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Abstract

The shape of the VIX term structure conveys information about the price of variance

risk rather than expected changes in the VIX, a rejection of the expectations hypothesis.

A single principal component, Slope, summarizes nearly all this information, predicting

the excess returns of synthetic S&P 500 variance swaps, VIX futures, and S&P 500

straddles for all maturities and to the exclusion of the rest of the term structure.

Slope’s predictability is incremental to other proxies for the conditional variance risk

premia, is economically significant, and can only partially be explained by variations

in observable risk measures.
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I. Introduction

The CBOE’s VIX, the most-widely followed index of market volatility, is an estimate of

S&P 500 return volatility over the next month derived from S&P 500 option prices. This

estimate reflects both the conditional expectation of future S&P 500 volatility and a risk

premium inherited from the options it is based upon. Previous papers show that options

are priced as if volatility were higher than it actually is, indicating a negative variance risk

premium.1 As a result, the VIX systematically overestimates realized volatility and assets

with positive variance risk exposure earn negative abnormal returns.

I follow the methodology used to compute the VIX to form the VIX term structure,

estimates of annualized S&P 500 return volatility over the next one, two, three, six, nine, and

twelve months. Just as the VIX is composed of both conditional volatility expectations and a

risk premium, the shape of the VIX term structure reflects both the expected path of future

return volatility and different risk premia associated with variance risk at different maturities.

For example, there are two potentially complementary explanations for a downward sloping

VIX term structure: markets expect return variance to decline, and exposure to short-term

variance risk commands a larger risk premium than exposure to long-term variance risk.

In this paper I estimate the extent to which time variations in the shape of the VIX term

structure reflect changes in the expected path of future VIX (the “expectations hypothesis”)

and, conversely, the extent to which they reflect changes in variance risk premia. Across ten

different specifications with forecast horizons of one month and one quarter, I strongly reject

the expectations hypothesis. This implies changes in the premium investors pay for variance

assets with different maturities drive much of the variation in the shape of the VIX term

structure, meaning this shape should predict excess returns of variance assets.

I find that a single factor, the second principal component “Slope,” summarizes nearly

all information about variance risk premia in the VIX term structure. Slope negatively

1See Coval and Shumway (2001), Bakshi and Kapadia (2003), and Bakshi and Madan (2006).
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predicts future returns of 18 different variance assets: six different maturities of synthetic

S&P 500 variance swaps, VIX futures, and S&P 500 straddles. More surprisingly, the rest

of the VIX term structure adds almost no predictive power for returns incremental to Slope,

meaning that while many factors are required to describe movements in the VIX and its

term structure, only Slope is related to movements in variance risk premia.

My methodology and results are similar to those in Cochrane and Piazzesi (2005), which

shows that while many factors are required to describe movements in bond yields and their

term structure, only one of these factors is related to movements in bond risk premia. In

addition to studying a different set of assets, the primary difference between this paper and

Cochrane and Piazzesi (2005) is that I do not use a first-stage regression to find the single

linear combination of the term structure that best predicts average asset returns. Instead,

I use the second principal component as the single factor because it predicts variance asset

returns better than the other principal components. My informal selection approach is more

conservative than Cochrane and Piazzesi (2005) because it is not designed to find the best

possible single linear factor.

In addition to summarizing nearly all information about variance risk premia in the

VIX term structure, Slope is an economically significant and robust predictor of variance

asset returns. As an illustration of its economic significance, the difference in next-day

(next-month) returns across extreme Slope quintiles for the 18 variance assets ranges from

29bp to 181bp (7.4% to 36.4%). This predictive relation is robust to alternate forecast

horizons, removing extreme Slope events from the sample, and alternate definitions of Slope.

Furthermore, Slope predicts returns incrementally to other indicators prior literature suggests

are related to variance risk premia, including estimates of implied minus expected variance.

To measure variance risk premia, I use future returns of variance-sensitive investments

studied in the literature: variance swaps as in Dew-Becker et al. (2016), VIX futures as in

Eraker and Wu (2014), and S&P 500 straddles as in Coval and Shumway (2001). While I ob-

serve returns for VIX futures and S&P 500 straddles, I do not observe variance swap returns
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and therefore use returns of option portfolios designed to replicate variance swaps (“synthetic

variance swaps”). Variance asset returns are better-suited to this study than differences be-

tween option-implied and expected or realized variance (used in Todorov (2010), Carr and

Wu (2009), and elsewhere) for several reasons detailed in Section III, the most important

of which is they allow me to examine the next-day and next-month risk premia associated

with changes in variance at different maturities. Differences between option-implied and

expected or realized variance, by contrast, can be estimated for different maturities but do-

ing so results in estimates of risk premia over the entire time to maturity. Therefore, any

differences in estimated risk premia could be due to differences across maturities in next-day

or next-month risk premia, or differences across future horizons in risk premia. By using

variance asset returns, I rule out the latter and focus on the former.

My results provide three puzzling empirical patterns for future work on variance risk pre-

mia to explain. The first is the insignificant relation between the first principal component

(“Level”) of the VIX term structure and variance asset returns. Most option-pricing models

(e.g. Heston (1993)), models of variance risk premia (e.g. Bakshi and Madan (2006)), and

asset pricing models (e.g. Merton (1973), Martin (2013), Campbell et al. (2015)) predict

risk premia are high when the Level (not Slope) of volatility is high. The second is the

positive relation between Slope and conditional variance risk premia together with the neg-

ative relation between maturity and unconditional variance risk premia. Explaining these

facts together would require investors to be more averse to increases in short-term variance

than long-term despite long-term variance asset prices increasing more in times with large

variance risk premia.

A third puzzling empirical pattern is that when Slope is low, future variance risk premia

are not just smaller, they actually change sign and become positive for 17 of 18 variance

assets. For example, twelve-month S&P 500 straddles have average returns 30bp per day

above the risk-free rate when Slope is in its lowest quintile. This indicates the correlation

between variance fluctuations and marginal utility changes sign over time, meaning investors
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who normally pay large premia to protect against variance increases occasionally worry about

variance decreases and therefore price variance assets at a discount.

Taken together, the results in my paper have important implications for both researchers

in financial economics and investors in variance assets. For researchers, my results provide

surprising patterns for new theories of variance risk premia to explain and allow future

empirical work to easily summarize all variance risk premia information in the VIX term

structure using Slope alone. For investors or traders using variance-sensitive assets like VIX

ETFs or S&P 500 options, my results show Slope is an economically significant and timely

indicator of expected returns.

II. Relation to Prior Research

This paper builds on prior research studying the unconditional and conditional risk pre-

mium associated with innovations in market-wide variance. The unconditional variance risk

premium is negative (see Coval and Shumway (2001), Bakshi and Kapadia (2003), Broadie,

Chernov, and Johannes (2009), Carr and Wu (2009), for example), meaning that assets

whose value is increasing in market volatility earn negative risk premia and option-implied

volatility is higher than average realized volatility. Furthermore, Aıt-Sahalia, Karaman, and

Mancini (2015), Dew-Becker et al. (2016), and Eraker and Wu (2014) show unconditional

variance risk premia are downward sloping, meaning risk premia are largest for variance as-

sets with shorter maturities. In fact, long-dated variance assets have an unconditional risk

premia close to zero. As discussed in Dew-Becker et al. (2016), this is difficult to reconcile

with most neo-classical asset pricing models, which predict unconditional variance risk pre-

mia should be upward sloping. My results add to this challenge by showing the conditional

variance risk premia is larger for all maturities when the price of short-dated variance assets

is abnormally low relative to the price of long-dated variance assets.

I contribute most directly to the literature studying determinants of conditional variance

risk premia. Many models and empirical analysis, for example in Heston (1993), Bakshi
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and Kapadia (2003), and Bakshi and Madan (2006), suggest variance risk premia are larger

when volatility is high. Todorov (2010) and Aıt-Sahalia, Karaman, and Mancini (2015)

show variance risk premia are larger following downward jumps in equity prices. Relatedly,

Corradi, Distaso, and Mele (2013) finds variance risk premia are larger in times with recent

stock market declines and high volatility. Barras and Malkhozov (2015) shows that variance

risk premia are related to the risk-bearing capacity of broker-dealers, as proxied by their

aggregate leverage ratio. Finally, Feunou et al. (2014) show that two factors from the variance

term structure predict future excess variance at forecast horizons from one to twelve months.

I add to this literature by showing conditional variance risk premia information in the VIX

term structure, a natural indicator that includes the level of volatility, is summarized by

Slope. Furthermore, unlike many of the papers in this area, I assess conditional variance risk

premia using variance assets with many different maturities, and show Slope predicts their

future returns incrementally to existing indicators.

My single-factor results are particularly surprising given the fact that multiple volatility

factors are necessary in many other settings. Pricing the cross-section of equity returns

(Adrian and Rosenberg (2008)), explaining the dynamics of the VIX term structure (Egloff,

Leippold, and Wu (2010)), pricing the S&P 500 volatility surface (Christoffersen, Heston,

and Jacobs (2009) and Christoffersen et al. (2008)), and pricing VIX options (Menćıa and

Sentana (2013)) are all dramatically improved by adding a second volatility factor. While

I also find that the dynamics of the VIX term structure are explained well by two factors

(Level and Slope), only Slope is consistently related to variance risk premia.

Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2011) study the rela-

tion between variance risk premia and equity risk premia. Both papers show a proxy for

conditional variance risk premia, the difference between VIX2 and an estimate of statistical-

measure variance, positively predicts equity returns. In untabulated tests, I find that Slope

does not predict equity returns despite being positively correlated with the implied minus

statistical variance. Instead, the equity return predictability afforded by the VIX term struc-
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ture in Bakshi, Panayotov, and Skoulakis (2011) and Feunou et al. (2014) is attributable to

other principal components of the VIX term structure, none of which predict variance asset

returns. This indicates either Slope predicts variance asset returns for non-risk reasons such

as mispricing or demand-based price impacts (as in Garleanu, Pedersen, and Poteshman

(2009)), or Slope represents a type of variance risk premia outside the Bollerslev, Tauchen,

and Zhou (2009) and Drechsler and Yaron (2011) models.

My evidence on the returns of a Slope-based dynamic straddle strategy build extant work

studying dynamic variance asset portfolios in Aıt-Sahalia, Karaman, and Mancini (2015),

Filipovic, Gourier, and Mancini (2015), and Egloff, Leippold, and Wu (2010). Unlike these

papers, my goal is not to compute optimal portfolio strategy, but rather to document that

the predictability afforded by the VIX term structure is summarized by a single factor.

III. Constructing the VIX Term Structure and Variance Asset Returns

A. VIX term structure

A key construct in my analysis is the VIX term structure, which I compute by replicating

the CBOE’s VIX calculation, but with target maturities longer than one month. The VIX

calculation is an estimate of the model-free implied volatility measure originating in Breeden

and Litzenberger (1978). If options are available for every strike price, the VIX equals:

VIX2
T,t ≡

2erT

T

{∫ Ft

0

1

K2
putt(K; t+ T )dK +

∫ ∞
Ft

1

K2
callt(K; t+ T )dK

}
,(1)

where Ft is the time t forward price of the S&P 500 at time t + T , and putt(K; t + T )

and callt(K; t + T ) are the prices at time t of puts and calls expiring at time t + T with

strike price K. As shown in Neuberger (1994) and Carr and Madan (1998), if the S&P 500

follows a diffusion process dSt

St
= rdt + σtdZt under the risk-neutral measure, VIX2

T,t equals
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the risk-neutral expectation of average future instantaneous variance:

VIX2
T,t =

1

T
EQ

t

[∫ t+T

t

σ2
sds

]
.(2)

The standard approach to estimating the VIX equation (1) empirically, used by the CBOE

to compute the VIX, discretizes the integral at the available strike prices and truncates it at

the smallest and largest available strike prices, making the expression:

ˆVIX
2

T,t ≡
2erT

T

∑
Ki

1

K2
i

optiont(Ki; t+ T )∆Ki,(3)

where optiont(Ki; t + T ) is the price of the out-of-the money option for strike Ki at time t

with expiration date t+T . The VIX calculation (see www.cboe.com/micro/vix/vixwhite.pdf

for details) further specifies how to determine which option is out of the money, and provides

additional corrections, all of which I follow.

Using closing quotes for S&P 500 index options and risk-free rates from 1996 through 2013

via OptionMetrics, I compute VIXT,t for T = 1, 2, 3, 6, 9, and 12 months at the close of each

day t. These maturities represent the approximate times-to-expiration typically available for

index options. Together, they form the VIX term structure at t.

Table 1 presents descriptive statistics for the VIX term structure. In both medians and

means, longer-term VIX are higher than shorter-term VIX, indicating that the average term

structure is upwards sloping. There is substantial variability in the VIX at all horizons,

though short-term VIX are more volatile than long-term VIX. One potential reason is that,

because return volatility is mean reverting, times with high (low) VIX have not-so-high (low)

long-term VIX. Another potential reason is that risk premia change more over time for short-

dated variance risk than long-dated. In the analysis that follows, I provide evidence both

potential reasons contribute to the relative movements of long- and short-dated volatility.

[Insert Table 1 about here]
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Given the strong correlations between VIX at different horizons, a natural way to study

variations in the shape of the term structure is to rotate it into six orthogonal principal

components. I apply this linear rotation to option-implied variances (VIX2) rather than

volatilities because return variances combine linearly across maturity (assuming no auto-

correlation in returns) whereas volatilities do not. Panel B of Table 1 shows definitions of

and summary statistics for the resulting principal components (PCs), scaled so that their

variances equal the six eigenvalues of the VIX term structure’s covariance matrix. The first

PC loads positively on all six different VIX2, and therefore reflects the “Level” of the term

structure. The second PC loads negatively on shorter-horizon VIX2 but positively on longer-

horizon VIX2 and therefore reflects the “Slope” of the term structure. When Slope is low

(high), the term structure is downward (upward) sloping. Note that the positive coefficients

in the definition of Slope have larger magnitudes than the negative coefficients.2 As a result,

it is possible for Slope to be positive on a day in which the VIX term structure is strictly

decreasing. For this reason, my analyses compare high Slope periods to low Slope periods,

making the average Slope irrelevant.

Figure 1 plots the standardized Level and Slope principal components of the VIX term

structure. Level follows the familiar pattern of the VIX, remaining low and stable during

normal times and spiking upwards during market downturns. In normal times, Slope is

high, indicating an upward sloping term structure. Furthermore, in low volatility times

there is a clear positive correlation between Slope and Level. When Level spikes upwards,

however, Slope spikes downwards, indicating a downward sloping term structure and negative

correlation between Slope and Level. This time-varying correlation averages out to zero, by

construction, in the full sample. I discuss the changes in correlation again, as well as address

the non-normality of Slope apparent in Figure 1, in Section IV.D.

2Slope needs to have positive average loadings to be uncorrelated with Level since the VIX term structure

tends to be downward sloping (in a geometric sense) when volatility is high due to mean reversion, meaning

a zero-sum definition of Slope would be negatively correlated with Level.
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[Insert Figure 1 about here]

B. Variance-sensitive asset returns

The most common definition of the conditional variance risk premia is the difference

between conditional variance under the risk-neutral and physical measures. However, this

quantity is inherently unobservable because asset prices reflect risk-neutral rather than phys-

ical variance. Therefore, to investigate the information in the VIX term structure about

variance risk premia at different maturities, I need to estimate variance risk premia for each

day t and each maturity T . Other papers estimate this quantity using:

1. VIX2
T,t − Êt(RV2

t+1,t+T ), the difference between option-implied and expected future

realized variance, where the physical-measure expectation is based on a statistical

model (Todorov (2010), Bekaert and Hoerova (2014), and others).

2. RV2
t+1,t+T −VIX2

T,t, the difference between future realized variance and option-implied

variance (Carr and Wu (2009), Feunou et al. (2014), and others).

The problem with these measures in this setting is that they do not allow me to examine

the premia associated with variance risk at many maturities while holding the forecast horizon

fixed. Both can be estimated for different maturities T , but doing so results in estimates of

risk premia over the entire time to maturity. As a consequence, any differences in estimated

risk premia could be due to differences across maturities in risk premia or differences across

future horizons in risk premia. For this reason, I use returns of variance-sensitive assets with

different maturities to proxy for variance risk premia. These assets offer different exposures

to the (potentially) many variance risk factors reflected in the VIX term structure while

allowing me to hold the forecast horizon and holding period fixed.

Variance asset returns also offer two other advantages over measures based on comparisons

of option-implied and realized or model-expected variance. The first is they directly relate

to asset pricing models which study the risk premia associated with investable assets. The
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second is variance asset returns do not depend on which statistical model is used to estimate

Êt(RV2
t+1,t+T ) or RV2

t+1,t+T .

The first variance asset I use is a S&P 500 variance swap, a contract that swaps a fixed

payment for a variable amount proportional to the realized variance of the S&P 500 index

(as used in Dew-Becker et al. (2016)). Without over-the-counter swap pricing data, I proxy

for variance asset returns using the returns of “synthetic variance swaps,” option portfolios

designed to replicate variance swaps. The key insight behind these replicating portfolios is

that VIX2
t,T is the price of a particular portfolio of traded options which replicates a variance

swap (Carr and Madan (1998) and Demeterfi et al. (1999)). As detailed in Appendix A, the

daily synthetic variance swap returns I use are the day return of this replicating portfolio of

options. To keep the maturity constant and the replicating portfolio as accurate as possible,

the monthly synthetic variance swap returns I use are the daily returns compounded from

t + 1 through t + 21. To match the VIX term structure, I construct returns for synthetic

variance swaps with T = 1, 2, 3, 6, 9, and 12 months to maturity.

Note that while the portfolio of options that replicates a variance swap has a value on

day t that is proportional to VIX2
T,t, its value on day t+ 1 is not proportional to VIX2

T,t+1 or

VIX2
T−1,t+1. The reason is the portfolio of options used to replicate a variance swap at t has

different weights and uses different options than the portfolio used at t+1. This difference is

critical because the VIX index is not directly investable and has no drift driven by variance

risk premium, while the returns of synthetic variance swaps I study here are investable (up

to transaction costs) and subject to risk-based drift.

On most days, there are no options expiring exactly T months later, and so the VIX

calculation uses a linear combination of options with the two nearest expiration dates to

t + T . As detailed in Appendix A, I use this same linear combination to form a portfolio a

time t and compute its time t+1 returns, resulting in a“constant maturity”strategy. Because

of the mismatch between T and available expiration dates, and because of the discreteness in

strike prices, the portfolio returns I use are imperfect proxies for true variance swap returns.
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However, unlike changes in the VIX itself, these returns are tradeable (the portfolio weights

sum to 1) and not interpolated.

While variance swaps are the most direct measure of variance risk, without data on

over-the-counter pricing their empirical implementation requires computing the return of

the option portfolio described above and is therefore subject to more illiquidity-driven noise

than directly-observed variance assets. For this reason, the second variance asset I study is

VIX futures, promises to exchange a fixed payment for the prevailing VIX index value at

a prespecified date (as used in Eraker and Wu (2014)). These contracts have traded since

2004, and historical end-of-day data are available on CBOE.com, meaning no replication

is necessary. Following the approach detailed in Appendix A, I compute daily returns of

constant maturity VIX futures strategies that use a mixture of the two maturity dates

nearest to a target maturity date T = 1, 2, 3, 4, 5, or 6 months from the current date t and

compound them to compute monthly returns. I use these six target maturities because there

are reliable data on contracts with approximately these times-to-maturity starting in 2004.

Like the synthetic variance swap returns, the VIX futures returns I construct are for

portfolios formed using information available on day t, held for a day, and then rebalanced

using information available on day t + 1. Constant maturity strategies are common in the

VIX futures market; for example, the popular VXX ETF uses a constant maturity strategy

with target maturity of one month, and so my daily one-month VIX futures returns are

nearly identical (correlation 96%, result untabulated) to those of VXX.

While VIX futures returns are more liquid than the out-of-the money options used to

compute synthetic variance swap returns, they only started trading in 2004, limiting the

power of return predictability tests. As a middle ground, I compute at-the-money S&P

500 straddle returns (as used in Coval and Shumway (2001)). At-the-money options are

the most liquid, and straddle portfolios have many fewer positions and therefore smaller

transactions costs than option portfolios replicating variance swaps. Moreover, straddle

returns are available since the beginning of the OptionMetrics dataset in 1996. Following
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the approach detailed in Appendix A, I compute the daily returns of constant maturity

straddle strategies that use a mixture of the two maturity dates nearest a target maturity

date that is always T = 1, 2, 3, 6, 9, or 12 months from the current date and compound

them to compute monthly returns.

Table 2 provides summary statistics for the returns of these 18 variance-sensitive assets.

Because of the variance risk they are exposed to, these assets have substantially negative

abnormal returns, as low as −1% per day or −18% per month. They are also subject to

extreme volatility, as high as 15% per day. Nevertheless, they offer significantly negative

Sharpe Ratios, most ranging from −0.25 to −0.75 on an annualized basis.

[Insert Table 2 about here]

Table 2 also shows there are significant differences in average risk premia earned by these

assets. Specifically, synthetic variance swaps tend to have more negative Sharpe Ratios than

VIX futures and S&P 500 straddles, and longer-maturity variance assets tend to have less

negative Sharpe Ratios than shorter-maturity assets, echoing the results in Dew-Becker et al.

(2016) and Eraker and Wu (2014).

To help understand the negative risk premia earned by these assets, I appeal to the

pricing model used in Ang et al. (2006) and regress excess asset returns on contemporaneous

excess market returns and innovations in the 1-month VIX index:

ri,t − rf,t = αi + βi,mkt (rmkt,t − rf,t) + βi,∆VIX (VIX1,t − VIX1,t−1) + εi,t.(4)

For each asset, Table 2 reports estimates of αi, βi,mkt and βi,∆VIX, which represent the asset’s

sensitivity to changes in the market and VIX after controlling for changes in the VIX and

market, respectively.3 As a result, while the variance assets have large negative CAPM betas

due to the negative correlation between variance changes and market returns, in the Ang

3The intercept α is not an excess return because the change in the VIX is not a traded asset. However,

assuming the VIX is stationary, an estimate of α in (4) is an unbiased estimate of the CAPM alpha.
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et al. (2006) framework they have relatively small market betas. Reassuringly, all 18 test

assets have positive βi,∆VIX, which indicates they are exposed to variance risk. Moreover,

those with larger βi,∆VIX tend to have more negative Sharpe Ratios, indicating variance risk

is an important factor in explaining the unconditional risk premia of these assets. Finally,

all 18 test assets have negative daily and monthly αi in the Ang et al. (2006) model.

The biggest takeaway from Table 2 is that while these 18 test assets are all positively

exposed to variance risk, they have different exposure to variance risk at different maturities.

Several results in Table 2 support this takeaway. The first is the relations between βi,∆VIX and

both risk premia and Sharpe Ratios are non-linear, suggesting a linear single factor model

is insufficient. The second is, as described above, longer maturities have smaller absolute

Sharpe Ratios, indicating long-term and short-term variance risk are priced differently. The

third is, even holding maturity fixed, the three different types of assets have different Sharpe

Ratios, indicating their risk exposures are not identical. The fourth is, as presented in

Panel D of Table 2, while the test assets are all positively correlated with each other, their

correlations are mostly between 50% and 80%, indicating they are exposed to somewhat

different risk factors. Together, these results make it unlikely the conditional risk premia

of all 18 tests assets are related in the same direction to a single factor in the VIX term

structure. However, in Section IV I show this is indeed the case.

IV. Empirical Results

A. Expectations hypothesis

A natural hypothesis is that the shape of the VIX term structure reflects expectations

about future changes in return variance and not differences in variance risk premia. For

example, this “expectations hypothesis” states an upward sloping VIX term structure reflects

market’s expectation that the VIX will increase over the next year rather than higher variance

risk premia in longer-term options. The expectations hypothesis for the VIX term structure

is directly comparable to the expectations hypothesis in bond markets, which states the shape
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of the treasury yield curve reflects expectations about future changes in treasury yields and

not differences in bond risk premia.

The motivation for the expectations hypothesis can be seen from manipulating equation

(2), which only assumes the underlying index has no jumps:

VIX2
k+m,t =

1

k +m
EQ

t

[∫ t+k+m

t

σ2
sds

]
=

1

k +m

(
EQ

t

[∫ t+k

t

σ2
sds+

∫ t+k+m

t+k

σ2
sds

])
=

k

k +m
· VIX2

k,t +
m

k +m
· EQ

t

(
VIX2

m,t+k

)
,(5)

where m is a VIX maturity and k is a forecast horizon. In this case, equation (5) says that

current long-term (k + m) VIX2 is a weighted average of the current short-term (k) VIX2

and risk-neutral expected short-term (m) VIX2 k periods into the future. I rearrange (5) to

find the market’s risk-neutral expected future VIX2:

EQ
t

(
VIX2

m,t+k

)
= VIX2

k+m,t +
k

m

(
VIX2

k+m,t − VIX2
k,t

)
.(6)

The expectations hypothesis takes (6) a step further by assuming the risk premium

EP
t

(
VIX2

m,t+k

)
− EQ

t

(
VIX2

m,t+k

)
is constant and equal to a. This implies the current shape

of the term structure reflects statistical-measure expectations about future changes in the

VIX. Specifically, substituting into (6), we have that the expectations hypothesis implies:

EP
t

(
VIX2

m,t+k

)
= a+ EQ

t

(
VIX2

m,t+k

)
= a+ VIX2

k+m,t +
k

m

(
VIX2

k+m,t − VIX2
k,t

)
.(7)

I test (7) using regressions of the form:

VIX2
m,t+k − VIX2

k+m,t = a+ b ·
(
Eexp. hyp.

t

(
VIX2

m,t+k

)
− VIX2

k+m,t

)
+ εm,t+k,(8)

VIX2
m,t+k − VIX2

m,t = a+ b ·
(
Eexp. hyp.

t

(
VIX2

m,t+k

)
− VIX2

m,t

)
+ εm,t+k,(9)

Eexp. hyp.
t

(
VIX2

m,t+k

)
≡ a+ VIX2

k+m,t +
k

m

(
VIX2

k+m,t − VIX2
k,t

)
.(10)
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where the expectations hypothesis predicts b = 1. The first specification (8) tests the ex-

pectation hypothesis’ prediction about VIX ‘decays’ VIX2
m,t+k − VIX2

k+m,t, while the second

specification (8) tests its prediction about VIX ‘changes’ VIX2
m,t+k − VIX2

m,t.

To estimate (8) and (9), I require that m, k, and k + m are maturities contained in

the VIX term structure (1, 2, 3, 6, 9, and 12 months). I therefore test the expectations

hypothesis using maturities m = 1 and m = 2 for forecast horizon k = 1, and maturities

m = 3, m = 6, and m = 9 for forecast horizon k = 3. This yields ten different tests of the

expectations hypothesis, five for predicting VIX decays and five for predicting VIX changes.

Table 3 presents the results of these ten tests of the expectations hypothesis. In every case,

b̂ < 1 and I strongly reject the expectations hypothesis null (b = 1), echoing the conclusion

Mixon (2007) reaches using the term structure of Black-Scholes implied volatilities. Given

the size of the variance risk premium, the failure of the expectations hypothesis in other

settings, and the evidence in other papers of variance asset return predictability, the failure

of the expectations hypothesis for the VIX term structure is not surprising. But what is

more surprising is there appears to be little or no relation between future VIX movements

and movements predicted by the expectations hypothesis. All five of the decay-predicting

tests in Panel A have insignificantly negative b̂. The VIX change regressions in Panel B have

positive b̂, though only the next-quarter predictions are statistically different from zero.

[Insert Table 3 about here]

Furthermore, the positive b̂ in Panel B are due entirely to mean reversion in VIX2
m. If the

expectations hypothesis is correct, the optimal forecast of mean reversion should be captured

perfectly using the shape of the VIX term structure, leaving no room to incrementally predict

VIX changes using current VIX. However, as I show in Table 3, when I add the current

VIX2
m,t to the right-hand side of (8) and (9), not only does the current VIX load negatively,

reflecting mean reversion, but it drowns out any predictability afforded by the expectations

hypothesis term. This implies the shape of the term structure predicts next-quarter VIX

changes because it is a noisy proxy for expected mean reversion, which is more-precisely
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measured by VIX2
m alone. After controlling for risk aversion, all ten of the b̂ in Table 3 are

either negative or insignificantly-positive.

Put more broadly, Table 3 shows that, contrary most models and intuition, the VIX term

structure does not reliably increase (decrease) after the VIX term structure is upward (down-

ward) sloping. And, to the extent it does, the VIX term structure contains no information

other than the simple mean reversion already captured by the current VIX.

B. Single factor tests

Given the failure of the expectations hypothesis, it must be the case that time variation in

the shape of the VIX term structure is driven by changes in variance risk premia embedded

in options used to compute the VIX. In this section, I show that the variations in variance

risk premia across different maturities are driven almost entirely by different exposures to

variations in a single factor: the second principal component of the term structure (Slope).

My approach and conclusions mimic those in Cochrane and Piazzesi (2005), which finds

a single factor summarizes nearly all information about bond risk premia in the treasury

term structure, though with two key differences. The first is the Cochrane and Piazzesi

(2005) factor is tent-shaped, whereas Slope is monotonic. The second, and more important,

difference is that Cochrane and Piazzesi (2005) estimates its single factor using a first-stage

regression of average returns across all test assets on the full term structure, effectively

choosing the best possible single factor. By contrast, I use the second principal component

as the single factor because it predicts variance asset returns better than the other principal

components. My informal factor selection approach is more conservative because it limits

the scope of potential linear combinations to the factors resulting from principal components

analysis and is not designed to compute the optimal single factor.

As discussed in Section III, I use returns for 18 variance assets as proxies for variance risk

premia. Given the evidence in Table 2, it seems likely each of these 18 assets have different

loadings on multiple factors in the VIX term structure, resulting in conditional expected
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returns of the form:

Et(ri,t+1) − rf,t+1 = ai + VIX2
t · γi,(11)

where VIX2
t is a vector of the six VIX2

m,t and γi is a vector of the six loadings for asset i on

the six different VIX. By rotating VIX2
t using the principal component definitions Γ given

in Table 1, (11) can be rewritten as:

Et(ri,t+1) − rf,t+1 = ai + PCt · λi,(12)

where PCt ≡ VIX2
t ·Γ is a vector of the six principal components of VIX2

t and λi = Γ−1γi

is a vector of the six loadings for asset i on the six different VIX.

A much more restrictive asset pricing model is that all information about the risk premia

of these 18 test assets in the VIX term structure can be summarized by the second principal

component, Slopet. This hypothesis implies expected returns take the form:

Et(ri,t+1) − rf,t+1 = ai + bi · Slopet,(13)

Note that in (13), all time-series variation in variance risk premia come from variations in

Slopet, while all cross-sectional differences in variance risk premia come from the constant

factor loading bi and intercept ai.

I test whether the restricted model (13) holds empirically using the fact that (13) is

equivalent to (12) when the factor loadings λi,j are zero except for Slope j = 2. I therefore

estimate the unrestricted model using regressions of the form:

ri,t+1 − rf,t+1 = ai + PCt · λi + εi,t+1,(14)

and test the single-factor hypothesis using a χ2 test for the hypothesis that λi are jointly
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zero for all factors except Slope.4

The results in Table 4 largely support the single factor hypothesis for both next-day and

next-month variance asset returns. With three different test assets, each with six different

maturities, and two forecast horizons, Table 4 presents 36 variations of my test of the single

factor hypothesis. In all 36 cases, Slope negatively predicts variance asset returns, 33 of

which are statistically significant. No other principal component predicts variance asset

returns with nearly such consistency. As discussed further below, the failure of the Level

factor is particularly surprising because most models predict variance risk premia should be

large in high variance times.

[Insert Table 4 about here]

I reject the single-factor hypothesis using the χ2 test in only 8 of the 36 cases. Even

in these cases, however, Slope delivers the most of the predictability. These rejections are

mostly due to the fifth principal component PC5, which significantly predicts returns in nine

cases. However, I discount the importance of this predictability for four reasons. The first is

the inherent difficulty in interpreting PC5, which only explains 0.12% of the total variance

in the VIX term structure. The second is that the relation between PC and future returns is

positive in some cases and negative in others. The third is that Table 4 presents the adjusted

R2 for Slope-only regressions as well as the full six-factor regressions, and even in cases where

the single factor hypothesis is rejected, for example for next-month S&P straddle returns in

Panel F, the R2 afforded by Slope alone is almost as large as the unrestricted R2.

The final reason I discount the predictability offered by other PCs that causes rejections

of the single factor hypothesis is regressions with Slope alone outperform unrestricted regres-

sions in out-of-sample (OOS) tests. For both restricted and unrestricted models, I compute

4To make the economic magnitudes of λi easier to interpret, I scale the principal components to have

standard deviation one.
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“out-of-sample R2” by estimating an out-of-sample predicted return for each t:

r̂i,t+1 − rf,t+1 = âi,t + PCt · λ̂i,t,(15)

where the coefficients âi,t and λ̂i,t are estimated using only past and future observations

where the left-hand side does not overlap with observation t.5 Because they use past and

future data, these out-of-sample regressions assess how much of the predictive relation is due

to small sample overfitting but do not represent the economic value of the predictor to a

real-time investor, an issue I revisit in Figure 2. In 33 of 36 regressions, the OOS R2 for

Slope alone is higher than the unrestricted OOS R2. Even in the three exceptions, the OOS

performance is very close.

Taken together, the evidence in Table 4 indicates Slope summarizes all economically-

meaningful information about variance risk premia in the VIX term structure.

C. Economic significance of Slope as a predictor

Given the results in Table 4, the remainder of my tests treat Slope as a summary of all

information in the VIX term structure about variance risk premia and examine the economic

significance, robustness, and incremental power of Slope as a predictor of variance-asset

returns. For brevity, I focus on next-day variance asset returns, though my results are

qualitatively identical for next-month returns.

I assess the economic significance of the predictability afforded by Slope using two ap-

proaches, the first of which is to estimate the performance of an out-of-sample Slope-based

trading strategy, as discussed in Section IV.F. The second is to compute average next-day

excess variance asset returns across Slope quintiles. In addition to measuring economic sig-

nificance, this approach allows me to assess any non-linearities in the relation between Slope

and variance asset returns. Table 5 shows the difference between high and low Slope quin-

5For next-day returns in Panels A through C, I use all observations but t. For next-month returns in

Panels D through F, I use all observations but t− 20 through t+ 20.
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tiles is statistically significant for all but the 6-month VIX futures returns, and economically

enormous: between 29bp and 181bp per day.6 Furthermore, the relation does appear to be

non-linear. In quintiles 2 through 5, Slope and variance asset returns are moderately nega-

tively related. However, the relation becomes much stronger in quintile 1, for which average

returns increase dramatically. This pattern suggests there are huge intertemporal changes

in the loadings of these assets on variance risk, the price of variance risk, or both.

[Insert Table 5 about here]

D. Robustness of Slope as a predictor

A limitation of my analysis is the relatively short 1996-2013 sample period featuring a

historic financial crisis. To make my results as convincing as possible given this limitation,

I show the predictive relation between Slope and variance asset returns is robust to many

alternate specifications. The first alternative specification is predicting monthly rather than

daily returns. Table 4 shows Slope negatively predicts next-month variance asset returns to

the exclusion of other factors in the term structure. Table 6 provides an additional robustness

check, as well as a measure of economic significance, by examining differences in next-month

returns across extremely Slope quintiles for 18 variance assets, along with the next-day return

differences for comparison. The economic magnitudes are quite large, ranging from -8.25%

to -36.67%, and also statistically significant at the 1% level for all 18 test assets.

[Insert Table 6 about here]

Another potential concern is that the predictive relation between Slope and variance asset

returns is driven by extreme observations of both Slope and variance asset returns during the

financial crisis. Figure 1 shows Slope occasionally spikes downwards, for example reaching

a low almost 10 standard deviations below its mean in 2008. Furthermore, Table 5 shows

variance asset returns following days in the lowest Slope quintile are substantially different

6As a benchmark, Table 2 shows average daily returns for these assets are between 0bp and 136bp.
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than those following days in the other four quintiles. It is therefore possible that my main

results are driven entirely by a few days with extremely low Slope and abnormally positive

future variance asset returns.

Table 6 alleviates this concern by examining the differences in next-day variance asset

returns across Slope quintiles in two different sub-samples: one without the financial crisis

(defined as all of 2008 and 2009), and one without the bottom 5% of days by Slope. In both

cases, the magnitude of the predictability afforded by Slope is somewhat smaller than in the

baseline results but remains statistically and economically significant.

A final concern addressed in Table 6 is that the definition of Slope I use for my main

tests is based on principal components analysis (PCA) of the VIX term structure over the

entire sample, introducing a possible look-ahead bias. Because the PCA is a simple linear

rotation of the VIX term structure that does not use return data, any look-ahead bias

is likely to be small. Regardless, if my interpretation of the second principal component as

“Slope” is correct, exogenous measures of the term structure’s slope should also predict future

variance asset returns. Table 6 shows that sorting the sample by one such alternate measure,

VIX2
12 − VIX2

1, results in statistically significant but somewhat muted predictability.7

E. Slope as an incremental predictor

As discussed in Section II, related literature documents other timely indicators for vari-

ance risk premia. Table 7 shows the ability of Slope to predict future variance asset returns

is incremental to these other indicators and cannot be explained by mismeasurement or liq-

uidity. As in Table 4, I scale each independent variable to have standard deviation one to

make economic magnitudes easier to interpret. I detail each result in turn, but the impor-

tant conclusion is that Slope remains a statistically and economically significant predictor

7This exogenous slope definition is likely less effective because it is -68% correlated with the Level of

the term structure, which is unrelated to variance asset returns. The negative correlation is due to mean

reversion in volatility, which makes the term structure downward sloping when its level is high. A more

effective alternative is to sort by 2VIX2
12,t − VIX2

1,t, which is much less correlated with Level.
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of next-day returns for all but two of the assets it predicts in Table 4. Even for the few

assets for which Slope does not incrementally predict future returns, the coefficient remains

negative and economically significant.

[Insert Table 7 about here]

The first control variable is the day t variance asset return ri,t, which addresses the

concern that my results are driven by measurement errors. This concern arises because both

Slope and time t variance swap and straddle prices are computed from the same potentially-

noisy option prices, making it possible that measurement error in the option prices drives the

predictability I document. This possibility is mitigated by the fact that my results hold when

predicting returns on day t+ 2 using Slope on day t,8 and for VIX futures which are traded

separately and therefore not subject to the same measurement error as Slope. Nevertheless,

I address this possibility by controlling for ri,t in Table 7. To the extent measurement errors

drive my results, there should be negative autocorrelation in variance asset returns and the

predictive power of Slope should disappear with after controlling for ri,t. Controlling for

ri,t also accounts for any compensation liquidity providers receive in the form of short-term

reversals in variance asset returns. Table 7 shows past returns are significantly negative

incremental predictors for only 3 of 18 test assets, indicating that measurement error and

short-term reversal are not significant for these assets.

The second control variable in Table 7 is Crasht−20,t, an indicator for whether there was a

“crash” in the S&P 500 over the 21 trading days ending with t. I define a“crash”as a day with

excess market returns in the bottom 1% of my sample, -3.36% or worse. Variance risk premia

could be larger after market crashes because the risk aversion of traders increases, because

the probability of subsequent crashes increases, or a combination of the two (see Todorov

(2010) and Aıt-Sahalia, Karaman, and Mancini (2015)). The results in Table 7 indicate there

is no significant relation between Crasht−20,t and future variance asset returns incremental

8Results available upon request.
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to the other controls. If anything, future variance asset returns are higher following market

crashes, indicating the magnitude of variance risk premia actually decreases.

The third control variable in Table 7 is VIX2
1,t. While the single-factor tests in Table 4

support the notion that Slope summarizes all relevant information in the VIX term structure,

they only assess whether the term structure adds predictability to Slope without controlling

for any other factors. Given the strong role VIX1 plays in pricing across many markets,

the importance of the level of volatility in most asset pricing models, and the time-varying

correlation between Level and Slope in Figure 1, it is possible that the VIX2
1,t has incremental

information once you control for indicators outside the VIX term structure. Table 7 shows

this is not the case, as VIX2
1,t is an insignificant or incrementally positive predictor of variance

asset returns.

I also control for the difference between option-implied and expected realized variance,

VIX2
1,t − Et(RV2

t+1), in Table 7. As discussed above, Bollerslev, Tauchen, and Zhou (2009)

and Drechsler and Yaron (2011) use implied minus expected variance as an ex-ante measure

for conditional variance risk premia. I follow Drechsler and Yaron (2011) and use the fitted

value from a full-sample time-series regression of RV2
t+1 on RV2

t and VIX2
1,t as a proxy for

Et

(
RV2

t+1

)
.9 This measure uses information outside the VIX term structure, past realized

S&P 500 volatility, and therefore could provide information about variance risk premium

that is incremental to Slope. Consistent with this hypothesis, I find that VIX2
1,t−Et(RV2

t+1)

negatively predicts future variance asset returns incremental to Slope for 11 of 18 test assets.

This implies that when option-implied variance is abnormally higher than expected vari-

ance, variance risk premia are larger and therefore variance assets have particularly negative

abnormal returns.

Kozhan, Neuberger, and Schneider (2013) shows a large part of the unconditional variance

risk premia is a reflection of a skew risk premia. To rule out the possibility that Slope’s

9Also following Drechsler and Yaron (2011), I estimate RV from realized five-minute S&P 500 futures

returns and annualized it to be comparable to VIX2.

23

Electronic copy available at: https://ssrn.com/abstract=2548050



Risk Premia and the VIX Term Structure

relation to variance risk premia is due to it being correlated with the conditional skewness of

the S&P 500, I add model-free implied skewness as a control variable, estimated as inKozhan,

Neuberger, and Schneider (2013). The results in Table 7 indicate conditional S&P 500 skew

does not predict future variance asset returns incremental to the other indicators for most

test assets. This alone does not contradict the results in Kozhan, Neuberger, and Schneider

(2013) because I study conditional, rather than unconditional, variance risk premia.

To rule out the possibility that Slope’s relation to variance risk premia is due to it being

correlated with aggregate liquidity levels, I include the Hu, Pan, and Wang (2013) NOISE

measure for illiquidity as a control variable. NOISE, based on the noise in the treasury yield

curve, is more likely to be related to Slope than other aggregate liquidity proxies because

it is also a daily measure and constructed from a term structure of asset prices.10 Table 7

shows that NOISE plays a small roll in predicting variance risk premia incremental to the

other controls, being slightly positive but statistically insignificant for most assets.

Barras and Malkhozov (2015) argues variance risk premia are larger when intermediaries’

risk-bearing capacity is abnormally low. The primary proxy in Barras and Malkhozov (2015)

for intermediaries’ risk-bearing capacity is the aggregate leverage (assets divided by equity)

of broker-dealers available quarterly in data from the Federal Reserve Flow of Funds, Table

L.128. To assess whether the relation between Slope and variance risk premia is driven by

intermediaries’ risk-bearing capacity, I add a final control to Table 7: Dealer Leveraget, the

most recent leverage ratio of broker dealers as of time t. I find no significant relation between

Dealer Leveraget and future variance asset returns incremental to the other controls.

Several untabulated robustness checks are worth mentioning. The single factor tests in

Table 4 yield identical, in some cases stronger, results if tested by regressing next-day vari-

ance asset returns on the six components of the VIX term structure without first rotating

into principal components. The predictability documented in Table 7 is robust to winsoriz-

10In untabulated tests, I find qualitatively identical results when using the aggregate liquidity measure

from Stambaugh (2003).
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ing Slope at the 1% or 5% levels, using quintiles of Slope, and using alternate geometric

definitions of Slope. The results of these analyses are available upon request.

F. Out-of-sample predictive performance of Slope

A natural question is whether Slope performs well as an out-of-sample (OOS) predictor

of variance asset returns. Goyal and Welch (2008) argues OOS performance provides an

additional falsifiable prediction of the no-predictability hypothesis and an indicator of the

economic value of the predictor to real investors. I assess the OOS performance of Slope

using both regression and trading strategy approaches. As described above, Table 4 presents

OOS R2 for both the restricted model that predicts variance asset returns using only Slope

and the unrestricted model that uses the whole VIX term structure. The out-of-sample R2

afforded by Slope in Table 4 are positive in 33 of 36 cases for the univariate Slope regressions.

Furthermore, while mechanically smaller than the in-sample R2, in most cases the two are

quite close, indicating Slope’s predictability is stable over time and not driven by in-sample

over-fitting. The OOS R2 for the unrestricted multivariate model, however, is substantially

lower than both the OOS R2 offered by Slope and the in-sample R2 in the unrestricted model.

The unrestricted model performs poorly OOS because the six highly-colinear predictors are

more prone to overfitting than Slope alone.

While the OOS R2 in Table 4 provides another rejection of the no-predictability null, a

trading strategy approach is better suited to measure the economic value to investors of Slope

as a predictor. Figure 2 presents cumulative returns for two trading strategies using S&P

500 straddles. The first unconditionally sells S&P 500 straddles with a constant maturity of

30 days by shorting the straddle portfolio I use in my main tests. When shorting straddles,

Regulation T requires requires the proceeds, along with 20% of the index value, be posted

as margin. I therefore compute short straddle returns as:

rshort straddle
t+1 =

straddlet − straddlet+1

0.2 · S&P 500t

.(16)
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As documented in Coval and Shumway (2001), average straddle returns are negative, and so

the unconditional strategy in Figure 2 results in a substantial positive cumulative return.

[Insert Figure 2 about here]

The second strategy in Figure 2 is an out-of-sample conditional strategy using Slope as an

indicator for whether to buy or sell straddles. Specifically, for each day following a 1996-1999

training period, I use the following procedure:

1. Compute Slopet using PCA on VIX term structure data from the beginning of the

sample through t.

2. If Slopet in the bottom quintile of its historical distribution, buy straddles at t and sell

them at t+ 1. Otherwise, short straddles at t and buy them back at t+ 1.

Figure 2 presents the cumulative returns of this conditional strategy, which outperforms

the unconditional strategy by a factor of 4.8 over the 14 year window, 11.9% per year.11

This additional performance comes from days, highlighted in grey on Figure 2, on which the

conditional strategy deviates from the unconditional strategy and buys (rather than sells)

straddles. A substantial portfolio of the OOS improvement comes from late 2008, when the

conditional strategy was long straddles and markets crashed. However, as discussed above,

the predictability afforded by Slope is robust to removing 2008 and 2009 from the sample.

G. Empirical patterns for future work to explain

The contribution of this paper is to show a single factor, Slope, summarizes all information

about variance risk premia in the VIX term structure and is a significant and robust predictor

of variance asset returns across all maturities. In doing so, my results provide three puzzling

empirical patterns for future work on variance risk premia to explain.

The first puzzling empirical pattern is the insignificant relation between Level and vari-

ance risk premia for all maturities. Most models, by contrast, predict variance risk premia

11I compute both strategy’s returns using midpoints of the bid-ask spread, which can be substantial in the

options market, meaning they overstate returns available to real-time investors.
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are larger (i.e., more negative) when variance is higher. The second is the direction of the

relation between Slope and variance risk premia for all maturities. The fact that uncondi-

tional variance risk premia are higher for shorter maturities, as documented in Dew-Becker

et al. (2016) and in Table 2, suggests that variance risk premia disproportionately affect

short-term VIX, which would mean that when variance risk premia are large, short-term

VIX should be higher than long-term VIX, making the term structure downward sloping.

Instead, my results indicate that variance risk premia are large when short-term VIX is low

relative to long-term VIX.

A final puzzling empirical pattern is the magnitude of the predictability afforded by

Slope, as documented in Section IV.C. The magnitude of the predictability is so strong

that in the lowest Slope quintile, Table 5 shows 17 of the 18 assets have positive abnormal

returns, 10 of which are statistically significant. Explaining these results would require

intertemporal changes in either the assets’ exposure to variance risk or the price of variance

risk so substantial they occasionally change the sign of variance risk premia.

V. Conclusion

Changes in the shape of the VIX term structure convey information about time-varying

variance risk premia rather than expected changes in the VIX, a rejection of the expectations

hypothesis. Using daily returns of synthetic S&P variance swaps, VIX futures, and S&P

500 straddles for different maturities, I show that a single factor, Slope, summarizes all

information in the VIX term structure about variance risk premia. Slope predicts returns

for all maturities and to the exclusion of the rest of the term structure. The predictability

is economically significant, robust, and incremental to other predictors from the literature.
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Appendix A. Construction of variance asset returns

Carr and Madan (1998) and Demeterfi et al. (1999) show the VIX2 index approximates
the price of a variance swap traded at time t and maturing at time t + T . Because options
expiring exactly T months from t are not always traded, the VIX is calculated using a linear
interpolation between variance swap rates for the two nearest expiration dates to T . VIX2

without annualization, an estimate of the variance swap price at time t, is therefore:

p̂t,T =
T − S1

S2 − S1

∑
K

∆Ki

K2
optiont(K; t+ S1) +

S2 − T

S2 − S1

∑
K

∆K

K2
optiont(K; t+ S2),(17)

where optiont(K; t+S) is the price at t of the option with strike K and expiration date t+S
that is out of the money at time t, ∆K is the difference between K and the nearest strike
price, and S1 ≤ T ≤ S2 are the two nearest expiration dates to T .12

Note that (17) is the price of a specific, tradeable, portfolio of out of the money options
with times to expiration equal to S1 and S2. Therefore, the return of a variance swap from
day t to day t+ 1 can be approximated by the return of the day t replicating portfolio:

rvar. swap
T,t+1 =

∑
K

(
T−S1

S2−S1

∆Ki

K2 optiont+1(K; t+ S1) + S2−T
S2−S1

∆K
K2 optiont+1(K; t+ S2)

)
∑

K

(
T−S1

S2−S1

∆Ki

K2 optiont(K; t+ S1) + S2−T
S2−S1

∆K
K2 optiont(K; t+ S2)

) − 1(18)

=
∑
K

w1,t(K) · roption
t+1 (K; t+ S1) + w2,t(K) · roption

t+1 (K; t+ S2),(19)

w1,t(K) ≡
T−S1

S2−S1

∆K
K2 optiont(K; t+ S1)

p̂t,T
, w2,t(K) ≡

S2−T
S2−S1

∆K
K2 optiont(K; t+ S2)

p̂t,T
,(20)

where optiont(K; t+S) is the price at t of the option with strike K and expiration date t+S

that is out of the money at time t, and roption
t+1 (K; t+ S) =

optiont+1(K;t+S)

optiont(K;t+S)
− 1.

I compute the returns for each constant maturity VIX futures strategy using:

rVIX fut
T,t+1 =

T−S1

S2−S1
· VIX futt+1 (t+ S1) + S2−T

S2−S1
· VIX futt+1 (t+ S2)

T−S1

S2−S1
· VIX futt (t+ S1) + S2−T

S2−S1
· VIX futt (t+ S2)

− 1,(21)

where VIX futt(t+ S) is the day t price of a VIX futures contract with maturity date t+ S,
and S1 and S2 are the two closest times-to-maturities to the target time-to-maturity T .

I compute the returns for each constant maturity S&P straddles strategy using:

rstraddle
T,t+1 =

T−S1

S2−S1
· straddlet+1 (t+ S1) + S2−T

S2−S1
· straddlet+1 (t+ S2)

T−S1

S2−S1
· straddlet (t+ S1) + S2−T

S2−S1
· straddlet (t+ S2)

− 1,(22)

where straddlet(t + S) is the day t price of an at-the-money straddle with expiration date
t+ S, and S1 and S2 are the two closest times-to-expiration to the target T .

12See https://www.cboe.com/micro/vix/vixwhite.pdf for details on how the set of strikes K are selected.
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Figure 1: The Level and Slope of the VIX2 Term Structure

This figure presents the first two principal components of the VIX2 term structure. The VIX2 term
structure is an annualized model-free estimate of option-implied variance for the S&P 500 one, two
three, six, nine, and twelve months into the future. I plot its first two principal components, which
I call Level and Slope, standardized so that both have mean equal to zero and standard deviation
equal to one. The PCs are defined in Table 1. The sample contains 4,445 daily observations from
1996 through 2013.
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Figure 2: Conditional and Unconditional Straddle Strategy Returns

This figure presents cumulative returns for two trading strategies using constant-maturity S&P
500 straddle portfolios. The unconditional strategy sells the 30-day straddle portfolio every day,
holds for one day, and then rebalances to the next 30-day portfolio. The daily returns for selling
straddles account for the margin requirement, 20% of the S&P 500 index level. The conditional
strategy estimates Slopet using principal components analysis on past data. The strategy buys
straddles if Slopet is in the bottom quintile of its historical distribution, and sells straddles (with
the appropriate margin) otherwise. Periods during which the conditional strategy buys straddles
are grey. Since the conditional strategy is purely out-of-sample, it requires a training period,
and so each strategy’s cumulative returns start in 2000, meaning the sample contains 3,437 daily
observations from 2000 through 2013.
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Table 1: Summary Statistics for the VIX Term Structure and its PCs

This table presents summary statistics for the VIX term structure and its principal components.
The VIX term structure is an annualized model-free estimate of option-implied volatility for the
S&P 500 one, two, three, six, nine, and twelve months into the future. Panel A presents the
summary statistics for the term structure. Panel B presents both the definitions and variances
of the principal components of the implied variance (VIX2) term structure. The sample contains
4,445 daily observations from 1996 through 2013.

Panel A: VIX Term Structure

VIX1 VIX2 VIX3 VIX6 VIX9 VIX12

Mean 21.7% 22.0% 22.2% 22.6% 22.6% 22.7%
Standard dev. 8.5% 7.9% 7.5% 6.7% 6.3% 6.1%
1st percentile 10.6% 11.3% 11.8% 12.9% 13.1% 13.3%
10th percentile 13.0% 13.5% 14.0% 14.8% 15.1% 15.4%
25th percentile 16.0% 16.6% 17.0% 17.9% 18.1% 18.3%
Median 20.2% 20.7% 21.2% 21.9% 22.1% 22.1%
75 percentile 24.9% 25.3% 25.5% 26.1% 25.7% 26.2%
90th percentile 31.5% 30.8% 30.5% 30.5% 30.2% 30.4%
99th percentile 54.5% 52.0% 50.7% 45.7% 43.5% 41.5%

Panel B: Principal Components

“Level” “Slope” “Curve”
PC1 PC2 PC3 PC4 PC5 PC6

Definitions
VIX2

1 0.52 -0.57 -0.55 0.16 0.04 -0.28
VIX2

2 0.48 -0.24 0.24 -0.25 0.04 0.77
VIX2

3 0.44 -0.01 0.62 -0.33 -0.01 -0.57
VIX2

6 0.36 0.30 0.15 0.65 -0.58 0.07
VIX2

9 0.32 0.44 -0.02 0.32 0.78 0.02
VIX2

12 0.29 0.58 -0.48 -0.53 -0.25 -0.01

Variance
Variance (×105) 100.73 4.75 0.32 0.16 0.13 0.07
% of total 94.89% 4.47% 0.30% 0.15% 0.12% 0.07%
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Table 2: Summary Statistics for Returns of Variance Assets

This table presents summary statistics for daily returns of 18 different variance assets in excess
of the risk-free rate. The first group, presented in Panel A, are option portfolios that replicate
variance swaps at six different maturities. The second group, presented in Panel B, are six different
constant-maturity VIX futures strategies. The third group, presented in Panel C, are six different
constant-maturity at-the-money S&P 500 straddle strategies. For each asset, I compute α, βi,mkt

and βi,∆VIX, the coefficients in a time-series regression of excess asset returns on contemporaneous
excess market returns and changes in the VIX:

ri,t − rf,t = αi + βi,mkt (rmkt,t − rf,t) + βi,∆VIX (VIX1,t − VIX1,t−1) + εi,t.

Panel D presents the correlation matrix for daily excess returns of the 18 variance assets. The
sample contains 4,445 daily observations from 1996 through 2013 for variance swaps and straddles,
and 2,375 daily observations from 2004 through 2013 for VIX futures.

Panel A: Excess synthetic S&P 500 variance swap returns

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Daily returns

Mean -1.36% -0.64% -0.35% -0.20% -0.12% -0.08%
Standard dev. 15.08% 9.85% 7.80% 5.28% 4.36% 4.19%
Sharpe ratio (ann.) -1.44 -1.03 -0.71 -0.61 -0.45 -0.29
Skewness 4.18 3.64 2.66 2.23 1.42 1.39
αi -1.40% -0.63% -0.33% -0.19% -0.11% -0.06%
βi,mkt 0.99 -0.46 -0.86 -0.54 -0.57 -0.58
βi,∆VIX 7.26 4.40 3.10 2.19 1.61 1.22

Monthly returns

Mean -18.31% -9.52% -5.56% -3.76% -2.40% -1.37%
Standard dev. 126.52% 73.56% 49.55% 27.98% 21.82% 21.25%
Sharpe ratio (ann.) -0.50 -0.45 -0.39 -0.47 -0.38 -0.22
Skewness 10.17 7.89 4.99 2.63 1.86 1.83
αi -18.96% -9.49% -5.22% -3.63% -2.11% -1.14%
βi,mkt 0.99 -0.15 -0.66 -0.28 -0.54 -0.43
βi,∆VIX 16.65 10.31 6.82 3.80 2.55 2.31
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Table 2 (cont’d): Summary Statistics for Returns of Variance Assets

Panel B: Excess VIX futures returns

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Daily returns
Mean -0.19% -0.20% -0.14% -0.08% -0.07% -0.08%
Standard dev. 3.79% 3.63% 3.32% 3.22% 3.27% 3.73%
Sharpe ratio (ann.) -0.81 -0.89 -0.67 -0.41 -0.34 -0.34
Skewness 0.97 0.81 0.57 0.49 0.62 0.44
αi -0.16% -0.18% -0.11% -0.06% -0.04% -0.06%
βi,mkt -1.00 -1.00 -0.93 -0.82 -0.93 -0.73
βi,∆VIX 1.00 0.87 0.74 0.71 0.56 0.57

Monthly returns
Mean -3.78% -4.02% -2.92% -1.76% -1.59% -2.28%
Standard dev. 20.51% 19.04% 16.08% 15.39% 14.69% 13.55%
Sharpe ratio (ann.) -0.64 -0.73 -0.63 -0.40 -0.37 -0.58
Skewness 2.90 2.23 1.73 1.79 1.67 0.71
αi -2.90% -3.11% -2.09% -0.94% -0.83% -1.64%
βi,mkt -1.52 -1.58 -1.44 -1.43 -1.32 -1.12
βi,∆VIX 1.78 1.41 0.96 0.78 0.86 0.49

Panel C: Excess S&P 500 straddle returns

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Daily returns

Mean -0.32% -0.18% -0.10% -0.03% -0.02% 0.00%
Standard dev. 5.86% 3.41% 2.63% 1.75% 1.44% 1.31%
Sharpe ratio (ann.) -0.88 -0.84 -0.62 -0.30 -0.17 0.00
Skewness 3.65 3.35 2.95 1.14 1.43 1.08
αi -0.39% -0.22% -0.14% -0.06% -0.04% -0.02%
βi,mkt 2.33 1.45 1.13 0.85 0.74 0.67
βi,∆VIX 3.14 1.94 1.48 0.96 0.76 0.64

Monthly returns

Mean -5.29% -3.10% -1.70% -0.42% -0.13% 0.13%
Standard dev. 35.74% 21.03% 16.35% 11.45% 9.27% 8.13%
Sharpe ratio (ann.) -0.51 -0.51 -0.36 -0.13 -0.05 0.05
Skewness 3.40 2.64 2.24 1.54 1.26 0.99
αi -6.52% -4.06% -2.52% -1.08% -0.72% -0.40%
βi,mkt 2.11 1.65 1.42 1.15 1.03 0.92
βi,∆VIX 5.51 3.56 2.83 1.94 1.56 1.27
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Table 2 (cont’d): Summary Statistics for Returns of Variance Assets

Panel D: Correlations among daily returns of variance assets

Variance swaps VIX futures S&P 500 straddles
1 3 6 12 1 3 6 1 3 6 12

Swaps

1 1.00 0.85 0.85 0.62 0.76 0.69 0.43 0.85 0.77 0.63 0.46
3 1.00 0.92 0.76 0.87 0.80 0.52 0.66 0.73 0.64 0.48
6 1.00 0.79 0.86 0.81 0.55 0.64 0.71 0.66 0.54
12 1.00 0.79 0.75 0.51 0.42 0.53 0.54 0.51

Futures 1 1.00 0.92 0.59 0.53 0.63 0.58 0.50
3 1.00 0.56 0.46 0.58 0.55 0.48
6 1.00 0.26 0.35 0.35 0.31

Straddles 1 1.00 0.83 0.70 0.54
3 1.00 0.86 0.71
6 1.00 0.79
12 1.00
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Table 3: Expectations Hypothesis for the VIX Term Structure

This table presents tests of the expectations hypothesis for the VIX term structure, which states:

Eexp. hyp.
t

(
VIX2

m,t+k

)
= a+ VIX2

k+m,t +
k

m

(
VIX2

k+m,t − VIX2
k,t

)
Specifically, in Panel A I test the implications of the expectations hypothesis for predicting the
decay in VIX using regressions of the form:

VIX2
m,t+k − VIX2

m+k,t = a+ b ·
(
Eexp. hyp.
t

(
VIX2

m,t+k

)
− VIX2

m+k,t

)
+ c · VIX2

m,t + εm,t+k

for a variety of different k and m. In Panel B I test the implications of the expectations hypothesis
for predicting changes in VIX using regressions of the form:

VIX2
m,t+k − VIX2

m,t = a+ b ·
(
Eexp. hyp.
t

(
VIX2

m,t+k

)
− VIX2

m,t

)
+ c · VIX2

m,t + εm,t+k

In each case, the standard errors are adjusted using Newey-West with lags equal to 1.5 times the
number of overlapping days. I present p-values for the expectations hypothesis null b = 1. The
sample contains 4,445 daily observations from 1996 through 2013.

Panel A. Predicting VIX decay VIX2
m,t+k − VIX2

m+k,t

k = 1: Predicting next-month VIX decay

m = 1 m = 2

b̂ -0.299 -1.263 -0.562 -1.430

SE(b̂) (0.442) (0.416) (0.577) (0.468)
ĉ - -0.285 - -(0.250)
SE(ĉ) - (0.080) - (0.061)
Exp hyp. p-value 0.3% 0.0% 0.7% 0.0%
R2 0.6% 10.5% 2.3% 12.5%

k = 3: Predicting next-quarter VIX decay

m = 3 m = 6 m = 9

b̂ 0.088 -1.251 0.319 -0.745 -0.017 -0.947

SE(b̂) (0.341) (0.327) (0.342) (0.263) (0.380) (0.295)
ĉ - -0.508 - -0.394 - -0.382
SE(ĉ) - (0.066) - (0.058) - (0.049)
Exp hyp. p-value 0.8% 0.0% 4.6% 0.0% 0.7% 0.0%
R2 0.0% 16.0% 0.7% 14.2% 0.0% 16.0%
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Table 3 (cont’d): Expectations Hypothesis for the VIX Term Structure

Panel B. Predicting VIX change (VIX2
m,t+k − VIX2

m,t)

k = 1: Predicting next-month VIX change

m = 1 m = 2

b̂ 0.350 -0.132 0.232 -0.250

SE(b̂) (0.221) (0.208) (0.341) (0.265)
ĉ - -0.285 - -0.252
SE(ĉ) - (0.080) - (0.057)
Exp hyp. p-value 0.3% 0.0% 2.4% 0.0%
R2 3.4% 13.0% 1.3% 11.1%

k = 3: Predicting next-quarter VIX change

m = 3 m = 6 m = 9

b̂ 0.544 -0.125 0.650 0.064 0.418 0.001

SE(b̂) (0.171) (0.164) (0.170) (0.135) (0.198) (0.188)
ĉ - -0.508 - -0.387 - -0.354
SE(ĉ) - (0.066) - (0.053) - (0.047)
Exp hyp. p-value 0.8% 0.0% 4.0% 0.0% 0.3% 0.0%
R2 8.9% 23.4% 8.5% 20.3% 3.7% 17.9%
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Table 4: Single Factor Tests for Conditional Variance Risk Premia

This table presents tests of the single-factor hypothesis, that all variance risk premium information
in the VIX term structure is contained in Slope. For each of 18 variance assets, I regress future
excess returns on the six principal components of the VIX term structure, each scaled to have a
standard deviation of one. For each regression, I present two R2 measures for the six PCs combined
and for Slope alone: adjusted R2 and an out-of-sample R2 based on fitted values r̂i,t+1 estimated
using all observations except those overlapping with ri,t+1. I test the single-factor null, that the
coefficients on all PCs except slope are zero, using a χ2 hypothesis test for their joint significance.
Panel A tests the single factor hypothesis for daily synthetic S&P 500 variance swap returns, Panel
B for daily VIX futures returns, and Panel C for daily at-the-money S&P 500 straddle returns, all
net of the risk-free rate. Panels D through F repeat the exercise using overlapping observations of
next-month returns. Daily returns are in basis points, monthly returns are in percent, standard
errors for the coefficients and p-values for the single-factor hypothesis tests are in parenthesis. For
monthly returns, standard errors are computed using Newey West with 32 lags. ** and * indicate
significance at the 1% and 5% level, respectively. The sample contains 4,445 daily observations
from 1996 through 2013 for variance swaps and straddles, and 2,375 daily observations from 2004
through 2013 for VIX futures.

Panel A: Predicting next-day S&P 500 variance swap returns

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Levelt -15.31 -11.02 -2.76 -1.98 -0.30 -1.14
(24.87) (20.11) (16.12) (12.18) (10.02) (7.98)

Slopet -55.37* -59.60** -56.49** -31.85** -24.76** -19.35*
(26.59) (20.27) (16.17) (11.87) (9.32) (7.61)

Curvet -23.82 -22.76 -21.41 -3.62 1.12 3.89
(25.05) (19.81) (16.37) (11.34) (8.97) (7.79)

PC4t 11.78 11.41 14.85 11.40 11.59 5.02
(29.33) (21.56) (16.82) (11.45) (9.11) (7.46)

PC5t 13.13 3.12 -4.01 -3.87 -12.25* -8.95
(18.99) (12.12) (9.42) (7.14) (5.11) (4.61)

PC6t -6.66 -27.41 -3.54 -8.92 -5.33 -2.57
(23.29) (17.17) (13.54) (10.71) (8.91) (7.46)

Adj. R2 0.05% 0.39% 0.51% 0.32% 0.35% 0.15%
Slope Adj. R2 0.11% 0.34% 0.50% 0.34% 0.30% 0.19%
OOS R2 -0.19% 0.03% 0.14% -0.13% -0.06% -0.13%
Slope OOS R2 0.03% 0.24% 0.39% 0.22% 0.18% 0.10%

Single-factor χ2 2.63 5.13 2.98 2.51 9.29 4.75
(p-value) (75.7%) (40.0%) (70.3%) (77.5%) (9.8%) (44.7%)
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Table 4 (cont’d): Single Factor Tests for Conditional Variance Risk Premia

Panel B: Predicting next-day VIX futures returns

Maturity: 1 mo. 2 mo. 3 mo. 4 mo. 5 mo. 6 mo.

Levelt 6.10 8.21 9.29 9.08 11.78 10.24
(10.22) (9.36) (8.72) (9.06) (10.68) (13.85)

Slopet -30.94** -28.70** -17.27 -19.93* -18.35 -9.56
(10.89) (9.47) (8.94) (9.62) (11.13) (11.81)

Curvet -9.63 -5.43 2.90 8.28 5.54 24.54
(11.41) (10.37) (9.89) (10.32) (11.06) (12.95)

PC4t -4.76 -4.65 -3.88 -5.44 -8.18 6.45
(11.04) (10.37) (9.75) (9.96) (12.03) (15.19)

PC5t -10.25 -8.23 -8.81 -6.33 -1.69 -14.43
(9.66) (9.49) (9.19) (9.28) (9.07) (17.57)

PC6t -11.32 -12.38 -13.73 -13.48 -7.00 -4.58
(8.92) (8.36) (7.67) (8.03) (8.13) (11.28)

Adj. R2 0.69% 0.63% 0.36% 0.52% 0.33% 0.52%
Slope Adj. R2 0.63% 0.58% 0.23% 0.34% 0.27% 0.02%
OOS R2 -0.11% -0.09% -0.43% -0.41% -0.79% -1.21%
Slope OOS R2 0.41% 0.40% 0.03% 0.11% -0.01% -0.24%

Single-factor χ2 3.18 3.79 6.06 5.71 2.99 6.07
(p-value) (67.3%) (58.0%) (30.0%) (33.5%) (70.2%) (30.0%)

Panel C: Predicting next-day S&P 500 straddle returns

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Levelt -0.51 1.48 2.92 3.74 2.28 2.37
(9.22) (5.72) (4.61) (3.31) (2.75) (2.60)

Slopet -37.19** -29.56** -28.45** -21.63** -18.09** -14.88**
(9.97) (6.26) (5.08) (3.51) (2.96) (2.77)

Curvet -18.74 -20.08** -17.82** -9.81* -6.54 -3.08
(10.67) (7.05) (5.87) (4.09) (3.40) (3.08)

PC4t 14.34 10.52 7.95 4.52 3.42 3.75
(10.18) (6.31) (5.05) (3.42) (2.90) (2.58)

PC5t 3.31 0.20 -0.89 -2.73 -4.03* -3.55*
(6.63) (4.02) (2.97) (2.28) (1.84) (1.76)

PC6t 2.67 -2.35 -0.46 -4.16 -1.73 -2.23
(8.43) (4.98) (4.23) (3.09) (2.55) (2.37)

Adj. R2 0.44% 1.07% 1.60% 1.91% 1.83% 1.43%
Slope Adj. R2 0.38% 0.73% 1.14% 1.51% 1.56% 1.27%
OOS R2 0.22% 0.80% 1.28% 1.55% 1.45% 1.05%
Slope OOS R2 0.30% 0.64% 1.05% 1.41% 1.45% 1.15%

Single-factor χ2 5.84 12.17* 11.77* 10.65 10.03 7.97
(p-value) (32.2%) (3.2%) (3.8%) (5.9%) (7.4%) (15.8%)
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Table 4 (cont’d): Single Factor Tests for Conditional Variance Risk Premia

Panel D: Predicting next-month S&P 500 variance swap returns

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Levelt -0.53 -0.84 -0.04 -0.16 0.20 -0.55
(3.50) (2.73) (2.05) (1.24) (1.11) (0.84)

Slopet -12.88** -12.47** -11.82** -8.08** -6.71** -4.32**
(4.47) (3.35) (2.71) (1.54) (1.31) (0.95)

Curvet -5.77 -3.19 -1.90 -0.86 -0.40 0.19
(4.83) (3.30) (2.30) (1.28) (0.97) (0.96)

PC4t -4.52 -2.82 -0.54 0.75 0.84 0.42
(5.57) (3.91) (2.69) (1.14) (0.95) (0.82)

PC5t 10.26 5.96* 3.63* 1.79 0.38 0.62
(5.59) (2.96) (1.71) (0.94) (0.70) (0.68)

PC6t -5.05 -3.23 -1.78 -0.35 0.15 0.60
(3.79) (2.46) (1.59) (0.85) (0.75) (0.78)

Adj. R2 2.07% 3.96% 6.42% 8.86% 9.61% 4.30%
Slope Adj. R2 1.02% 2.86% 5.70% 8.36% 9.49% 4.13%
OOS R2 -1.96% -0.99% 1.11% 3.59% 3.45% 0.70%
Slope OOS R2 -0.53% 1.09% 3.56% 6.27% 7.23% 2.78%

Single-factor χ2 5.39 5.26 5.42 4.51 1.74 2.92
(p-value) (37.0%) (38.5%) (36.7%) (47.9%) (88.4%) (71.2%)

Panel E: Predicting next-month VIX futures returns

Maturity: 1 mo. 2 mo. 3 mo. 4 mo. 5 mo. 6 mo.

Levelt 1.17 1.73 2.15 2.14 1.99 2.39**
(1.23) (1.24) (1.10) (1.11) (0.94) (0.76)

Slopet -6.92** -7.02** -5.32** -6.22** -5.04** -3.37**
(1.52) (1.34) (1.19) (1.10) (0.94) (0.88)

Curvet -1.27 -0.87 -1.07 -1.32 -0.63 1.53*
(1.14) (0.98) (0.80) (0.73) (0.71) (0.69)

PC4t -0.56 -0.01 0.43 0.89 -0.45 0.16
(1.35) (1.14) (0.97) (1.02) (0.94) (0.61)

PC5t -1.47 -1.18 -0.55 -0.54 -0.51 0.17
(1.23) (1.13) (0.87) (0.91) (0.98) (0.79)

PC6t 1.24 1.17 0.63 0.66 0.71 -0.31
(0.98) (0.92) (0.77) (0.73) (0.79) (0.63)

Adj. R2 12.93% 15.32% 13.40% 19.61% 14.11% 10.49%
Slope Adj. R2 11.44% 13.68% 11.00% 16.45% 11.81% 6.20%
OOS R2 1.19% 3.70% 1.06% 6.25% 4.05% 0.72%
Slope OOS R2 6.52% 8.72% 4.18% 8.82% 6.76% 3.34%

Single-factor χ2 3.78 5.92 9.68 15.67** 7.07 30.06**
(p-value) (58.1%) (31.4%) (8.5%) (0.8%) (21.5%) (0.0%)
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Table 4 (cont’d): Single Factor Tests for Conditional Variance Risk Premia

Panel F: Predicting next-month S&P 500 straddle returns

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Levelt -0.90 -0.45 -0.31 -0.08 -0.38 -0.23
(1.26) (0.90) (0.76) (0.64) (0.47) (0.44)

Slopet -6.97** -4.96** -4.68** -3.73** -3.21** -2.81**
(1.47) (0.89) (0.73) (0.56) (0.46) (0.42)

Curvet -0.70 -0.90 -0.88 -0.88 -0.57 -0.45
(1.69) (1.00) (0.75) (0.54) (0.45) (0.40)

PC4t 0.89 0.65 0.57 0.58 0.59 0.69
(1.33) (0.81) (0.70) (0.54) (0.44) (0.38)

PC5t 3.81** 2.38** 1.84** 1.04** 0.54 0.40
(1.15) (0.68) (0.53) (0.37) (0.31) (0.29)

PC6t -0.98 -0.70 -0.44 -0.38 -0.04 -0.23
(1.01) (0.62) (0.50) (0.38) (0.30) (0.31)

Adj. R2 5.07% 7.18% 9.92% 12.34% 13.26% 13.34%
Slope Adj. R2 3.80% 5.56% 8.23% 10.63% 12.06% 11.99%
OOS R2 1.62% 3.45% 5.97% 7.76% 8.97% 8.74%
Slope OOS R2 2.29% 4.01% 6.67% 8.91% 10.39% 10.23%

Single-factor χ2 16.08** 17.25** 16.79** 13.20* 9.21 9.77
(p-value) (0.7%) (0.4%) (0.5%) (2.2%) (10.1%) (8.2%)
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Table 5: Next-Day Variance Asset Returns Across Slope Quintiles

This table presents average next-day returns for 18 variance-sensitive investments across five sub-
samples of equal size sorted by Slope. Within each subsample, I compute average next-day excess
returns for each variance asset. I also present the difference between the average in the highest
quintile and the lowest quintile of Slope. Panel A presents average next-day returns for synthetic
S&P 500 variance swaps, Panel B for VIX futures, and Panel C for at-the-money S&P 500 strad-
dles, all net of the risk-free rate. Returns are in percent, standard errors are in parenthesis. **
and * indicate significance at the 1% and 5% level, respectively. The sample contains 4,445 daily
observations from 1996 through 2013 for variance swaps and straddles, and 2,375 daily observations
from 2004 through 2013 for VIX futures.

Panel A. Average next-day variance swap returns by Slope quintile

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Slope quintile 1 (Low) -0.25 0.46 0.60* 0.44* 0.38** 0.31*
(0.51) (0.33) (0.26) (0.18) (0.15) (0.14)

2 -1.63 -0.83 -0.50 -0.27 -0.22 -0.17
(0.50) (0.33) (0.26) (0.18) (0.15) (0.14)

3 -1.67** -0.77* -0.46 -0.25 -0.12 -0.02
(0.50) (0.33) (0.26) (0.18) (0.15) (0.14)

4 -1.30* -0.70 -0.36 -0.35 -0.20 -0.09
(0.51) (0.33) (0.26) (0.18) (0.15) (0.14)

Slope quintile 5 (High) -1.96** -1.35** -1.01** -0.58** -0.45** -0.41**
(0.51) (0.33) (0.26) (0.18) (0.15) (0.14)

High - Low -1.70* -1.81** -1.61** -1.01** -0.83** -0.72**
(0.72) (0.47) (0.37) (0.25) (0.21) (0.20)

Panel B. Average next-day VIX futures returns by Slope quintile

Maturity: 1 mo. 2 mo. 3 mo. 4 mo. 5 mo. 6 mo.

Slope quintile 1 (Low) 0.21 0.20 0.14 0.15 0.18 0.05
(0.18) (0.17) (0.15) (0.15) (0.15) (0.17)

2 -0.32 -0.34* -0.31* -0.15 -0.10 -0.18
(0.17) (0.17) (0.15) (0.15) (0.15) (0.17)

3 -0.13 -0.11 -0.09 0.01 -0.08 0.07
(0.17) (0.16) (0.15) (0.15) (0.15) (0.17)

4 -0.11 -0.14 -0.05 -0.05 -0.03 -0.11
(0.17) (0.17) (0.15) (0.15) (0.15) (0.17)

Slope quintile 5 (High) -0.62** -0.62** -0.38* -0.37* -0.32* -0.25
(0.18) (0.17) (0.15) (0.15) (0.15) (0.17)

High - Low -0.83** -0.82** -0.53* -0.52* -0.50* -0.29
(0.25) (0.23) (0.22) (0.21) (0.22) (0.24)
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Table 5 (cont’d): Next-Day Variance Asset Returns Across Slope Quintiles

Panel C. Average next-day S&P 500 straddle returns by Slope quintile

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Slope quintile 1 (Low) 0.44* 0.42** 0.47** 0.39** 0.34** 0.29**
(0.19) (0.11) (0.09) (0.06) (0.05) (0.04)

2 -0.38* -0.23* -0.18* -0.11 -0.07 -0.03
(0.19) (0.12) (0.09) (0.06) (0.05) (0.04)

3 -0.61** -0.35** -0.21** -0.14** -0.10* -0.09*
(0.19) (0.12) (0.09) (0.06) (0.05) (0.04)

4 -0.43* -0.30** -0.24** -0.13* -0.11* -0.06
(0.19) (0.11) (0.09) (0.06) (0.05) (0.04)

Slope quintile 5 (High) -0.65** -0.44** -0.35** -0.21** -0.16** -0.11*
(0.19) (0.11) (0.09) (0.06) (0.05) (0.04)

High - Low -1.09** -0.86** -0.81** -0.59** -0.50** -0.40**
(0.27) (0.16) (0.13) (0.08) (0.07) (0.06)
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Table 6: Robustness of Variance Asset Returns Across Slope Quintiles

This table presents average future returns for 18 variance-sensitive investments across quintiles of
Slope. I create five subsamples of equal size sorted by Slope. Within each subsample, I compute
average future excess returns for each variance asset, and present the difference between the average
in the highest quintile and the lowest quintile of Slope. Panel A presents differences in average
returns for synthetic S&P 500 variance swaps across Slope quintiles, Panel B for VIX futures,
and Panel C for at-the-money S&P 500 straddles, all net of the risk-free rate. For each asset, I
present the baseline next-day return differences, next-month return differences, and next-day return
differences with the crisis (1/1/2008-12/31/2009) removed, the smallest 5% of Slope days removed,
and Slope defined as VIX2

12,t − VIX2
1,t. Returns are in percent, standard errors are in parenthesis.

** and * indicate significance at the 1% and 5% level, respectively. The sample contains 4,445 daily
observations from 1996 through 2013 for variance swaps and straddles, and 2,375 daily observations
from 2004 through 2013 for VIX futures.

Panel A. Difference in variance swap returns across extreme Slope quintiles

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Baseline -1.70* -1.81** -1.61** -1.01** -0.83** -0.72**
(0.72) (0.47) (0.37) (0.25) (0.21) (0.20)

Next-month returns -36.67* -36.02** -32.51** -21.61** -17.29** -12.60**
(14.36) (10.55) (8.16) (4.50) (3.81) (3.55)

Crisis removed -1.25 -1.44** -1.33** -0.87** -0.82** -0.77**
(0.76) (0.48) (0.39) (0.26) (0.21) (0.21)

Bottom 5% Slope removed -1.56* -1.60** -1.30** -0.88** -0.72** -0.60**
(0.72) (0.47) (0.37) (0.25) (0.20) (0.20)

Slope ≡ VIX2
12 − VIX2

1 -0.53 -1.08* -1.18** -0.71** -0.60** -0.58**
(0.71) (0.47) (0.37) (0.25) (0.20) (0.20)

Panel B. Difference in VIX futures returns across extreme Slope quintiles

Maturity: 1 mo. 2 mo. 3 mo. 4 mo. 5 mo. 6 mo.

Baseline -0.83** -0.82** -0.53* -0.52* -0.50* -0.29
(0.25) (0.23) (0.22) (0.21) (0.22) (0.24)

Next-month returns -21.10** -20.90** -15.25** -16.63** -13.74** -12.07**
(5.44) (5.11) (4.44) (4.28) (3.95) (3.36)

Crisis removed -0.63* -0.67* -0.48* -0.41 -0.32 -0.36
(0.28) (0.27) (0.24) (0.23) (0.22) (0.23)

Bottom 5% Slope removed -0.61* -0.60* -0.36 -0.37 -0.23 -0.15
(0.24) (0.23) (0.22) (0.21) (0.21) (0.23)

Slope ≡ VIX2
12 − VIX2

1 -0.66** -0.75** -0.51* -0.58** -0.57** -0.71**
(0.24) (0.23) (0.21) (0.21) (0.21) (0.24)
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Table 6 (cont’d): Robustness of Variance Asset Returns Across Slope Quintiles

Panel C. Difference in VIX futures returns across extreme Slope quintiles

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Baseline -1.09** -0.86** -0.81** -0.59** -0.50** -0.40**
(0.27) (0.16) (0.13) (0.08) (0.07) (0.06)

Next-month returns -21.13** -15.40** -14.10** -11.43** -9.67** -8.25**
(4.83) (3.19) (2.56) (1.93) (1.49) (1.34)

Crisis removed -0.94** -0.73** -0.73** -0.57** -0.47** -0.35**
(0.29) (0.17) (0.13) (0.09) (0.07) (0.07)

Bottom 5% Slope removed -0.92** -0.70** -0.66** -0.48** -0.40** -0.32**
(0.28) (0.16) (0.12) (0.08) (0.07) (0.06)

Slope ≡ VIX2
12 − VIX2

1 -0.57* -0.51** -0.52** -0.33** -0.29** -0.25**
(0.27) (0.16) (0.12) (0.08) (0.07) (0.06)
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Table 7: Slope as an Incremental Predictor of Variance Asset Returns

This table tests whether Slope predicts variance asset returns incrementally to a variety of controls.
For each of 18 variance assets, I regress next-day excess returns ri,t+1 on eight potential predictors:
Slopet, the second principal component of the VIX term structure; ri,t, the day-t excess return of
the variance asset; Crasht−20,t, an indicator for whether excess market returns were in the bottom
1% of the entire sample on one of the prior 21 days; VIX2

1,t; VIX2
1,t − Et(RV2

t+1), implied minus
expected variance; S&P Skewt, the option-implied 30-day skewness of the S&P 500 index; NOISEt,
the illiquidity measure from Hu, Pan, and Wang (2013); and Dealer Leveraget (×10−2), the most
recent ratio of assets to equity for the aggregate broker-dealer sector, as reported on Federal Reserve
Flow of Funds, Table L.128. All predictors are scaled to have a standard deviation of one except for
Crasht−20,t. Panel A tests the incremental predictability of Slope for synthetic S&P 500 variance
swap returns, Panel B for VIX futures returns, and Panel C for at-the-money S&P 500 straddle
returns, all net of the risk-free rate. Returns are in percent, standard errors are in parenthesis. **
and * indicate significance at the 1% and 5% level, respectively. The sample contains 4,445 daily
observations from 1996 through 2013 for variance swaps and straddles, and 2,375 daily observations
from 2004 through 2013 for VIX futures.

Panel A: Predicting next-day S&P 500 variance swap returns

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Slopet -42.87 -58.21* -55.23** -28.48* -22.44* -24.27*
(32.82) (22.91) (17.39) (11.80) (10.37) (10.41)

ri,t -72.91** -14.65 -5.44 13.43 6.54 -2.06
(25.82) (19.90) (16.21) (11.81) (9.02) (9.27)

Crasht−20,t 227.58 139.97 79.32 43.77 30.54 24.97
(141.96) (94.93) (71.53) (47.44) (37.33) (35.91)

VIX2
1,t -43.40 -34.68 -4.56 10.56 7.96 -8.87

(62.82) (44.48) (32.66) (20.21) (16.03) (14.49)
VIX2

1,t − Et(RV2
t+1) -93.25** -73.08** -60.06** -53.70** -37.22** -10.71

(34.76) (23.01) (18.92) (15.05) (13.22) (10.52)
S&P Skewt 27.36 2.69 -2.09 -9.93 -8.71 -10.12

(27.50) (18.04) (13.80) (9.55) (7.78) (7.26)
NOISEt 24.78 44.05 30.00 15.13 9.55 13.57

(39.59) (26.82) (19.98) (15.81) (13.28) (13.18)
Dealer Leveraget 60.59 24.13 8.69 3.18 4.67 -1.78

(69.14) (49.64) (34.46) (19.31) (15.88) (14.85)

Adj. R2 0.99% 1.10% 1.02% 1.00% 0.76% 0.22%

48

Electronic copy available at: https://ssrn.com/abstract=2548050



Risk Premia and the VIX Term Structure

Table 7 (cont’d): Slope as an Incremental Predictor of Variance Asset Returns

Panel B: Predicting next-day VIX futures returns

Maturity: 1 mo. 2 mo. 3 mo. 4 mo. 5 mo. 6 mo.

Slopet -28.35* -24.55* -12.90 -17.00 -20.34 -16.45
(12.98) (12.31) (12.51) (12.74) (11.99) (10.68)

ri,t -3.14 -3.57 -4.74 -10.19 -40.52** -48.60**
(9.82) (9.93) (9.60) (9.39) (10.93) (15.22)

Crasht−20,t 65.90 51.15 33.26 36.53 30.72 47.41
(51.10) (45.99) (40.05) (38.41) (46.00) (35.55)

VIX2
1,t -0.89 4.65 10.42 15.30 9.83 -8.51

(24.97) (22.59) (17.76) (17.31) (18.43) (22.76)
VIX2

1,t − Et(RV2
t+1) -35.98* -38.39* -38.29** -38.25** -15.92 -33.52**

(17.54) (16.09) (11.89) (8.80) (9.44) (10.93)
S&P Skewt -13.76 -10.94 -15.61* -13.05 -7.97 -9.86

(8.74) (8.52) (7.85) (7.81) (7.54) (7.27)
NOISEt 22.19 23.30 24.71 19.58 15.58 52.85**

(20.55) (18.96) (16.88) (17.83) (17.18) (17.36)
Dealer Leveraget 1.62 0.91 2.20 -1.98 0.31 -12.07

(28.49) (26.12) (24.97) (26.11) (24.55) (17.10)

Adj. R2 1.50% 1.49% 1.43% 1.58% 2.20% 2.87%

Panel C: Predicting next-day S&P 500 straddle returns

Maturity: 1 mo. 2 mo. 3 mo. 6 mo. 9 mo. 12 mo.

Slopet -38.88** -27.78** -26.21** -19.05** -14.81** -11.26**
(11.20) (7.07) (5.44) (3.90) (3.08) (2.79)

ri,t -11.10 7.04 7.74 9.69* 11.76** 10.05**
(17.02) (10.03) (6.91) (4.15) (3.64) (3.08)

Crasht−20,t 69.74 34.64 24.44 15.74 4.95 0.12
(48.22) (30.02) (23.94) (16.13) (13.16) (11.36)

VIX2
1,t 1.20 10.82 12.52 13.53 13.00* 14.68**

(25.09) (15.55) (11.83) (7.99) (6.18) (5.54)
VIX2

1,t − Et(RV2
t+1) -33.73* -20.56 -14.30 -9.81 -7.30 -6.85

(16.43) (10.66) (8.34) (6.02) (4.93) (4.64)
S&P Skewt 0.56 -1.73 -1.42 -2.87 -2.61 -2.35

(10.39) (5.99) (4.67) (3.22) (2.61) (2.30)
NOISEt 13.45 1.25 -1.37 -4.31 -6.93 -8.86*

(13.45) (8.24) (6.59) (5.00) (4.12) (3.85)
Dealer Leveraget -0.34 -2.72 -4.56 -4.29 -2.16 -0.77

(19.46) (11.81) (8.53) (5.34) (4.09) (3.67)

Adj. R2 0.68% 0.98% 1.37% 2.07% 2.40% 2.12%
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