
0

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1

1 Executive Summary

On 2021.07.05, the SlowMist security team received the OneWallet team's security audit application for OneWallet,

developed the audit plan according to the agreement of both parties and the characteristics of the project, and finally

issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box
testing

Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project party should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

2

Level Description

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated

analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Reentrancy Vulnerability

Replay Vulnerability

Reordering Vulnerability

Short Address Vulnerability

Denial of Service Vulnerability

Transaction Ordering Dependence Vulnerability

Race Conditions Vulnerability

Authority Control Vulnerability

Integer Overflow and Underflow Vulnerability

TimeStamp Dependence Vulnerability

Uninitialized Storage Pointers Vulnerability

Arithmetic Accuracy Deviation Vulnerability

tx.origin Authentication Vulnerability

3

3 Project Overview

3.1 Project Introduction

Audit Version Code：

https://github.com/polymorpher/one-

wallet/blob/9eed5823d5ab26649ed9295bf31b2bc6229ec448/code/contracts/ONEWallet.sol

Fixed Version Code：

https://github.com/polymorpher/one-

wallet/blob/2de6387e3a7f1277795357973f44d3775403c495/code/contracts/ONEWallet.sol

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

"False top-up" Vulnerability

Variable Coverage Vulnerability

Gas Optimization Audit

Malicious Event Log Audit

Redundant Fallback Function Audit

Unsafe External Call Audit

Explicit Visibility of Functions State Variables Aduit

Design Logic Audit

Scoping and Declarations Audit

4

NO Title Category Level StatusNO Title Category Level Status

N1
DoS risks and lack of

access permission
check

Authority Control
Vulnerability

Suggestion Fixed

N2 No check ​return value Others Low Fixed

N3
Timestamp

Dependence

Block data
Dependence
Vulnerability

Suggestion Confirmed

N4
Race Conditions

Vulnerability
Race Conditions

Vulnerability
Critical Fixed

N5 Business logic error Others Low Fixed

N6
Business logic check

bypass
Reentrancy
Vulnerability

High Fixed

4 Code Overview

4.1 Contracts Description

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

ONEWallet

Function Name Visibility Mutability Modifiers

https://github.com/polymorpher/one-wallet/blob/9eed5823d5/code/contracts/ONEWallet.sol

5

ONEWallet

<Constructor> Public Can Modify State -

<Receive Ether> External Payable -

retire External Can Modify State -

getInfo External - -

getVersion External - -

getCurrentSpending External - -

getNonce Public - -

getCommits Public - -

commit External Can Modify State -

revealTransfer External Can Modify State isCorrectProof

revealRecovery External Can Modify State isCorrectProof

revealSetLastResortAddress External Can Modify State -

_drain Internal Can Modify State -

_findCommit Internal - -

_cleanupCommits Internal Can Modify State -

_isRevealTimely Internal - -

_revealPreCheck Internal - -

_completeReveal Internal Can Modify State -

_cleanupNonces Internal Can Modify State -

_incrementNonce Internal Can Modify State -

6

ONEWallet

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

<Receive Ether> External Payable -

retire External Can Modify State -

getInfo External - -

getVersion External - -

getCurrentSpending External - -

getNonce External - -

getCommits External - -

getAllCommits External - -

findCommit External - -

lookupCommit External - -

commit External Can Modify State -

_drain Internal Can Modify State -

_transfer Internal Can Modify State -

_recover Internal Can Modify State -

_setRecoveryAddress Internal Can Modify State -

_transferToken Internal Can Modify State -

_getRevealHash Internal - -

https://github.com/polymorpher/one-wallet/blob/c0185b1de8/code/contracts/ONEWallet.sol

7

ONEWallet

reveal External Can Modify State -

_isCorrectProof Internal - -

_cleanupCommits Internal Can Modify State -

_isRevealTimely Internal - -

_verifyReveal Internal - -

_completeReveal Internal Can Modify State -

_cleanupNonces Internal Can Modify State -

_incrementNonce Internal Can Modify State -

TokenTracker

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

onERC1155Received External Can Modify State -

onERC1155BatchReceived External Can Modify State -

supportsInterface External - -

onERC721Received External Can Modify State -

getTrackedTokens External - -

_trackToken Internal Can Modify State -

_untrackToken Internal Can Modify State -

https://github.com/polymorpher/one-wallet/blob/c0185b1de8/code/contracts/TokenTracker.sol

8

TokenTracker

_overrideTrack Internal Can Modify State -

_overrideTrackWithBytes Internal Can Modify State -

_multiTrack Internal Can Modify State -

_multiUntrack Internal Can Modify State -

_asByte32 Internal - -

4.3 Vulnerability Summary

[N1] [Suggestion] DoS risks and lack of access permission check

Category: Authority Control Vulnerability

Content

When the commit function is called, there is no permission check, and the size of the commits is not limited. Any

user can add useless data to increase the length of the commits because when using commits, a for loop is used to

traverse. When the length of commits is longer, it will cause a DoS issue due to the depth of the call in evm.

 function commit(bytes32 hash) external

 {

 // require(!commitLocked, "Cleanup in progress. Queue is temporarily

locked. Please resubmit.");

 _cleanupCommits();

 (uint32 ct, bool completed) = _findCommit(hash);

 require(ct == 0 && !completed, "Commit already exists");

 Commit memory nc = Commit(hash, uint32(block.timestamp), false);

 commits.push(nc);

 }

https://github.com/polymorpher/one-

wallet/blob/9eed5823d5ab26649ed9295bf31b2bc6229ec448/code/contracts/ONEWallet.sol#L80-L87

9

Solution

It is recommended to add permission checks and limit the length of commits.

Status

Fixed; The issue has been fixed in this commit: c0185b1de8a2b5ac6b37d9ca4f81888f34dd1e2d

[N2] [Low] No check ​return value

Category: Others

Content

The send function is used to send the underlying asset, and the return value is not checked.

 function _drain() internal returns (bool) {

 return lastResortAddress.send(address(this).balance);

 }

Solution

It is recommended to use transfer to send the underlying assets or check the return value of send, and ensure that

the return value is true

Status

Fixed; The issue has been fixed in this commit: 4b6a9d460e683fa21d8a183a76f2bc927817d4b7.

[N3] [Suggestion] Timestamp Dependence

Category: Block data Dependence Vulnerability

Content

It depends on the time stamp on the chain to obtain nonce. The nonce obtained by the same block height is the

same.

https://github.com/polymorpher/one-

wallet/blob/9eed5823d5ab26649ed9295bf31b2bc6229ec448/code/contracts/ONEWallet.sol

10

function getNonce() public view returns (uint8) {

 uint32 index = uint32(block.timestamp) / interval - t0;

 return nonces[index];

 }

Solution

It is not recommended to use on-chain timestamps to generate data.

Status

Confirmed; Currently, the getNonce function is not used in the contract, it is only used for the client to get the data.

[N4] [Critical] Race Conditions Vulnerability

Category: Race Conditions Vulnerability

Content

When calling revealTransfer, revealRecovery and revealSetLastResortAddress functions, needs to input neighbors,

indexWithNonce, and eotp parameters. When the transaction is pending, the data can be publicly accessed on the

blockchain.

The attacker can steal the values ​​of neighbors, indexWithNonce, and eotp, and then modify other parameters to

construct a new commit hash to submit. In this way, the requested data can be constructed arbitrarily, and pack in

advance by paying more gasprice or cooperating with miners to sort transactions, so assets in the contract will be

stolen.

function commit(bytes32 hash) external

 {

 // require(!commitLocked, "Cleanup in progress. Queue is temporarily

https://github.com/polymorpher/one-

wallet/blob/9eed5823d5ab26649ed9295bf31b2bc6229ec448/code/contracts/ONEWallet.sol

https://github.com/polymorpher/one-

wallet/blob/9eed5823d5ab26649ed9295bf31b2bc6229ec448/code/contracts/ONEWallet.sol

11

locked. Please resubmit.");

 _cleanupCommits();

 (uint32 ct, bool completed) = _findCommit(hash);

 require(ct == 0 && !completed, "Commit already exists");

 Commit memory nc = Commit(hash, uint32(block.timestamp), false);

 commits.push(nc);

 }

 function revealTransfer(bytes32[] calldata neighbors, uint32 indexWithNonce,

bytes32 eotp, address payable dest, uint256 amount) external

 isCorrectProof(neighbors, indexWithNonce, eotp)

 returns (bool) {

 // bytes memory packedNeighbors = _pack(neighbors);

 bytes memory packed = bytes.concat(neighbors[0],

 bytes32(bytes4(indexWithNonce)), eotp, bytes32(bytes20(address(dest))),

bytes32(amount));

 bytes32 commitHash = keccak256(bytes.concat(packed));

 // emit CheckingCommit(packed, commitHash);

 _revealPreCheck(commitHash, indexWithNonce);

 _completeReveal(commitHash);

 uint32 day = uint32(block.timestamp / SECONDS_PER_DAY);

 if (day > lastTransferDay) {

 spentToday = 0;

 lastTransferDay = day;

 }

 if (spentToday + amount > dailyLimit) {

 emit ExceedDailyLimit(amount, dailyLimit, spentToday, dest);

 return false;

 }

 if (address(this).balance < amount) {

 emit InsufficientFund(amount, address(this).balance, dest);

 return false;

 }

 bool success = dest.send(amount);

 // we do not want to revert the whole transaction if this operation fails,

since EOTP is already revealed

 if (!success) {

 emit UnknownTransferError(dest);

 return false;

 }

 spentToday += amount;

 return true;

 }

 function revealRecovery(bytes32[] calldata neighbors, uint32 indexWithNonce,

12

bytes32 eotp) external

 isCorrectProof(neighbors, indexWithNonce, eotp)

 returns (bool) {

 // bytes memory packedNeighbors = _pack(neighbors);

 bytes memory packed = bytes.concat(

 neighbors[0],

 bytes32(bytes4(indexWithNonce)),

 eotp

);

 bytes32 commitHash = keccak256(bytes.concat(packed));

 _revealPreCheck(commitHash, indexWithNonce);

 _completeReveal(commitHash);

 if (lastResortAddress == address(0)) {

 emit LastResortAddressNotSet();

 return false;

 }

 return _drain();

 }

 function revealSetLastResortAddress(bytes32[] calldata neighbors, uint32

indexWithNonce, bytes32 eotp, address payable lastResortAddress_) external

 {

 require(lastResortAddress == address(0), "Last resort address is already

set");

 bytes memory packed = bytes.concat(

 neighbors[0],

 bytes32(bytes4(indexWithNonce)),

 eotp,

 bytes32(bytes20(address(lastResortAddress_)))

);

 bytes32 commitHash = keccak256(bytes.concat(packed));

 _revealPreCheck(commitHash, indexWithNonce);

 _completeReveal(commitHash);

 lastResortAddress = lastResortAddress_;

 }

Solution

It is recommended to package and record the request parameters when calling the commit function, And when

calling the revealTransfer, revealRecovery and revealSetLastResortAddress functions, verify the input parameters and

the parameter records in the commit to ensure that the parameters are consistent before calling.

13

Status

Fixed; The issue has been fixed in this commit: c0185b1de8a2b5ac6b37d9ca4f81888f34dd1e2d

[N5] [Low] Business logic error

Category: Others

Content

lastResortAddress can call receive function to excute _drain(), so it can bypass this check

require(uint32(block.timestamp / interval)-t0> lifespan, "Too early to retire");

In the case of msg.sender == lastResortAddress , lastResortAddress cannot be address(0), so if

(lastResortAddress == address(0)) { return;} is a redundant check.

 receive() external payable {

 emit PaymentReceived(msg.value, msg.sender);

 if (msg.value != AUTO_RECOVERY_TRIGGER_AMOUNT) {

 return;

 }

 if (msg.sender != lastResortAddress) {

 return;

 }

 if (lastResortAddress == address(0)) {

 return;

 }

 if (msg.sender == address(this)) {

 return;

 }

 emit AutoRecoveryTriggered(msg.sender);

 require(_drain());

 }

 function retire() external returns (bool)

 {

 require(uint32(block.timestamp / interval) - t0 > lifespan, "Too early to

retire");

https://github.com/polymorpher/one-

wallet/blob/1ed4417b9ba7c6d6cf57b3a0a311023fca800b9a/code/contracts/ONEWallet.sol#L73-L98

14

 require(lastResortAddress != address(0), "Last resort address is not set");

 require(_drain(), "Recovery failed");

 return true;

 }

Solution

It is recommended to check the specific business logic and delete redundant codes.

Status

Fixed; The issue has been fixed in this commit: 2de6387e3a7f1277795357973f44d3775403c495

[N6] [High] Business logic check bypass

Category: Reentrancy Vulnerability

Content

The _transfer function uses a call to transfer assets and then updates the value of spentToday, which is a reentrant

vulnerability. The issue can bypass this check spentToday + amount > dailyLimit .

function _transfer(address payable dest, uint256 amount) internal returns (bool) {

 uint32 day = uint32(block.timestamp / SECONDS_PER_DAY);

 if (day > lastTransferDay) {

 spentToday = 0;

 lastTransferDay = day;

 }

 if (spentToday + amount > dailyLimit) {

 emit ExceedDailyLimit(amount, dailyLimit, spentToday, dest);

 return false;

 }

 if (address(this).balance < amount) {

 emit InsufficientFund(amount, address(this).balance, dest);

 return false;

 }

 (bool success,) = dest.call{value : amount}("");

 // we do not want to revert the whole transaction if this operation fails,

since EOTP is already revealed

https://github.com/polymorpher/one-

wallet/blob/1ed4417b9ba7c6d6cf57b3a0a311023fca800b9a/code/contracts/ONEWallet.sol#L205

15

 if (!success) {

 emit UnknownTransferError(dest);

 return false;

 }

 spentToday += amount;

 emit PaymentSent(amount, dest);

 return true;

 }

Solution

It is recommended to use the Checks-Effects-Interactions coding standard, and limit the gas limit of the call method.

Status

Fixed; The issue has been fixed in this commit: c0185b1de8a2b5ac6b37d9ca4f81888f34dd1e2d

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0x002107130001 SlowMist Security Team 2021.07.05 - 2021.07.13 Passed

Summary conclusion: The SlowMist security team uses a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found a critical risk, a high risk, two low risks, two suggestions, and a suggestion

was confirmed, All the other issues have been fixed. The codes were not deployed to the mainnet.

16

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on

the documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

17

