earn -0.52% per month with

a t-statistic of -3.16. The alpha associated with a long-short strategy is 1.66% per month

(t-statistic = 5.54), which corresponds to 21.77% on an annualized basis. Similar to the

Panel A results, we �nd that ∆O/S retains predictive power for future returns in the second

month following portfolio formation. The lowest ∆O/S decile continues to outperform the

highest decile in the second month, earning an additional monthly alpha of 1% (t-statistic

= 4.59). This result does not extend to the third month following the portfolio formation,

suggesting that ∆O/S also provides a transitory signal of future returns.

Panels C and D contain the estimated factor loadings corresponding to the O/S and

∆O/S strategies, respectively. The results demonstrate that both strategies have negative

loadings on the market factor. The O/S strategy returns load positively on the HML and

negatively on UMD, indicating that the strategy involves selling glamour �rms with strong

recent equity performance. The ∆O/S strategy results in similar factor loadings except that

it displays a slighty negative but statistically insigni�cant relation with the HML factor.

[Insert Table 4 about here]

Table 4 presents pooled regression results where RET(1) is the dependent variable and

year �xed e�ects are used throughout. Columns (1) through (4) contain the results of
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regressing RET(1) on deciles of O/S. For example, in column (1) the coe�cient on O/S is

-0.106, indicating that �rms in the highest O/S decile outperform �rms in the lowest decile

by an average of 0.95% (= −0.106× 9) per month. The coe�cient on the O/S decile has a

corresponding t-statistic of -8.16, where standard errors are clustered at the monthly level.

Columns (2) and (3) demonstrate that the relation between O/S and RET(1) is robust to

controlling for MOMEN, log market capitalization (SIZE), and log book-to-market (LBM).

Columns (3) through (7) also control for the Amihud illiquidity ratio, AMIHUD, de�ned

as the ratio of absolute returns to total dollar volume where higher values indicate lower

liquidity, and vice versa. AMIHUD is measured on a daily basis and then averaged over the

month prior to portfolio formation. In Column (4) we explicitly control for returns in the

portfolio formation month, RET(0). We include RET(0) as a control because Table 2 shows

a negative association between O/S and returns in the portfolio formation month suggesting

O/S may re�ect expected monthly return reversals. Consistent with Jegadeesh (1990) and

Lehmann (1990), the coe�cient on RET(0) is signi�cantly negative, indicating a negative

relation between returns in months m − 1 and m. Across Columns (1) through (4), the

coe�cient on O/S is signi�cantly negative, with the coe�cients and t-statistics remaining

stable across speci�cations.

Columns (5) through (7) of Table 4 contain regression results where O/S is decoupled

into separate measures of option and equity volume, OPVOL and EQVOL. Column (5)

demonstrates that the coe�cient corresponding to deciles of OPVOL is -0.132 (t-statistic

= -8.38), consistent with high option volume re�ecting negative private information. In

column (6) we �nd that equity volume has a negative relation with future returns, which

parallels the �ndings in Brennan, Chordia, and Subrahmanyam (1998). Column (7) includes

both equity volume and option volume deciles. While the coe�cient on OPVOL remains

negative, there is a marginally signi�cant and positive relation between deciles of EQVOL

and RET(1). Column (8) demonstrates that O/S and OPVOL are both negatively related

to future returns after controlling for the other, though both coe�cients attenuate in size
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and signi�cance. Finally, Column (9) documents a similar result when both OPVOL and

∆O/S are included. Taken together, the results of Table 4 demonstrate a robust negative

association between option market volume and future equity returns, distinct from monthly

return reversals, the pricing of liquidity, and the relation between equity market volume and

future returns.

[Insert Table 5 about here]

Panel A of Table 5 presents a monthly transition matrix for deciles of O/S, where �rms

are sorted by deciles of O/S and a one-month lag of O/S. Hence, the diagonal terms indicate

the percentage of �rms that remain within their respective portfolio in consecutive months.

Approximately 56% of low O/S �rms change portfolios from month to month. Similarly, over

40% of high O/S �rms change portfolios. The average of the diagonals is 26.91% indicating

that on average approximately 75% of all �rms change O/S deciles in adjacent months. That

approximately half of the extreme portfolios turn over each month reduces concerns that the

O/S-return relation re�ects compensation for a time-invariant risk characteristic.

Panel B of Table 5 examines portfolio alphas associated with O/S when sorting �rm-

months into deciles based on the time-series for a given �rm, as opposed to sorting in the

cross-section for a given month. For each �rm, we observe the entire time-series of O/S during

our 1996-2008 sample window and sort �rm-months into portfolios using the realized O/S

distribution. The sample for this analysis is limited to �rms with at least 20 �rm-months

during our sample window, though the results do not appear sensitive to this restriction.

This approach is not implementable as an investment strategy because it requires observing

the entire �rm-speci�c time-series of O/S for a given �rm. However, this approach mitigates

concerns that the extreme O/S deciles possess �rms with inherently di�erent levels of option

volume that are relatively stable over time but that vary negatively with expected returns.

Panel B demonstrates that �rm-speci�c O/S deciles possess a strong negative relation with

future returns, mirroring the results in Tables 2 through 4. The �ve-factor alpha associated

with this strategy is over 3% per month, with a corresponding t-statistic of 12.35. These
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results con�rm and extend our earlier �ndings by demonstrating that �rm-speci�c ∆O/S

possesses strong predictive power for future returns.

[Insert Table 6 about here]

Consistent with Empirical Prediction 2, Panel A of Table 6 demonstrates that the pre-

dictive power of O/S for future returns is increasing in short-sale costs. Our �rst measure

of �rm-speci�c short-sale costs, following Nagel (2005), is the level of residual institutional

ownership RIi,t. We de�ne RIi,t as the percentage of shares held by institutions for �rm

i in quarter t, adjusted for size in cross-sectional regressions. Speci�cally, RIi,t equals the

residual εi,t from the following regression:

logit(INSTi,t) = log(
INSTi,t

1− INSTi,t
) = αt + β1,tSIZEi,t + β2,t(SIZE

2
i,t) + εi,t, (11)

where INSTi,t equals the fraction of shares outstanding held by institutions as re�ected

in the Thomson Financial Institutional Holdings (13F) database. We calculate quarterly

holdings as the sum of stock holdings of all reporting institutions for each �rm and quarter.

Values of INSTi,t are winsorized at 0.0001 and 0.9999. Low levels of RIi,t (hereafter referred

to as RI) correspond to high short-sale costs because stock loans tend to be scarce and,

hence, short selling is more expensive when institutional ownership is low. We match RI to

a given �rm-month by requiring a three-month lag between the Thompson Financial report

date and the �rst trading day of a given month. Panel A of Table 6 contains O/S portfolio

alphas across quintiles of RI. In each month, �rms are independently sorted into deciles of

O/S and quintiles of RI. Within each RI quintile, we compute the equal-weighted return

of a long-short position in the extreme deciles of O/S. We repeat this process each month

yielding a time-series of long-short returns for each month during our 1996-2008 sample

window. Portfolio alphas equal the intercept from regressing the monthly long-short returns

on the �ve factors used in Eq. 10. Panel A demonstrates that the O/S portfolio alphas are

monotonically decreasing across the RI quintiles, consistent with our model's prediction that
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the O/S-return relation is most pronounced when short-sale costs are high. Portfolios alphas

are signi�cantly positive across all RI quintiles, where the alpha for the low RI quintile is

2.49% (t-statistic = 3.64) while the alpha for the highest RI quintile is 0.91% (t-statistic =

2.21). The di�erence in alphas across the extreme RI quintiles is 1.58% per month with a

t-statistic of 2.29.

Panels B and C of Table 6 retest Empirical Prediction 2 using more direct measures of

short-sale costs. These tests rely on a proprietary dataset of institutional lending provided to

us by Data Explorers. Data Explorers aggregates information on institutional lending from

several market participants including hedge funds, investment banks, and prime brokers.15

Similar to the datasets used in D'Avolio (2002) and Geczy, Musto, and Reed (2002), this

dataset contains monthly institutional lending data on transacted loan fees and available loan

supply. The sample period is June of 2002 through December of 2008, covering approximately

half of our main sample period. Using these measures, we again �nd that the O/S-return

relation is most pronounced when short-sale costs are high. Panel B's measure, LFm, is the

value-weighted average loan fee for institutional loans occurring in month m. Higher values

of LFm re�ect higher short-sale costs because investors must pay the lending fee in order to

obtain the shares necessary for shorting. In Panel B, O/S alphas are positive in each LF

quintile and the di�erence in alphas across the extreme LF quintiles is 3.157% per month

with a t-statistic of 2.91. Panel C's measure, LSm, is the total quantity of shares available

for lending, as a fraction of �rms' total shares outstanding, at the conclusion of month m.

Lower values of LSm correspond to higher short-sale costs because investors must �rst locate

lendable shares before implementing a short position. In Panel C, the di�erence in alphas

across extreme LS quintiles is 1.799% per month with a t-statistic of 1.98. Across all three

measures of short-sale costs, the results in Table 6 are consistent with informed traders using

option markets more frequently when short-sale costs are high.

[Insert Table 7 about here]

15See www.dataexplorers.com for more details regarding the data.
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Consistent with Empirical Prediction 3, Table 7 demonstrates that the predictive power

of relative option volume for future stock returns is strongest when option leverage is low.

For each �rm-month, leverage is de�ned as the open-interest-weighted average of ∂C
∂S

S
C
, as

provided by OptionMetrics, which we refer to as LM.16 Panel C contains the long-short O/S

portfolio alphas across quintiles of LM, where �rms are independently sorted on LM and O/S.

The O/S alphas are monotonically decreasing across quintiles of LM, where the di�erence in

portfolio alphas across the extreme LM quintiles is signi�cant at the 1% level (t-statistic =

4.40). The results are consistent with informed traders moving a larger portion of their bets

from shorting stock to trading options when leverage is lowest. Although we �nd that O/S

alphas are decreasing in leverage, we do not �nd that the O/S strategy has positive alpha in

each leverage quintile. Speci�cally, the alpha in the highest leverage quintile is negative but

not statistically signi�cant. One possible explanation for this �nding is that certain levels

of option leverage attract more volume than others for institutional reasons, a feature not

described by our model.

[Insert Figure 2 about here]

Figure 2 presents annual cumulative returns to three long-short strategies assuming

monthly portfolio rebalancing for each year in the sample. The �rst strategy consists of

an equal-weighted long-short position in the extreme O/S deciles. The long-short strategy

is implemented each month and the monthly returns are accumulated within each calendar

year. The unconditional long-short strategy (shown in grey) results in positive returns in

10 out of 13 years, with a mean return of 14.72% and a standard deviation of 20.24%. The

second takes long-short positions in extreme O/S deciles among �rms in the bottom quintile

of residual institutional ownership (RI), corresponding to �rms with the highest short-sale

costs. The strategy (shown in black) produces positive returns in every year of the sample,

while signi�cantly increasing the mean and decreasing the standard deviation of the annual

16The results are qualitatively similar when using volume-weighted average option leverage.
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cumulative returns.17 The increased performance of the long-short strategy among �rms

with high short-sale costs is consistent with the model prediction that informed traders with

negative news shift their capital allocation toward option markets in response to short-sale

costs. The third strategy corresponds to analogous long-short returns for �rms in the lowest

leverage (LM) quintile. Conditional upon being in the lowest LM quintile, the long-short

O/S strategy (shown in white) results in positive hedge returns in all but one year while

again increasing the mean return and decreasing the variance relative to the unconditional

O/S strategy. Together, the results of Figure 2 demonstrate a robust association between

O/S and future returns throughout our sample period, and that this association is stronger

when short-sale costs are high or option leverage is low.

[Insert Table 8 about here]

In addition to the above results pertaining to O/S, we also examine what the call to put

volume ratio, C/P, tells us about future equity returns. Empirical Prediction 4 states that

C/P is a positive predictor of future return skewness. The results of Table 8 con�rm this

prediction. For each �rm-month, we compute C/P as:

C/Pi,m =
VLCi,m
VLPi,m

, (12)

where VLCi,m is the total call volume for �rm i in monthm and VLPi,m is de�ned analogously

for puts. Firms are sorted into deciles based on C/P, where the tenth (�rst) decile corresponds

to high (low) levels of call volume relative to put volume. For each calendar month, we

calculate the cross-sectional skewness of monthly returns within each decile portfolio of C/P,

which results in a panel dataset of approximately 1,500 observations.

Table 8 contains the results of regressing portfolio skewness on the C/P decile rank. In

column (1), the coe�cient on the C/P decile rank is positive with a t-statistic of 2.31, indicat-

ing that C/P is positively associated with future return skewness. Column (2) demonstrates

17Because the long-short strategy results rely upon taking positions among equities with high short-sale
costs, the reported results are not intended to re�ect the actual returns achieved through implementation.
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that the relation between C/P and return skewness remains signi�cant after controlling for

the lagged skewness of a given portfolio. The evidence in Table 8 is consistent with our

model's equilibrium prediction that informed traders buy puts for extremely bad news, sell

calls for moderate bad news, sell puts for moderate good news, and buy calls for extremely

good news.

5. Additional analyses

Several existing studies examine the link between option market activity and earnings

announcements. Skinner (1990) �nds that the information content of earnings announce-

ments declines following options listing, consistent with options facilitating informed trade

prior to announcements. Amin and Lee (1997) �nds that open interest increases prior to an-

nouncements and possesses some predictive power for the sign of earnings news. RSS �nds

that O/S signi�cantly increases immediately prior to earnings announcement, suggesting

that O/S re�ects private information regarding earnings news. Consistent with this inter-

pretation, they �nd that O/S positively predicts the absolute magnitude of earnings news

and that the e�ect is more pronounced when the earnings news is negative. Both �ndings are

consistent with our prediction that option markets serve as alternative venue for traders with

negative private information seeking to avoid short-sale costs. Additionally, RSS �nds that

the relation between O/S and absolute announcement returns is less pronounced when there

is a signi�cant movement in equity prices prior to the announcement date, consistent with

informed traders impounding private information into prices ahead of the announcement.

In this section, we provide additional evidence that relative option volume re�ects private

information by examining whether prior month's O/S provides predictive power for the sign

and magnitude of quarterly earnings surprises. Our tests build upon RSS by examining the

relation between O/S and signed earnings news and returns.

We assemble a new dataset from four sources. The OptionMetrics, Compustat industrial

quarterly �le, CRSP daily stock �le, and IBES consensus �le provide information on option
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volume, quarterly �rm attributes, equity prices, and earnings surprises, respectively. We

apply the same sample restrictions outlined in Section 4. The intersection of these four

databases results in a �nal sample consisting of 46,670 �rm/quarter observations.

To the extent that informed traders gravitate toward options ahead of negative news,

we predict that O/S is negatively associated with the resulting earnings surprise. For each

earnings announcement, we measure O/S in the calendar month that directly precedes it. For

example, we match earnings announcements that occur in July with O/S measured in June

of the same year. This empirical design directly mimics the main analyses used in Section 4

by using O/S in monthm−1 to predict returns in monthm, except here we focus the analysis

on the prediction of earnings news and earnings-announcement window returns revealed in

month m. We use three variables to capture the news released at earnings announcements.

The �rst, SURPRISE, is the earnings surprise as measured by the �rm's actual EPS minus

the analyst consensus EPS forecast immediately prior to the announcement, scaled by the

beginning of quarter stock price. The second, standardized unexplained earnings (SUE),

is an alternative measure of earnings surprise de�ned as the realized EPS minus EPS from

four quarters prior, divided by the standard deviation of this di�erence over the prior eight

quarters. The �nal, CAR(−1,+1), equals three-day cumulative market-adjusted returns

during the earnings announcement window from t − 1 to t + 1, where day t is the earnings

announcement date.

[Insert Table 9 about here]

Column (1) of Table 9 demonstrates that the prior calendar month's O/S decile carries

predictive power for future earnings surprises. The negative relation between relative option

volume and earnings surprises is consistent with the negative O/S-return relation re�ecting

informed trade. Column (2) produces analogous results where SUE is the dependent vari-

able. The coe�cient on O/S is negative with a t-statistic of -4.50, indicating that O/S is

negatively associated with earnings innovations. Column (3) presents the regression results
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when the announcement window abnormal returns, CAR(−1,+1), is the dependent vari-

able. The coe�cient on O/S remains negative and statistically signi�cant incremental to the

�rm's momentum, size, and book-to-market, which is consistent with relative option volume

re�ecting private information about future asset values revealed in part by the earnings an-

nouncement. As an example of the economic signi�cance, the lowest O/S decile outperforms

the highest by 0.79% (= −0.088× 9) in the 3 day announcement window (all else equal).

Additionally, we examine the predictive power of O/S for returns following the announce-

ment. To the extent that O/S re�ects private information about impending earnings news,

we expect that the predictive power of O/S attenuates following the earnings announcement.

Column (4) presents regression results where the dependent variable, CAR(+2,+60), equals

the cumulative buy-and-hold market-adjusted return from t+2 to t+60. We �nd that O/S

coe�cient is negative but insigni�cant at the 10% level (t-statistic=-1.64). Collectively, the

results in Table 9 are consistent with O/S re�ecting private information which is gradually

impounded into prices via earnings news.

6. Conclusion

The central contribution of this paper is a mapping between observed transactions and

the sign and magnitude of private information that does not require estimating order �ow

imbalances. Speci�cally, we examine the information content of option and equity volumes

when agents are privately informed but trade direction is unobserved. We provide theoretical

and empirical evidence that O/S, the amount of trading volume in option markets relative

to equity markets, is a negative cross-sectional signal of private information. Stocks in the

lowest decile of O/S outperform the highest decile by 1.47% per month on a factor-adjusted

basis in the month following portfolio formation. We o�er a simple explanation for this

�nding, speci�cally that it results from how informed traders choose between trading in

equity and option markets in the presence of short-sale costs.

We model the capital allocation and price-setting processes in a multimarket setting and
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develop novel predictions regarding information transmission across markets. In equilibrium,

short-sale costs and capital constraints cause informed traders to trade more frequently

in option markets when in possession of a negative signal than when in possession of a

positive signal, thus predicting that volume in options markets, relative to equity markets, is

indicative of negative private information. By empirically documenting that O/S is a negative

cross-sectional signal for future equity returns, our results are consistent with market frictions

preventing equity prices from immediately re�ecting the information content of O/S.

Our model also predicts that O/S is a stronger signal when short-sale costs are high or

option leverage is low, and that volume di�erences across calls and puts predict future return

skewness, all of which we con�rm in the data. In particular, using proprietary �rm-speci�c

data on institutional loan fees and loan supply from 2002-2008, we �nd that O/S alphas are

a positive and increasing function of short-sale costs. Similarly, conditional on low average

leverage traded in options, sorting stocks by deciles of O/S results in an average annual

hedge return of 21.27% and produces positive hedge returns in 12 out of 13 years in our

sample. Finally, we show that O/S predicts the sign and magnitude of earnings surprises

and abnormal returns at quarterly earnings announcements, consistent with O/S re�ecting

trader's private information.
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Appendix A: A Numeric Example

One of the primary goals of our analysis is to model the equilibrium decision rule of
informed traders in a setting where the range of possible private signals and terminal asset
values are continuous. While these continuity assumptions allow for a richer set of predictions
not available in the discrete case, they make the model su�ciently complex and non-linear
that it can only be solved by a computer given numeric values for exogenous parameters. To
illustrate the features of the model, we present the solution for exogenous parameters chosen
to match the characteristics of a typical publicly traded US stock.

The stock has mean value µ = 30, re�ecting the average price of a publicly traded
share of equity, and standard deviation

√
σ2
ε + σ2

η = 3, so that volatility is 10% of value,
approximately the average monthly return volatility. We examine the case of a minority
of traders θ = 10% having fairly precise information, meaning the known shock's volatility
σ2
ε = 5 is slightly larger than the unknown shock's volatility σ2

η = 4. Equity volume is, as
we show in this paper, about 20 times option volume on average. For this reason, while
uninformed traders are equally likely to buy or sell each asset, they are twenty times more
likely to use stocks than to trade calls or puts, meaning γ1 = γ2 = 40

84
and γ3 = γ4 = γ5 = γ6 =

1
84
. The capital constraint κ is 100, which in equilibrium acts as a numeraire and impacts

the quantities traded but not equilibrium prices or strategies. Regulation T requires that
margin accounts for shorting equity contain 50% of the trade's value. Contrasting this with
the CBOE margin requirement when writing at-the-money options of 20% of the underling
equity's value, we �nd that by posting the same margin, traders can write ϕ = 2.5 options
for each share they can short. Finally, we use a short-sale cost of ρ = 1%.

Equilibrium bid-ask spreads for a numeric example
Stock Call Put

Ask price 30.04 2.19 2.19
Mean asset value 30 1.20 1.20

Bid price 29.97 0.78 0.83

Informed Traders' Equilibrium Strategy
Trade Range of signals Fraction of signals

Buy qbp = 45.7 put options ε ≤ −2.19 16.4 %
Sell qss = 3.3 shares of stock −2.19 < ε ≤ −1.74 5.4%
Sell qsc = 8.3 call options −1.74 < ε ≤ −0.05 27.2%
Sell qsp = 8.3 put options −0.05 < ε ≤ 1.42 24.7%

Buy qbs = 3.3 shares of stock 1.42 < ε ≤ 2.21 10.2%
Buy qbc = 45.7 call options 2.21 < ε 16.1 %

We solve for the equilibrium prices and cuto� points numerically given the above pa-
rameters. The exact simultaneous equations used to �nd this solution are in Appendix B.
The process converges quickly and it does not appear that there are multiple solutions. The
equilibrium bid and ask prices, presented above, show that spreads are bigger in the options

35



Johnson and So The Option to Stock Volume Ratio and Future Returns April 2011

markets than the stock market (1.41 and 1.36 vs. 0.07). The above table also summarizes
informed traders' equilibrium strategy, in which they use options for 84% of signals despite
the enormous bid-ask spread in those markets. The primary reason is the leverage options
a�ord: given their budget constraint κ = 100, traders can buy 45.7 options contracts but
only 3.3 shares of stock, and due to the margin restriction ϕ = 2.5 they can write 8.3 options
contracts but short only 3.3 shares of stock. Note that equity market bid-ask spreads are
not symmetric around the mean because stock buys are more likely to come from informed
traders than stock sells. Option spreads are also asymmetric around their mean values
because informed traders buy options for extreme signals and sell them for moderate ones.

Informed traders use stocks less frequently, and options more frequently, for bad signals
than they do for good signals because of the short-sale cost ρ. In this example, informed
traders buy stock for 10.2% of signals (or 20.4% of positive signals) but only short stock
for 5.4% of signals (10.8% of negative signals). Since they use options for the remainder of
signals, there is a spread in conditional expectations as discussed in Result 1, namely that
conditional on a stock trade the mean of Ṽ is 30.01, while conditional on an option trade
it is 29.95. The asymmetry in informed traders' behavior leads to a larger transaction cost
for buying stock (0.04), than for selling (0.03).18 Short-sale costs result in informed traders
writing calls and buying puts for part of the range of signals that they would otherwise short
stock. Hence, there is a higher concentration of informed trade and higher transaction costs
in put buys than call buys, and similarly a higher concentration in call sells than put sells.

We con�rm Result 2 in this example by increasing ρ to 2%. In untabulated results, we
�nd that increasing ρ also increases the scaled di�erence in conditional means from 0.18%
to 0.36%. We illustrate Result 3 by varying the mean equity value µ while keeping the other
exogenous parameters �xed. The leverage in options increases with µ, which reduces the
scaled di�erence in conditional means for stock and option trades from 0.20% for µ = 20
back to 0.18% for µ = 30. Finally, we con�rm Result 4 in this setting; because informed
traders write options for moderate signals and buy options for extreme signals, the skewness
conditional on a call trade is higher (0.15) than the skewness conditional on a put trade
(-0.10).

18Transaction costs are de�ned here as the di�erence between the quoted price and the mean asset value.
For example, the transaction cost for buying equity is the ask prices less the mean stock value, or 30.04−30 =
0.04.
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Appendix B: Simultaneous Equations

The full set of simultaneous equations that characterize the equilibrium are:

qbsas = κ (B.1)

qss = qbs (B.2)

qbcac = κ (B.3)

qsc = ϕqss (B.4)

qbpap = κ (B.5)

qsc = ϕqss (B.6)

as = µ+
θ(φ(k5

σε
)− φ(k6

σε
))

θ(Φ(k5
σε

)− Φ(k6
σε

)) + (1− θ)γ1

σε (B.7)

bs = µ−
θ(φ(k2

σε
)− φ(k1

σε
))

θ(Φ(k2
σε

)− Φ(k1
σε

)) + (1− θ)γ2

σε (B.8)

ac =
θ
∫∞
k6
φ(ε)C(ε, ση)dε+ (1− θ)γ3φ(0)

√
σ2
ε + σ2

η

θ(1− Φ(k6
σε

)) + (1− θ)γ3

(B.9)

bc =
θ
∫ k3
k2
φ(ε)C(ε, ση)dε+ (1− θ)γ4φ(0)

√
σ2
ε + σ2

η

θ(Φ(k3
σε

)− Φ(k2
σε

)) + (1− θ)γ4

(B.10)

ap =
θ
∫ k1
−∞ φ(ε)P (ε, ση)dε+ (1− θ)γ5φ(0)

√
σ2
ε + σ2

η

θ(Φ(k1
σε

)) + (1− θ)γ5

(B.11)

bp =
θ
∫ k5
k4
φ(ε)P (ε, ση)dε+ (1− θ)γ6φ(0)

√
σ2
ε + σ2

η

θ(Φ(k5
σε

)− Φ(k4
σε

)) + (1− θ)γ6

(B.12)

qbp(P (k1, ση)− ap) = qss(bs(1− ρ)− µ− k1)) (B.13)

qss(bs(1− ρ)− µ− k2) = qsc(bc − C(k2, ση)) (B.14)

qsc(bc − C(k3, ση)) = 0 (B.15)

0 = qsp(bp − P (k4, ση)) (B.16)

qsp(bp − P (k5, ση)) = qbs(as − µ− k5) (B.17)

qbs(as − µ− k6) = qbc(ac − C(k6, ση)) (B.18)

Equations (B.1) � (B.6) ensure that the trade quantities satisfy the budget constraint.
For example, (B.1) ensures that the amount of a stock transaction asqbs equals the budget
κ. Equations (B.7) � (B.12) are the zero pro�t conditions for the market-maker. Equation
(B.7), for example, ensures that the ask price for a stock is exactly the expectation of Ṽ
conditional on a stock trade. Computing this conditional expectation in the case of options
trades (equations (B.9) � (B.12)) requires integrating the value function for options C and P.
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These functions are the mean value of a call and put, respectively, conditional on the signal
ε and the standard deviation of η. Speci�cally,

C(ε, ση) ≡ E(C̃|ε̃ = ε) = Φ

(
ε

ση

)
ε+ φ

(
ε

ση

)
ση (B.19)

P (ε, ση) ≡ E(P̃ |ε̃ = ε) = −Φ

(
−ε
ση

)
ε+ φ

(
ε

ση

)
ση (B.20)

When solving these equations numerically, we estimate the integrals using a Reimann sum.
Finally, equations (B.13) through (B.18) ensure informed traders are indi�erent between
the two neighboring portfolios at the cuto� points. For example, (B.13) ensures they are
indi�erent between buying puts and shorting stock given the signal k1.

These equations cannot be solved in closed form due to the nonlinearity of C and P,
however we can prove some general results directly from the simultaneous equations without
needing a closed form solution. Throughout, we assume the exogenous parameters are chosen
so that there exists a set of equilibrium parameters satisfying (B.1) through (B.18) as well
as k1 < k2 < k3 ≤ k4 < k5 < k6. For some parameters no such equilibrium exists, typically
because the informed trader never �nds it optimal to trade stock so k2 = k3; we focus
on the case when informed traders use stock because our goal is to model the impact of
short sale costs, which are only relevant when informed traders use equity. We do consider
parametrizations where the informed trader chooses to trade every signal, meaning k3 = k4.
In this case, we have one fewer free parameter and we need to replace equations (B.15) and
(B.16) with a the single equation:

qsc(bc − C(k3, ση)) = qsp(bp − P (k3, ση)) (B.21)

Appendix C: Measure of Leverage

Leverage λ in options markets is measured by the elasticity of the option pricing function
C(S) with respect to S. For options priced according to Black-Scholes, we have:

λ = Φ(
log( S

K
) + (r + σ2

2
T

σ
√
T

)
S

C

In our model, we compute:

λ =
∂C

∂S

S

C
=

∂C(ε)
∂ε
∂V
∂ε

E(Ṽ )

E(C̃)

=
φ( ε

ση
) ε
ση

+ Φ( ε
ση

) + 2σηφ( ε
ση

)

1

µ

φ(0)
√
σ2
η + σ2

ε

Since the options in our model are struck at µ, we measure λ when ε = 0, giving us:

λJS =
µ

2φ(0)
√
σ2
ε + σ2

η

(C.1)

38



Johnson and So The Option to Stock Volume Ratio and Future Returns April 2011

For comparison's sake, the λ of an at-the-money call option in Black-Scholes with no
dividends, r = 0, volatility σ and time-to-expiration T is equal to:

λBS = Φ(
1

2
σT )

S

S(Φ(1
2
σT )− Φ(−1

2
σT )

=
Φ(1

2
σT )

Φ(1
2
σT )− Φ(−1

2
σT )

(C.2)

Since Black-Scholes σT is the standard deviation of returns, the equivalent in our model is√
σ2
ε + σ2

η. Rewriting equation C.1 as a function of the volatility of returns σT , we get:

λJS =
1

2φ(0)σT
(C.3)

Written this way, it is clear that both λJS and λBS are decreasing functions σT and no
other variable. The two are very close for small σT and farther apart for larger σT because
the normal distibution use in our model is closer to the log-normal distribution used in
Black-Scholes when volatility is small.

Appendix D: Proofs

Result 1. When uninformed demand satis�es γ1 = γ2 and γ3 = γ4 = γ5 = γ6, in equilibrium
E(Ṽ |option trade) ≤ E(Ṽ |equity trade). We obtain a strict inequality when ρ > 0.

Proof. Denote k∗1 as the equilibrium cuto� points and ai and bi as the prices in the case that
ρ = 0. Here, the problem is completely symmetric and we have that k1 = −k6, and k2 = −k5.
Therefore, we get E(ε|ε ∈ (k5, k6)) = −E(ε|ε ∈ (k1, k2)) which yields E(Ṽ |option trade) =
E(Ṽ |equity trade). When ρ > 0, we show that k1 > −k6, and k2 < −k5. Assuming informed
traders can trade at the quantities and prices available when ρ = 0, but that they consider
short sale cost ρ > 0 when choosing their cuto� points, the informed trader prefers buying
puts to shorting stock at k∗1 since

q∗bp(p(k
∗
1, σn) = a∗p) = q∗ss(b

∗
s − µ− k∗1) < q∗ss(b

∗
s(1− ρ)− µ− k∗1) (D.1)

Similarly, informed traders prefers writing calls to shorting stock at k∗2 because

q∗sc(b
∗
c − C(k∗2, σn) = a∗p) = q∗ss(b

∗
s − µ− k∗1) > q∗ss(b

∗
s(1− ρ)− µ− k∗2) (D.2)

However, because short sale costs do not appear in equations (B.15) � (B.18), they remain
satis�ed by k∗3. . . . k

∗
6. The best response to ρ = 0 prices is therefore k1 > k∗1, k2 < k∗2,

ki = k∗i ∀ i ≥ 3.
If the informed trader uses the cuto� strategy ki, the market-maker needs to adjust its

bid-ask prices in order to satisfy the zero pro�t condition. In particular, the informed trader
less frequently shorts stock and more frequently buys puts and writes calls, meaning the
market maker should increase bs, increase ap, and decrease bc. Continuing this sequential
thinking, the informed trader would respond to the price changes by decreasing k1 and
increasing k2, partially reversing their initial change from the ρ = 0 case. The process
continues ad in�nitum, market-makers adjusting spreads and informed traders adjusting
their cuto� points, until equilibrium is reached. But because there are uninformed traders,
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each adjustment in this process is smaller than the previous, and therefore the dominant
e�ect is the �rst response of the informed traders, namely a reduced range of signals for
which informed traders short stock.

Informed traders' new equilibrium strategy kρi therefore satis�es −k
ρ
2 > kρ4 and −k

ρ
1 > kρ5 ,

which implies that E(ε|ε ∈ (k4, k5)) > −E(ε|ε ∈ (k1, k2)), yielding the desired result that
E(Ṽ |option trade) ≤ E(Ṽ |equity trade).

Result 2. Given the same assumptions as Result 1, the scaled di�erence in conditional

means D ≡ E(Ṽ |stock trade)−E(Ṽ |option trade)
µ

is weakly increasing in the short sale cost ρ.

Proof. Since the short sale cost ρ has no impact on µ, an equivalent statement is that

d ≡ E(Ṽ |stock trade)− E(Ṽ |option trade)

is weakly increasing in ρ. Say we have 0 < ρ1 < ρ2, and that k
(1)
i are the equilibrium cuto�

points in the informed traders strategy when the short sale cost is ρ1 while k
(2)
i are the

cuto�s when short sale costs are ρ2. As long as informed traders still short equity for some
non-empty range of signals (k∗2, k

∗
3), by the same line of reasoning used in the proof of Result

1 we have that when ρ = ρ2, the range of signals for which the informed trader shorts equity
shrinks and d strictly increases. We state that d is only weakly increasing in ρ because when
ρ1 is su�ciently large that the informed trader never shorts equity, increasing short sale costs
to ρ2 has no impact on the informed trader's strategy and therefore no impact d.

Result 3. Holding the signal strength r = σε
ση

constant, the scaled di�erence in conditional

means D ≡ E(Ṽ |option trade)≤E(Ṽ |equity trade)
µ

is decreasing in the leverage in options as measured
by λ = µ

2
√
σ2
ε+σ2

η

.

Proof. First we show that D is invariant to changes in µ as long as σ2
ε and σ2

η change
proportionally so that λ remains the same.

Suppose that parameters ki, ai, and bi constitute an equilibrium for the case µ = µ0,
σε = σr, and ση = σ, where r is the signal strength ratio. We show that k′i = ωki, a

′
i = ωai,

and b′i = ωbi are an equilibrium for the case µ′ = µ0, σ
′
ε = ωσr, and σ′η = σω, holding all other

parameters �xed. We call the �rst the "unprimed" case and the second the "primed" case.
In order to verify we have an equilibrium, we need to assure all 18 simultaneous equations
are satis�ed.

The �rst six equations are met provided that we set q′bs = κ
a′s

= κ
ωas

= qbs
ω
, and similarly

q′ss = qss
ω
, q′bc = qbc

ω
, q′sc = qsc

ω
, q′bp =

qbp
ω
, and q′sp = qsp

ω
. Noting that C(ωε, ωσ) = Φ ωε

ωσ
ωσ +

φ ωε
ωσ
ωσ = ωC(ε, σ), and similarly P (ωε, ωσ) = ωP (ε, σ), the market-maker's zero pro�t

conditions (B.7) through (B.12) are trivially satis�ed since the cuto� points are always
scaled by σε = σr. The informed traders' indi�erence equations (B.13) through (B.18) are
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satis�ed as well, for example we calculate for k′1:

q′bp(P (k′1, σ
′
η)− a′p) =

qbp
ω
/(P (ωk1, ωση)− ωap) = qbp(P (k1, ση)− ap)

=qss(bs(1− ρ)− µ− k1) =
qss
ω

(ωbs(1− ρ)− ωµ− ωk1)

=q′ss(b
′
s(1− ρ)− µ′ − k′1) (D.3)

Now consider the expectation of Ṽ conditional on a speci�c trade. Denoting expectations
and probabilities using the primed parameters E ′ and P ′ respectively, we have that:

E ′(Ṽ |trade i) =µ′ + P ′(informed|trade i)E ′(ε̃|k′i−1 < ε̃ < k′i)

=ωµ+ P (informed|trade i)E ′(ε̃|ωki−1 < ε̃ < ωki)

=ωµ+ P (informed|trade i)E(ωε̃|ki−1 < ε̃ < ki)

=ωE(Ṽ |trade i) (D.4)

Therefore, we have that D is the same in the primed and unprimed case:

D′ =
(E ′(Ṽ |option trade)− E ′(Ṽ |stock trade))

µ′

=
ωE(Ṽ |option trade)− ωE(Ṽ |stock trade)

ωµ

=D (D.5)

We can therefore focus on the change in D as σ changes, since a change from µ to cµ
is equivalent to a change from σ to σ

c
by the above. We show that as σ increases (and

λ decreases), D increases. To achieve this, we show that for when ρ > 0, the following
inequality holds for all exogenous parameters permitting an equilibrium:

∂

∂σ
(
k5(σ)

σ
− k4(σ)

σ
) >

∂

∂σ
(
k2(σ)

σ
− k1(σ)

σ
) (D.6)

where ki(σ) is the equilibrium cuto� point ki when the volatility parameter is σ. This
inequality implies that, holding other parameters �xed, the range of signals (scaled to the
standard normal) for which informed traders buy stock increases with σ faster than the range
for which they sell stock. Because D is increasing in the di�erence between these two signal
ranges, we can conclude from (a) that D itself increases in σ.

All that remains is to show (a). To simplify notation, we call the normalized cuto� point
ji = ki

σε
and continue to use σ = ση and σr = σε. Consider a set of exogenous parameters and

corresponding equilibrium. Together they must satisfy equation (13) above, and therefore:
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qss(bs − µ− j1σr) =qbp(P (j1σr, σ)− ap)

⇒ j1σr =bs − µ−
qbp
qss

(P (j1σr, σ)− ap) (D.7)

Following the reasoning in the proof of Result 1, we must consider which of the terms in
the above change with σ even if the other parameters do not change. The informed trader
will want to adjust their cuto� points in response to a new σ because the leverage in options
has changed, so the cuto� points ji experience a �rst order impact. Changes in σ also impact
the mean value of the option, so the quote prices for options markets must change even if the
informed traders do not change their strategy. The zero-pro�t bid and ask prices are ai = σai
and bi = σbi, where ai and bi do not vary with σ. The value functions for options, P (j1σr, σ)
and C(j1σr, σ) are also directly proportional to σ and therefore are directly impacted by
changed in σ. The buy quantity for puts qbp is set according to qbp = κ

ap
= κ

σap
. The stock

prices and quantities, bs and qss do not change directly with σ because the mean value of
the asset does not depend on σ.

Denoting those terms that change directly with σ as functions of σ, we have:

j1(σ)σr =
bs − µ− (qbp(σ))

qss(P (j1(σ)σr, σ)− ap(σ))

⇒ ∂

∂σ
(j1(σ)σr) =− ∂

∂σ

qbp(σ)σ

qss
(
P (j1(σ)σr, σ)

σ
))− ap) (D.8)

We compute that ∂
∂σ

qbp(σ)σ

qss
= 0, P (j1(σ)σr,σ)

σ
= Φ(−εr)ji + φ(−ε), and ∂

∂j1
P (j1σr, σ) =

Φ(−εr)σr. Therefore, we get:

∂

∂σ
(j1(σ)σr) =

qbp(σ)σ

qss
Φ(−j1r)σr

∂j1

∂σ

⇒ σr
∂j1

∂σ
+ j1r =

qbp(σ)σ

qss
Φ(−j1r)σr

∂j1

∂σ

⇒ ∂j1

∂σ
=

−j1

σ(1− Φ(−j1r)
qbp
qss

)
(D.9)

Similar calculations yield:

∂j2

∂σ
=
j2r + ψσ(bc − C(j2, σ))

σr(ψΦ(−j2r))
(D.10)

∂j5

∂σ
=
−ψΦ(bp − P (j5, σ))− k5r

σr(1− ψΦ(−j5r))
(D.11)

∂j6

∂σ
=
j6

σ
(Φ(j6r)

qbc
qss
− 1) (D.12)

Noting that ∂j2
∂σ

> 0, that ∂j2
∂σ

increases with j2, and that ∂j5
∂σ

= −(∂j2
∂σ

)j2=−j4 , we have that

42



Johnson and So The Option to Stock Volume Ratio and Future Returns April 2011

∂j5
σ
> ∂j2

σ
.

Similarly, ∂j6
∂σ

> 0, ∂j6
∂σ

increases with j6, and
∂j6
∂σ

= −(∂j1
∂σ

)j1=−j6 so we get that
∂j6
σ
> ∂j1

σ
.

Adding these together, we get exactly inequality (a), which completes the proof.

Result 4. Equity value has a higher skewness conditional on a call trade than conditional
on a put trade when γi >

θ
(1−θ)139.2

.

Proof. We show that the third centralized moments conditional on call and put trades satisfy:

E((Ṽ − V̂call)3|call trade) > 0 > E((Ṽ − V̂put)3|put trade), (D.13)

where V̂i is the expected value of Ṽ conditional on trade type i. Inequality D.13 implies
Result 4 because skewness is the third centralized moment scaled by a positive number.

We show here that E((Ṽ − V̂call)
3|call trade) > 0. The other half of inequality D.13

follows from same the derivation applied to the put option.
To simplify notation, we write EC(·) as short hand for E(·|call trade), and cmC

3 for the
third centralized moment conditional on call trade.

cmC
3 = EC((Ṽ − V̂call)3)

= EC((ε̃− EC(ε̃) + η̃)3)

Since ε̃−EC(ε̃) and η̃ are independent and both have zero mean conditional on a call trade,
we have:

cmC
3 = EC((ε̃− EC(ε̃))3)

⇒ cmC
3 ∝ EC((δ̃ − EC(δ̃))3) (D.14)

where δ̃ = ε̃
σε

and ∝ indicates that the two expressions have the same sign.
Next we break up the expectation in D.14 into two exhaustive cases: the trade was

initiated by an informed trader and the trade was initiated by an uninformed trader. In
each case, we expand (δ̃ − EC(δ̃))3, and in order to keep the expression as brief as possible
we write:

mI
i ≡ E(ε̃ i|informed call trade)

mU
i ≡ E(ε̃ i|uninformed call trade)

δ̂ ≡ EC(δ̃)

θC ≡ P (informed|call trade)

After breaking up and expanding the expectation, we �nd:

cmC
3 ∝ θC(mI

3 − 3mI
2δ̂ + 3mI

1δ̂
2 − δ̂3) + (1− θC)(mU

3 − 3mU
2 δ̂ + 3mU

1 δ̂
2 − δ̂3)

= θC(mI
3 − 3mI

2δ̂ + 3mI
1δ̂

2 − δ̂3) + (1− θC)(−3δ̂ − δ̂3)

= mI
3θC + 2δ̂3 − 3δ̂(1 + θC(mI

2 − 1)) (D.15)

43



Johnson and So The Option to Stock Volume Ratio and Future Returns April 2011

To arrive at equation D.15 we use the fact that δ̂ = θCm
I
1 + (1− θC)mU

1 = θCm
I
1.

From here, we prove three lemmas that together complete the proof under the following
condition:

γi >
θ

(1− θ)139.2
(D.16)

This condition ensures that the number of uninformed traders in options markets does not
approach zero, in which case markets begin to fail and the skewness result can reverse. It
is a condition easily satis�ed for any normal parametrizations. If θ > 1

10
we only require

γi >
1

1250
and if γi >

1
84

we only require θ < 63%.

Lemma 1 shows that mI
3 > 0 when (D.16) holds. Lemma 2 shows that 2δ̂3 − 3δ̂(1 +

θC(mI
2− 1)) > 0 when δ < 0. Lemma 3 shows that mI

3θC > −2δ̂3 + 3δ̂(1 + θC(mI
2− 1)) when

δ > 0 and (D.16) holds. Put together with (D.15), these lemmas complete the proof.

Lemma 1. The third moment of δ̃ conditional on an informed call trade, mI
3, is positive

whenever γi >
θ

(1−θ)139.2
.

Proof. The lemma follows from informed trader's equilibrium cuto� strategy, which assures
that a call trade is either weakly bad news or extremely good news. We only need to rule out
the possibility that uninformed traders are so scarce the informed trader almost never buys
calls, which would make the the distribution of δ̃ conditional on an informed trade similar
to the distribution of δ̃ conditional on a call sell, which has a negative third moment.

From the moments of the truncated normal distribution given in Jawitz (2004), we have:

mI
3 =

(j2
2 + 2)φ(j2)− (j2

3 + 2)φ(j3) + (j2
6 + 2)φ(j6)

Φ(j3)− Φ(j2) + 1− Φ(j6)
(D.17)

where ji are the equilibrium cuto� points scaled down by σε so they are δ̃ cuto�s rather than
ε̃ cuto�s. The function f(x) = (x2+2)φ(x) is positive, symmetric about x = 0, decreasing for
x > 0, increasing for x < 0, and satis�es f(−j̄) + f(j̄) = f(0) for j̄ = 1.832. In equilibrium,
we know that j2 ≤ j3 ≤ 0 ≤ j6 and |j3| < |j2| < |j6|, so D.17 tells us that mI

3 > 0 whenever
j6 < j̄.

Next we show that j6 < j̄ whenever (D.16) holds. Assume the contrary, that j6 > j̄. We
consider only equilibria where the informed trader buys equity for some signals, so we know
that at ε̃ = j̄σε the informed trader prefers equity to calls. Writing C(x) for E(C̃|ε̃ = x),
We have that:

qbs(µ+ σεj̄ − as) > qbc(C(j̄σε)− ac)
⇔ qbs(µ+ σεj̄) > qbc(C(j̄σε))

⇔ qbs
qbc

>
Φ( j̄σε

ση
)j̄σε + φ( j̄σε

ση
)ση

µ+ σεj̄
(D.18)

The right hand side of (D.18) is increasing in ση, so if (D.18) holds when ση = 0 it holds for
all ση.
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When ση = 0 we can solve for the equilibrium k6 directly from the simultaneous equations
in Appendix B. In particular, we �nd that:

k6 =
ac

as + ac
µ

So if k6 > j̄σε we have:

ac
as + ac

µ > j̄σε

⇔ ac
µ+ ac

µ > j̄σε

⇒ ac > j̄σε

⇒ θφ(j̄)

θ(1− Φ(j̄)) + (1− θ)γ6

σε > j̄σε (D.19)

Solving D.19 for γ6, we �nd exactly the opposite of the condition (D.16), so we know that
(D.16) implies k6 < j̄σε and m

I
3 > 0.

Lemma 2. When δ < 0, we have that 2δ̂3 − 3δ̂(1 + θC(mI
2 − 1)) > 0.

Proof. This lemma holds because the quantity in question measures the di�erence between
non-centralized moments and centralized moments due to the change in mean. The lemma
shows that when the mean of a variable is negative, the centralized third moment is greater
than the un-centralized third moment. To see this technically, �rst note that:

var(δ̃|call trade) = EC(δ̃2)− δ̂2

= θCm
I
2 + (1− θC)− δ̂2

= 1 + θC(mI
2 − 1)− δ̂2

And since variances are positive, we have:

1 + θC(mI
2 − 1)− δ̂2 > 0

⇒ δ̂(1 + θC(mI
2 − 1)) < δ̂3

⇒ 2δ̂3 − 3δ̂(1 + θC(mI
2 − 1)) > 0

Lemma 3. When δ > 0 and (D.16) holds, we have that mI
3θC > −2δ̂3 + 3δ̂(1 + θC(mI

2− 1)).

Proof. The intuition for Lemma 3 is that when δ̂ > 0 the centralized third moment is less
than the un-centralized third moment, but the positive mean makes the third moment so
large it is positive even after centralization. More rigorously, we have:

mI
3θC + 2δ̂3 − 3δ̂(1 + θC(mI

2 − 1))

∝ mI
3 + 2(mI

1)3(θC)2 − 3mI
1(1 + θC(mI

2 − 1))

> mI
3 − 3mI

1(1 + θC(mI
2 − 1)) (D.20)
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From Jawitz (2004) we have:

mI
3 =

(j2
2 + 2)φ(j2)− (j2

3 + 2)φ(j3) + (j2
6 + 2)φ(j6)

Φ(j3)− Φ(j2) + 1− Φ(j6)

mI
2 =

(j2)φ(j2)− (j3)φ(j3) + (j6)φ(j6)

Φ(j3)− Φ(j2) + 1− Φ(j6)

mI
1 =

φ(j2)− φ(j3) + φ(j6)

Φ(j3)− Φ(j2) + 1− Φ(j6)

Noting that any equilibrium satisfying (D.16) and δ̂ > 0 in which the informed trader uses
each asset with positive probability satis�es:

1. −j̄ < j2 < j3 < 0 < j6 < j̄.

2. |j3| < |j2| < |j6|.

3. φ(j2)− φ(j3) + φ(j6) > 0.

We can substitute these conditions into D.20 and �nd that mI
3 − 3mI

1(1 + θC(mI
2 − 1)) > 0,

which in turn implies Lemma 3.
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Figure 1: Daily O/S Ratios and Future Returns

Figure 1 presents equal-weighted future daily O/S strategy returns corresponding to a long position
in the lowest O/Si,d decile �rms and a short position in the highest O/Si,d decile �rms, where
O/Si,d equals the ratio of option volume to equity volume of �rm i on day d. We use two return
metrics: four-factor-adjusted (shown in grey) and raw returns (shown in black). To adjust for the
four risk factors, we estimate historical �rm-speci�c factor loadings over the prior year using daily
returns, and apply the estimated coe�cients to contemporaneous daily factors. The sample consists
of 2,969,570 �rm-days spanning 1996 through 2008.
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Figure 2: Cumulative Hedge Returns by Year

Figure 2 presents cumulative annual unadjusted returns to three strategies assuming monthly port-
folio rebalancing for each year in the sample. The �rst strategy (shown in grey) consists of an
equal-weighted long position in the lowest O/Si,m decile together with an equal-weighted short po-
sition in the highest O/Sim decile. O/Si,m equals the ratio of option volume to equity volume of �rm
i in month m. Decile portfolios are formed at the conclusion of each month. In addition to O/Si,m
deciles, �rms are independently sorted into quintiles of residual institutional ownership and option
leverage. The second strategy (shown in black) consists of a long-short O/Si,m position for �rms
in the lowest quintile of residual institutional ownership (RI). RI is obtained from cross-sectional
regressions as detailed in Nagel (2005), where lower values of RI correspond to higher short-sale
costs, and vice versa. The third strategy (shown in white) consists of a long-short O/Si,m position
for �rms in the lowest leverage (LM) quintile, where LMi,m is the open-interest-weighted average
λ of �rm i in month m. The sample consists of 175,654 �rm-months spanning 1996 through 2008.
All returns are shown as percentages.
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Table 1: Descriptive Statistics By Year

Panel A provides sample size information and descriptive statistics of O/Si,m (shown as a percent-
age), where O/Si,m equals the ratio of option volume to equity volume of �rm i in month m as
outlined in Section 4. Panel B gives average �rm characteristics by decile of O/S. The sample
consists of 175,654 �rm-months spanning 1996 through 2008. SIZE is the log of market capital-
ization of the �rm and LBM is the log of the �rm's book-to-market ratio measured at the �rm's
last quarterly announcement date. VLC (VLP) equals the total call (put) contract volume traded
in a given month; each contract represents 100 shares. OPVOL equals the sum of VLC and VLP.
EQVOL equals the total equity volume traded, in units of 100 shares.

Panel A: Sample Characteristics and O/S Descriptive Statistics by Year

Firms Firm-Months MEAN P25 MEDIAN P75 SKEW

1996 1,094 7,501 4.725 1.555 2.992 5.662 2.887
1997 1,425 10,292 4.495 1.534 2.917 5.510 2.497
1998 1,609 11,600 3.873 1.281 2.520 4.856 2.774
1999 1,719 12,255 3.833 1.248 2.559 4.986 2.133
2000 1,800 14,027 3.747 1.330 2.662 5.010 1.897
2001 1,662 12,883 3.093 1.035 2.146 4.090 2.130
2002 1,564 12,383 2.770 0.832 1.803 3.684 2.127
2003 1,497 12,146 3.425 0.886 2.034 4.497 2.543
2004 1,676 13,961 4.246 1.023 2.422 5.423 2.514
2005 1,791 15,031 4.972 1.073 2.615 6.110 2.779
2006 1,917 16,831 5.655 1.247 3.174 7.325 2.445
2007 2,062 18,381 5.658 1.231 3.078 7.173 2.651
2008 1,996 18,363 4.721 0.978 2.425 5.755 3.091

ALL 175,654 4.337 1.136 2.541 5.353 3.094

Panel B: Firm Characteristics by Deciles of O/S

O/S LMC LBM VLC VLP OPVOL EQVOL

1 (Low) 0.363 7.492 0.384 522 259 782 272,478
2 0.753 7.278 0.360 1,016 487 1,503 210,911
3 1.166 7.248 0.344 1,677 814 2,491 221,327
4 1.648 7.306 0.336 2,674 1,380 4,054 250,668
5 2.244 7.383 0.322 4,124 2,240 6,364 286,555
6 3.015 7.509 0.312 6,806 3,659 10,465 347,914
7 4.049 7.676 0.301 11,318 6,227 17,544 431,857
8 5.554 7.862 0.285 18,018 10,637 28,655 507,843
9 8.107 8.051 0.272 29,881 18,692 48,573 603,144

10 (High) 16.488 8.220 0.250 71,186 45,074 116,260 669,223

High-Low 16.124 0.728 -0.134 70,664 44,814 115,478 396,745
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Table 2: Cumulative Abnormal Returns By Deciles of Option Volume Ratio

The table below presents the time-series average equal-weighted returns by deciles of O/Si,m and
∆O/Si,m. As outlined in Section 4, O/Si,m equals the ratio of option volume to equity volume of
�rm i in month m, and ∆O/Si,m is de�ned as the di�erence between O/Si,m and the average O/S
over the prior six months, all scaled by this average . Decile portfolios are formed at the conclusion
of each month. Deciles range from 1 to 10 with the highest (lowest) values located in the 10th
(1st) decile. The sample consists of 175,654 �rm-months spanning 1996 through 2008. MOMEN
equals the cumulative market adjusted returns measured over the 6 months leading up to portfolio
formation. RET(0) is the return in the portfolio formation month, RET(1) is the return in the
�rst month following portfolio formation, and RET(2) is the return in the second month following
portfolio formation, all market adjusted. All returns are shown as percentages. The t-statistics are
calculated using the time-series di�erence in returns between the 1st and 10th deciles. ***, **, and
* indicate the signi�cance at the 1%, 5%, and 10% level, respectively.

Panel A: Abnormal Returns Across Deciles of O/S

MOMEN RET(0) RET(1) RET(2)

1 (Low) -4.836 -1.895 0.646 0.330
2 -1.075 -0.833 0.417 0.116
3 1.471 -0.073 0.109 0.271
4 3.431 0.297 0.182 -0.049
5 5.275 0.285 0.095 0.148
6 6.542 0.868 -0.166 0.057
7 7.367 0.628 -0.162 -0.188
8 9.960 0.873 -0.357 -0.065
9 12.589 0.956 -0.111 -0.187

10 (High) 17.944 1.107 -0.492 -0.169

High-Low 22.780*** 3.003*** -1.138*** -0.498

t-stat High-Low 9.636 6.470 -2.464 -1.153

Panel B: Abnormal Returns Across Deciles of ∆O/S

MOMEN RET(0) RET(1) RET(2)

1 (Low) -5.648 -2.316 0.795 0.261
2 -2.585 -1.530 0.255 0.349
3 -0.618 -0.921 0.273 -0.041
4 0.835 -0.334 -0.023 -0.035
5 3.200 -0.160 -0.049 -0.021
6 6.426 0.497 0.009 0.035
7 10.216 1.250 -0.373 -0.033
8 12.542 1.648 -0.161 0.104
9 16.017 1.920 -0.217 -0.114

10 (High) 18.223 2.148 -0.351 -0.271

High-Low 23.871*** 4.463*** -1.146*** -0.533*

t-stat High-Low 15.284 12.223 -3.073 -1.795
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Table 5: Time Series Properties of O/S

Panel A provides the pooled month-to-month transition probabilities by deciles of O/Si,m, where
O/Si,m equals the ratio of option volume to equity volume of �rm i in month m. Decile portfolios
are formed at the conclusion of each month. Deciles range from 1 to 10 with the highest (lowest)
values located in the 10th (1st) decile. The sample consists of 175,654 �rm-months spanning 1996
through 2008. Panel B re-examines the link between O/Si,m and future returns when sorting �rm-
months into deciles based on the time-series of O/S for a given �rm. For each �rm, we observe the
entire time-series of O/Si,m during our sample window and sort �rm-months into portfolios using the
realized distribution of O/Si,m. MOMEN equals the cumulative market adjusted returns measured
over the 6 months leading up to portfolio formation. RET(0) is the return in the portfolio formation
month, and RET(1) is the return in the �rst month following portfolio formation. Portfolio alphas
are calculated using the three Fama-French, momentum, and Pastor-Stambaugh liquidity factors.
All returns and transition probabilities are shown as percentages.

Panel A: Month-to-Month O/S Decile Transition Matrix

1 (Low) 2 3 4 5 6 7 8 9 10 (High)

1 (Low) 43.95 22.34 13.12 8.46 5.03 3.19 1.77 1.14 0.71 0.31
2 23.10 23.22 18.14 13.30 9.03 5.80 3.66 1.98 1.14 0.62
3 13.90 18.70 18.36 16.16 12.65 8.77 5.55 3.26 1.75 0.89
4 7.97 13.30 17.45 17.22 15.10 11.95 8.51 4.66 2.65 1.18
5 4.80 9.27 12.98 15.25 16.93 15.48 11.89 7.46 4.20 1.74
6 2.83 5.78 8.78 12.69 15.25 17.51 16.09 11.90 6.76 2.41
7 1.68 3.42 5.71 8.41 11.92 16.33 18.84 17.82 11.85 4.03
8 0.98 1.98 3.30 4.80 7.86 12.14 18.07 22.76 19.94 8.17
9 0.58 1.15 1.62 2.40 4.42 6.71 11.47 20.35 30.43 20.88

10 (High) 0.40 0.63 0.73 1.07 1.57 2.20 4.09 8.57 20.88 59.87

Avg. Diag 26.91

Panel B: Abnormal Returns Across Firm-Speci�c O/S Deciles

Market-Adjusted Returns Five-Factor Alpha

MOMEN RET(0) RET(1) Alpha t-Stat

1 (Low) 0.328 -0.537 2.030 2.189 10.663
2 2.923 -0.203 1.141 1.160 5.977
3 2.776 0.162 0.632 0.417 2.260
4 5.306 0.526 0.518 0.399 2.313
5 6.579 0.730 0.330 0.260 1.592
6 7.837 0.709 0.166 0.057 0.320
7 7.958 0.735 -0.110 -0.155 -0.907
8 11.203 0.951 -0.341 -0.430 -2.294
9 12.566 0.828 -0.667 -0.830 -4.313

10 (High) 15.046 1.273 -0.806 -0.914 -4.521

High-Low 14.718 1.810 -2.836 3.103

t-stat High-Low 7.063 4.471 -8.304 12.349
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Table 6: Portfolio Alphas by Quintiles of Short-Sale Costs

Panel A presents portfolio alphas sorted by quintiles of residual institutional ownership (RI). RI
is obtained from cross-sectional regressions as detailed in Nagel (2005), where lower values of RI
correspond to higher short-sale costs, and vice versa. Within each RI quintile, portfolio alphas
are obtained from initiating an equal-weighted long-short position in the extreme O/Si,m deciles.
O/Si,m equals the ratio of option volume to equity volume of �rm i in monthm. Decile portfolios are
formed at the conclusion of each month. The sample consists of 175,654 �rm-months spanning 1996
through 2008. Portfolio alphas are calculated using the three Fama-French, momentum, and Pastor-
Stambaugh liquidity factors. Panels B and C are de�ned analogously for quintiles of institutional
lending loan fees (LF), de�ned as the value-weighted average loan fee for institutional loans occurring
in month m and loan supply (LS), de�ned as the total quantity of shares available for lending scaled
by total shares outstanding at the conclusion of month m. Loan fee and supply data are available
on a monthly basis from June 2002 through 2008. All returns are shown as percentages.

Panel A: Five-Factor O/S Alphas by Quintiles of Residual Institutional Ownership

Residual Institutional Ownership RI(1)

High Short Low Short
Sale Costs Sale Costs High - Low
RI(1) RI(2) RI(3) RI(4) RI(5) Short Sale Costs

Alpha 2.489 1.645 1.503 1.146 0.914 1.575
t-Statistic (3.64) (3.00) (3.44) (2.52) (2.21) (2.29)

Annualized 34.318 21.630 19.600 14.649 11.535 20.630

Panel B: Five-Factor O/S Alphas by Quintiles of Institutional Lending Loan Fee

Institutional Lending Loan Fee (LF)

Low Short High Short
Sale Costs Sale Costs High - Low
LF(1) LF(2) LF(3) LF(4) LF(5) Short Sale Costs

Alpha 0.305 0.940 0.778 2.012 3.462 3.157
t-Statistic (0.80) (1.68) (1.34) (3.31) (3.27) (2.91)

Annualized 3.722 11.876 9.741 26.999 50.440 45.203

Panel C: Five-Factor O/S Alphas by Quintiles of Institutional Lending Loan Supply

Institutional Lending Loan Supply (LS)

High Short Low Short
Sale Costs Sale Costs High - Low
LS(1) LS(2) LS(3) LS(4) LS(5) Short Sale Costs

Alpha 2.996 1.444 1.179 0.567 1.197 1.799
t-Statistic (3.40) (2.82) (1.82) (0.95) (2.08) (1.98)

Annualized 42.510 18.778 15.103 7.018 15.346 23.861
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Table 7: Portfolio Alphas by Quintiles of Option Leverage

This table presents portfolio alphas sorted by quintiles of open-interest-weighted average leverage
(LM) of �rm i in month m. Within each LM quintile, portfolio alphas are obtained from initiating
an equal-weighted long-short position in the extreme O/Si,m deciles. O/Si,m equals the ratio of
option volume to equity volume of �rm i in month m. Decile portfolios are formed at the conclusion
of each month. The sample consists of 175,654 �rm-months spanning 1996 through 2008. Portfolio
alphas are calculated using the three Fama-French, momentum, and Pastor-Stambaugh liquidity
factors. All returns are shown as percentages.

Option Leverage (LM)

Low Leverage High Leverage Low - High
LM(1) LM(2) LM(3) LM(4) LM(5) Leverage

Alpha 2.921 1.473 0.396 0.313 -0.120 3.041
t-Statistic (4.53) (2.47) (0.90) (0.82) -(0.51) (4.40)

Annualized 41.262 19.183 4.858 3.820 -1.435 43.259
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Table 8: Future Return Characteristics by Deciles of Call-Put Volume Ratio

The dependent variable in the table below is SKEW, de�ned as the cross-sectional skewness of
monthly returns within a given portfolio in the month following portfolio formation. SKEW is
calculated each calendar month and for each decile of C/Pi,m, where C/Pi,m equals the ratio of
total call volume to total put volume of �rm i in month m. Decile portfolios are formed at the
conclusion of each month. Deciles range from 1 to 10 with the highest (lowest) values located in the
10th (1st) decile. Year �xed e�ects are included and standard errors are clustered at the monthly
level. The resulting t-statistics are shown in parentheses. ***, **, and * indicates the coe�cient is
signi�cant at the 1%, 5%, and 10% level, respectively.

Dependent Variable: SKEW
(1) (2)

Intercept 0.176* 0.129
(1.91) (1.41)

Decile(C/P) 0.022** 0.020**
(2.31) (2.16)

Lag(SKEW) � 0.206***
� (7.41)

Adj-R2 (%) 4.033 8.124
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Table 9: Earnings Surprises and Earnings Announcement Returns

The sample for Table 9 consists of 46,670 quarterly earnings announcements during the 1996 through
2008 sample window. Each measure of earnings news is regressed on deciles of O/Si,m from the
prior calendar month. O/Si,m equals the ratio of option volume to equity volume of �rm i in month
m. Decile portfolios are formed at the conclusion of each month. Deciles range from 1 to 10 with
the highest (lowest) values located in the 10th (1st) decile. Columns 1, 2, and 3 contain the re-
gression results where the dependent variables are SURPRISE, SUE, and CAR(-1,+1), respectively.
SURPRISE equals the �rm's actual EPS minus the consensus EPS forecasts immediately prior to
the announcement, scaled by the beginning of quarter share price. SUE equals the standard un-
explained earnings, calculated as realized EPS minus EPS from four-quarters prior, divided by its
standard deviation over the prior eight quarters. CAR(−1,+1) is the cumulative market-adjusted
return during the three-day window surrounding the announcement date. CAR(+2,+60) is the
cumulative market-adjusted return from t+2 to t+60 where the t denotes the announcement date.
SIZE is the log of the �rm's market capitalization and LBM is the log of the �rm's book-to-market
ratio measured at the �rm's last quarterly announcement date. MOMEN equals the cumulative
market adjusted returns measured over the 6 months leading up to portfolio formation. All returns
are calculated as percentages. Year �xed e�ects are included and standard errors are two-way clus-
tered by �rm and quarter. The resulting t-statistics are shown in parentheses. ***, **, * indicates
the coe�cient is signi�cant at the 1%, 5%, 10% level, respectively.

(1) (2) (3) (4)

Dependent Variable: SURPRISE SUE CAR(-1,+1) CAR(+2,+60)

Intercept -0.059* 0.340*** -0.910* -1.537
(-1.70) (2.67) (-1.88) (-0.64)

Decile(O/S) -0.006*** -0.025*** -0.088*** -0.107
(-3.13) (-4.50) (-5.27) (-1.64)

MOMEN 0.002*** 0.010*** -0.001 0.016*
(9.34) (15.51) (-0.53) (1.66)

SIZE -0.161*** -1.065*** 0.187 0.221
(-3.52) (-6.23) (0.52) (0.94)

LBM 0.015*** -0.044*** 0.164*** 3.515**
(5.42) (-4.09) (3.88) (2.28)

Adj-R2 (%) 2.33 3.551 0.198 1.463

Year Fixed E�ects? Yes Yes Yes Yes
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