
Debt DAO - P2P
Loan

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: July 25th, 2022 - August 12th, 2022

Visit: Halborn.com

DRAFT

https://halborn.com

DOCUMENT REVISION HISTORY 9

CONTACTS 9

1 EXECUTIVE OVERVIEW 10

1.1 INTRODUCTION 11

1.2 AUDIT SUMMARY 11

1.3 TEST APPROACH & METHODOLOGY 11

RISK METHODOLOGY 12

1.4 SCOPE 14

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 15

3 FINDINGS & TECH DETAILS 19

3.1 (HAL-01) LENDER LIQUIDITY LOCKOUT POSSIBLE VIA DEPOSITANDCLOSE

FUNCTION - CRITICAL 21

Description 21

Proof of Concept 23

Risk Level 24

Recommendation 24

Remediation Plan 24

3.2 (HAL-02) DEBT PAY OFF IMPOSSIBLE DUE TO INTEGER UNDERFLOW -

CRITICAL 25

Description 25

Proof of Concept 28

Risk Level 29

Recommendation 29

3.3 (HAL-03) LENDER CAN WITHDRAW INTEREST MULTIPLE TIMES - CRITICAL

30

Description 30

1

DRAFT

Proof of Concept 31

Risk Level 33

Recommendation 33

3.4 (HAL-04) ORACLE PRICE AFFECTS THE POSSIBILITY OF DEBT REPAYMENT -

CRITICAL 34

Description 34

Proof of Concept 37

Risk Level 39

Recommendation 39

3.5 (HAL-05) WITHDRAWING ALL LIQUIDITY BEFORE BORROWING CAN DEADLOCK

CONTRACT - CRITICAL 40

Description 40

Proof of Concept 40

Risk Level 41

Recommendation 41

3.6 (HAL-06) SWEEP FUNCTION DOES NOT WORK FOR ARBITER - CRITICAL

42

Description 42

Proof of Concept 43

Risk Level 46

Recommendation 46

3.7 (HAL-07) COLLATERAL TOKENS LOCKOUT IN ESCROW - CRITICAL 47

Description 47

Proof of Concept 48

Risk Level 49

Recommendation 49

3.8 (HAL-08) GETOUTSTANDINGDEBT FUNCTION RETURNS UNDERSTATED VALUE -

HIGH 50

2

DRAFT

Description 50

Proof of Concept 51

Risk Level 52

Recommendation 53

3.9 (HAL-09) BORROWING FROM NON-FIRST POSITION CAN DEADLOCK CON-

TRACT - HIGH 54

Description 54

Proof of Concept 57

Risk Level 59

Recommendation 59

3.10 (HAL-10) UPDATEOWNERSPLIT FUNCTION CAN BE ABUSED BY LENDER OR

BORROWER - HIGH 60

Description 60

Proof of Concept 62

Risk Level 63

Recommendation 63

3.11 (HAL-11) UNUSED REVENUE TOKENS LOCKOUT WHILE LOAN IS ACTIVE -

HIGH 64

Description 64

Proof of Concept 66

Risk Level 68

Recommendation 68

3.12 (HAL-12) PAYING OFF DEBT WITH SPIGOT EARNING IN ETHER IS NOT

POSSIBLE - HIGH 69

Description 69

Proof of Concept 71

Risk Level 72

3

DRAFT

Recommendation 73

3.13 (HAL-13) DOUBLE UPDATE OF UNUSEDTOKENS COLLECTION POSSIBLE -

HIGH 74

Description 74

Proof of Concept 77

Risk Level 78

Recommendation 78

3.14 (HAL-14) UNEXPECTED LIQUIDATABLE STATUS IN NEW ESCROWEDLOAN -

HIGH 79

Description 79

Proof of Concept 80

Risk Level 82

Recommendation 82

3.15 (HAL-15) CANNOT LIQUIDATE LIQUIDATABLE SECUREDLOAN DUE TO COL-

LATERAL RATIO CHECK - HIGH 83

Description 83

Proof of Concept 85

Risk Level 88

Recommendation 88

3.16 (HAL-16) CREDIT CAN BE CLOSED WITHOUT PAYING INTEREST FROM UNUSED

FUNDS - MEDIUM 89

Description 89

Proof of Concept 89

Risk Level 90

Recommendation 90

3.17 (HAL-17) CLOSE FUNCTION CAN BE FRONT-RUN BY LENDER - MEDIUM 92

Description 92

4

DRAFT

Proof of Concept 92

Risk Level 93

Recommendation 93

3.18 (HAL-18) UNUSED CREDIT TOKENS LOCKOUT UNTIL NEW REVENUE - MEDIUM

94

Description 94

Proof of Concept 95

Risk Level 98

Recommendation 99

3.19 (HAL-19) BORROWER CAN CLAIM REVENUE WHILE LOAN IS LIQUIDATABLE -

MEDIUM 100

Description 100

Proof of Concept 102

Risk Level 104

Recommendation 104

3.20 (HAL-20) MINIMUMCOLLATERALRATIO LACKS INPUT VALIDATION - MEDIUM

105

Description 105

Proof of Concept 106

Risk Level 106

Recommendation 106

3.21 (HAL-21) REVENUE CONTRACT OWNERSHIP LOCKOUT POSSIBLE IN RE-

MOVESPIGOT - MEDIUM 107

Description 107

Proof of Concept 108

Risk Level 109

Recommendation 109

5

DRAFT

3.22 (HAL-22) MALICIOUS ARBITER CAN ALLOW OWNERSHIP TRANSFER FUNCTION

TO OPERATOR - LOW 110

Description 110

Proof of Concept 111

Risk Level 112

Recommendation 112

3.23 (HAL-23) UPDATEWHITELISTFUNCTION EVENT IS ALWAYS EMITTED WITH

TRUE VALUE - LOW 113

Description 113

Risk Level 113

Recommendation 114

3.24 (HAL-24) BORROWER CAN MINIMIZE DRAWN INTEREST ACCRUING - LOW

115

Description 115

Risk Level 115

Recommendation 115

3.25 (HAL-25) REMOVESPIGOT DOES NOT CHECK CONTRACT’S BALANCE - LOW

116

Description 116

Risk Level 117

Recommendation 117

3.26 (HAL-26) INCREASECREDIT FUNCTION LACKS CALL TO SORTINTOQ - LOW

118

Description 118

Risk Level 119

Recommendation 120

3.27 (HAL-27) GAS OVER-CONSUMPTION IN LOOPS - INFORMATIONAL 121

Description 121

6

DRAFT

Code Location 121

Proof of Concept 121

Risk Level 122

Recommendation 122

3.28 (HAL-28) UNNEEDED INITIALIZATION OF UINT256 VARIABLES TO 0 -

INFORMATIONAL 123

Description 123

Code Location 123

Code Location 123

Risk Level 123

Recommendation 124

3.29 (HAL-29) ASSERTIONS LACK MESSAGES - INFORMATIONAL 125

Description 125

Code Location 125

Risk Level 126

Recommendation 126

3.30 (HAL-30) DEFAULTREVENUESPLIT LACKS INPUT VALIDATION - INFORMA-

TIONAL 127

Description 127

Code Location 127

Risk Level 127

Recommendation 128

3.31 (HAL-31) UNUSED CODE - INFORMATIONAL 129

Description 129

Code Location 129

Risk Level 131

Recommendation 131

7

DRAFT

3.32 (HAL-32) LACK OF CHECK EFFECTS INTERACTIONS PATTERN OR REEN-

TRENCY GUARD - INFORMATIONAL 132

Description 132

Risk Level 133

Recommendation 134

4 AUTOMATED TESTING 135

4.1 STATIC ANALYSIS REPORT 136

Description 136

Slither results 136

4.2 AUTOMATED SECURITY SCAN 145

Description 145

MythX results 145

8

DRAFT

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 07/27/2022 Grzegorz Trawinski

0.2 Document Update 08/11/2022 Grzegorz Trawinski

0.3 Draft Review 08/14/2022 Kubilay Onur Gungor

0.4 Draft Review 08/16/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Kubilay Onur
Gungor

Halborn kubilay.gungor@halborn.com

Grzegorz
Trawinski

Halborn Grzegorz.Trawinski@halborn.com

9

DRAFT

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:kubilay.gungor@halborn.com
mailto:Grzegorz.Trawinski@halborn.com

10

EXECUTIVE OVERVIEW

DRAFT

1.1 INTRODUCTION

Debt DAO engaged Halborn to conduct a security audit on their smart

contracts beginning on July 25th, 2022 and ending on August 12th, 2022.

The security assessment was scoped to the smart contracts provided in

the GitHub repository debtdao/smart-contracts, ffb66b4. After July 27th,

2022 changed to debtdao/smart-contracts, 955be0c.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and assigned

a full-time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified several security risks that should be

addressed by the Debt DAO team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

11

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

https://github.com/debtdao/smart-contracts/tree/ffb66b4884771ec08f0c03ca339d3c4e8a91e068
https://github.com/debtdao/smart-contracts/tree/955be0c0652009604383d2fb257c76a2f4e54cb9

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions.

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE, Visual Studio Code)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

12

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

13

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following debtdao/smart-contracts,

955be0c:

• /utils/MutualUpgrade.sol

• /utils/LoanLib.sol

• /modules/credit/EscrowedLoan.sol

• /modules/credit/BasicEscrowedLoan.sol

• /modules/credit/SpigotedLoan.sol

• /modules/credit/BaseLoan.sol

• /modules/credit/LineOfCredit.sol

• /modules/interest-rate/InterestRateCredit.sol

• /modules/oracle/Oracle.sol

• /modules/escrow/Escrow.sol

• /modules/spigot/Spigot.sol

• /interfaces/ILoan.sol

• /interfaces/IInterestRateCredit.sol

• /interfaces/ITermLoan.sol

• /interfaces/ISpigotedLoan.sol

• /interfaces/IEscrow.sol

• /interfaces/IOracle.sol

• /interfaces/IInterestRateTerm.sol

• /interfaces/ILineOfCredit.sol

Commit ID: 955be0c0652009604383d2fb257c76a2f4e54cb9

OUT-OF-SCOPE:

Other smart contracts in the repository, external libraries and economical

attacks.

14

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

https://github.com/debtdao/smart-contracts/tree/955be0c0652009604383d2fb257c76a2f4e54cb9
https://github.com/debtdao/smart-contracts/tree/955be0c0652009604383d2fb257c76a2f4e54cb9
https://github.com/debtdao/smart-contracts/tree/955be0c0652009604383d2fb257c76a2f4e54cb9

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

7 8 6 5 6

15

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

IM
PA
CT

LIKELIHOOD

(HAL-09)

(HAL-01)
(HAL-02)
(HAL-03)
(HAL-04)
(HAL-05)
(HAL-06)
(HAL-07)

(HAL-22) (HAL-17) (HAL-20)

(HAL-11)
(HAL-13)
(HAL-14)
(HAL-15)

(HAL-12)

(HAL-24)
(HAL-25)

(HAL-16)
(HAL-21)

(HAL-19)
(HAL-08)
(HAL-10)

(HAL-26) (HAL-23) (HAL-18)

(HAL-27)
(HAL-28)
(HAL-29)
(HAL-30)
(HAL-31)
(HAL-32)

16

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-01 - LENDER LIQUIDITY LOCKOUT
POSSIBLE VIA DEPOSITANDCLOSE

FUNCTION
Critical SOLVED - 07/26/2022

HAL-02 - DEBT PAY OFF IMPOSSIBLE
DUE TO INTEGER UNDERFLOW

Critical -

HAL-03 - LENDER CAN WITHDRAW
INTEREST MULTIPLE TIMES

Critical -

HAL-04 - ORACLE PRICE AFFECTS THE
POSSIBILITY OF DEBT REPAYMENT

Critical -

HAL-05 - WITHDRAWING ALL LIQUIDITY
BEFORE BORROWING CAN DEADLOCK

CONTRACT
Critical -

HAL-06 - SWEEP FUNCTION DOES NOT
WORK FOR ARBITER

Critical -

HAL-07 - COLLATERAL TOKENS LOCKOUT
IN ESCROW

Critical -

HAL-08 - GETOUTSTANDINGDEBT
FUNCTION RETURNS UNDERSTATED VALUE

High -

HAL-09 - BORROWING FROM NON-FIRST
POSITION CAN DEADLOCK CONTRACT

High -

HAL-10 - UPDATEOWNERSPLIT FUNCTION
CAN BE ABUSED BY LENDER OR BORROWER

High -

HAL-11 - UNUSED REVENUE TOKENS
LOCKOUT WHILE LOAN IS ACTIVE

High -

HAL-12 - PAYING OFF DEBT WITH SPIGOT
EARNING IN ETHER IS NOT POSSIBLE

High -

HAL-13 - DOUBLE UPDATE OF
UNUSEDTOKENS COLLECTION POSSIBLE

High -

HAL-14 UNEXPECTED LIQUIDATABLE
STATUS IN NEW ESCROWEDLOAN

High -

HAL-15 CANNOT LIQUIDATE
LIQUIDATABLE SECUREDLOAN DUE TO

COLLATERAL RATIO CHECK
High -

17

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

HAL-16 - CREDIT CAN BE CLOSED
WITHOUT PAYING INTEREST FROM UNUSED

FUNDS
Medium -

HAL-17 - CLOSE FUNCTION CAN BE
FRONT-RUN BY LENDER

Medium -

HAL-18 - UNUSED CREDIT TOKENS
LOCKOUT UNTIL NEW REVENUE

Medium -

HAL-19 - BORROWER CAN CLAIM REVENUE
WHILE LOAN IS LIQUIDATABLE

Medium -

HAL-20 - MINIMUMCOLLATERALRATIO
LACKS INPUT VALIDATION

Medium -

HAL-21 - REVENUE CONTRACT OWNERSHIP
LOCKOUT POSSIBLE IN REMOVESPIGOT

Medium -

HAL-22 - MALICIOUS ARBITER CAN
ALLOW OWNERSHIP TRANSFER FUNCTION

TO OPERATOR
Low -

HAL-23 - UPDATEWHITELISTFUNCTION
EVENT IS ALWAYS EMITTED WITH TRUE

VALUE
Low -

HAL-24 - BORROWER CAN MINIMIZE
DRAWN INTEREST ACCRUING

Low -

HAL-25 - REMOVESPIGOT DOES NOT
CHECK CONTRACT’S BALANCE

Low -

HAL-26 - INCREASECREDIT FUNCTION
LACKS CALL TO SORTINTOQ

Low -

HAL-27 - GAS OVER-CONSUMPTION IN
LOOPS

Informational -

HAL-28 - UNNEEDED INITIALIZATION OF
UINT256 VARIABLES TO 0

Informational -

HAL-29 - ASSERTIONS LACK MESSAGES Informational -

HAL-30 - DEFAULTREVENUESPLIT LACKS
INPUT VALIDATION

Informational -

HAL-31 - UNUSED CODE Informational -

18

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

HAL-32 - LACK OF CHECK EFFECTS
INTERACTIONS PATTERN OR REENTRENCY

GUARD
Informational -

19

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

20

FINDINGS & TECH
DETAILS

DRAFT

3.1 (HAL-01) LENDER LIQUIDITY
LOCKOUT POSSIBLE VIA
DEPOSITANDCLOSE FUNCTION - CRITICAL

Description:

In the LineOfCredit contract, the borrower has two possibilities to pay

off the debt: by calling depositAndRepay() and then close() functions,

or by calling a single depositAndClose() function.

The assessment revealed that the depositAndClose() does not transfer funds

back to the lender, yet it deletes the debt record (using the internal

_close function). As a result, the lender’s liquidity is locked in the

contract.

Listing 1: LineOfCredit.sol (Line 193)

172 function depositAndClose ()

173 whileBorrowing

174 onlyBorrower

175 override external

176 returns(bool)

177 {

178 bytes32 id = positionIds [0];

179 _accrueInterest(id);

180

181 uint256 totalOwed = debts[id]. principal + debts[id].

ë interestAccrued;

182

183 // borrower deposits remaining balance not already repaid and

ë held in contract

184 bool success = IERC20(debts[id]. token).transferFrom(

185 msg.sender ,

186 address(this),

187 totalOwed

188);

189 require(success , 'Loan: deposit failed ');

190 // clear the debt

191 _repay(id, totalOwed);

192

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

193 require(_close(id));

194 return true;

195 }

Listing 2: LineOfCredit.sol (Line 328)

318 function close(bytes32 positionId) override external returns(

ë bool) {

319 DebtPosition memory debt = debts[positionId];

320 require(

321 msg.sender == debt.lender ||

322 msg.sender == borrower ,

323 "Loan: msg.sender must be the lender or borrower"

324);

325

326 // return the lender 's deposit

327 if(debt.deposit > 0) {

328 require(IERC20(debt.token).transfer(debt.lender , debt.

ë deposit + debt.interestRepaid));

329 }

330

331 require(_close(positionId));

332

333 return true;

334 }

Listing 3: LineOfCredit.sol (Line 470)

464 function _close(bytes32 positionId) virtual internal returns(

ë bool) {

465 require(

466 debts[positionId]. principal + debts[positionId].

ë interestAccrued == 0,

467 'Loan: close failed. debt owed'

468);

469

470 delete debts[positionId]; // yay gas refunds !!!

471

472 // remove from active list

473 positionIds = LoanLib.removePosition(positionIds , positionId);

474

475 // brick loan contract if all positions closed

476 if(positionIds.length == 0) {

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

477 loanStatus = LoanLib.STATUS.REPAID;

478 }

479

480 emit CloseDebtPosition(positionId);

481

482 return true;

483 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As borrower and lender add debt position.

3. As borrower, borrow all deposit.

4. As borrower call depositAndClose to pay the debt.

5. Observe that lender did not receive the liquidity.

6. As the lender attempt to call the close function. Observe that

it reverts with the error (Loan: msg.sender must be the lender or

borrower).

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to return lender’s liquidity upon calling the

depositAndClose() function.

Remediation Plan:

SOLVED: The Debt DAO solved this issue in commit d739f19d646a2d192aae1e8f56f11e90bbc75dac:

the transfer of lender’s liquidity now happens in internal _close()

function which is called by both depositAndClose() and close() functions.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/debtdao/smart-contracts/commit/d739f19d646a2d192aae1e8f56f11e90bbc75dac

3.2 (HAL-02) DEBT PAY OFF IMPOSSIBLE
DUE TO INTEGER UNDERFLOW - CRITICAL

Description:

In the LineOfCredit contract, the borrower has two possibilities to pay

off the debt: by calling depositAndRepay() and then close() functions or

by calling a single depositAndClose() function.

The assessment revealed that both functions depositAndClose() and

depositAndRepay() revert due to integer overflow. The error occurs due

to principalUsd parameter subtraction done in _repay function. The

principalUsd parameter is supposed to have a non-zero value; however,

due to condition check in _createCredit where principal parameter is

always 0, the principalUsd parameter is not updated.

Listing 4: LineOfCredit.sol (Line 197)

176 function addCredit(

177 uint128 drate ,

178 uint128 frate ,

179 uint256 amount ,

180 address token ,

181 address lender

182)

183 external

184 virtual

185 override

186 whileActive

187 mutualConsent(lender , borrower)

188 returns (bytes32)

189 {

190 bool success = IERC20(token).transferFrom(

191 lender ,

192 address(this),

193 amount

194);

195 require(success , "Loan: no tokens to lend");

196

197 bytes32 id = _createCredit(lender , token , amount , 0);

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

198

199 require(interestRate.setRate(id , drate , frate));

200

201 return id;

202 }

Listing 5: LineOfCredit.sol (Lines 546-549)

510 function _createCredit(

511 address lender ,

512 address token ,

513 uint256 amount ,

514 uint256 principal

515) internal returns (bytes32 id) {

516 id = LoanLib.computePositionId(address(this), lender ,

ë token);

517

518 // MUST not double add position. otherwise we can not

ë _close ()

519 require(

520 credits[id]. lender == address (0),

521 "Loan: position exists"

522);

523

524 (bool passed , bytes memory result) = token.call(

525 abi.encodeWithSignature("decimals ()")

526);

527 uint8 decimals = !passed ? 18 : abi.decode(result , (uint8)

ë);

528

529 uint256 value = LoanLib.getValuation(oracle , token , amount

ë , decimals);

530 require(value > 0 , "Loan: token cannot be valued");

531

532 credits[id] = Credit ({

533 lender: lender ,

534 token: token ,

535 decimals: decimals ,

536 deposit: amount ,

537 principal: principal ,

538 interestAccrued: 0,

539 interestRepaid: 0

540 });

541

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

542 ids.push(id); // add lender to end of repayment queue

543

544 emit AddCredit(lender , token , amount , 0);

545

546 if(principal > 0) {

547 principalUsd += value;

548 emit Borrow(id , principal , value);

549 }

550

551 return id;

552 }

Listing 6: LineOfCredit.sol (Line 587)

562 function _repay(bytes32 id , uint256 amount)

563 internal

564 returns (bool)

565 {

566 Credit memory credit = credits[id];

567 int price = oracle.getLatestAnswer(credit.token);

568

569 if (amount <= credit.interestAccrued) {

570 credit.interestAccrued -= amount;

571 uint256 val = LoanLib.calculateValue(price , amount ,

ë credit.decimals);

572 interestUsd -= val;

573

574 credit.interestRepaid += amount;

575 emit RepayInterest(id , amount , val);

576 } else {

577 uint256 principalPayment = amount - credit.

ë interestAccrued;

578

579 uint256 iVal = LoanLib.calculateValue(price , credit.

ë interestAccrued , credit.decimals);

580 uint256 pVal = LoanLib.calculateValue(price ,

ë principalPayment , credit.decimals);

581

582 emit RepayInterest(id , credit.interestAccrued , iVal);

583 emit RepayPrincipal(id , principalPayment , pVal);

584

585 // update global credit denominated in usd

586 interestUsd -= iVal;

587 principalUsd -= pVal;

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

588

589 // update individual credit position denominated in

ë token

590 credit.principal -= principalPayment;

591 credit.interestRepaid += credit.interestAccrued;

592 credit.interestAccrued = 0;

593

594 // if credit fully repaid then remove lender from

ë repayment queue

595 if (credit.principal == 0) ids = LoanLib.stepQ(ids);

596 }

597

598 credits[id] = credit;

599

600 return true;

601 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As the borrower and lender, add credit position,

3. As the borrower, borrow() all deposits.

4. As the borrower, attempt to call depositAndClose to pay the debt.

5. Observe that transaction reverts due to integer overflow.

6. As the borrower, attempt to call depositAndRepay to pay the debt.

7. Observe that transaction reverts due to integer overflow.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to review and adjust the calculations related to the

principalUsd parameter.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.3 (HAL-03) LENDER CAN WITHDRAW
INTEREST MULTIPLE TIMES - CRITICAL

Description:

In the LineOfCredit contract, a lender has the possibility to withdraw

accrued interest via withdrawInterest() function. The function does not

record the fact of withdrawal; thus, the function can be called multiple

times until the contract has a positive token balance.

As a result, in the case of multiple lenders recorded in the contract,

one lender can extract liquidity from other lenders.

Alternatively, a lender can pull unborrowed deposits and force borrowers

to pay off higher debt than expected, or force default.

Listing 7: LineOfCredit.sol (Line 587)

453 function withdrawInterest(bytes32 id)

454 external

455 override

456 returns (uint256)

457 {

458 require(

459 msg.sender == credits[id].lender ,

460 "Loan: only lender can withdraw"

461);

462

463 _accrueInterest(id);

464

465 uint256 amount = credits[id]. interestAccrued;

466

467 bool success = IERC20(credits[id]. token).transfer(

468 credits[id].lender ,

469 amount

470);

471 require(success , "Loan: withdraw failed");

472

473 emit WithdrawProfit(id, amount);

474

475 return amount;

476 }

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Proof of Concept:

Scenario 1 - steal other lenders' liquidity

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As borrower and lender1, add credit position for 10_000_000_000_000_-

000 tokens and drawn rate set to 3000. This action registers the first

credit position.

3. As the borrower and the lender2, add credit position for 10_000_000_-

000_000_000 tokens and drawn rate set to 3000. This action registers the

second credit position.

4. As borrower, borrow 10_000_000_000_000_000 tokens from the first

position.

5. Forward blockchain time for 20 days.

6. As the lender1, call withdrawInterest for the first credit position

ten times.

7. As the borrower, call depositAndClose to pay off the debt and close

the first position.

8. As the borrower, attempt to borrow 10_000_000_000_000_000 tokens from

the second position.

9. Observe that transaction reverts due to ERC20: transfer amount exceeds

balance error. Note that LineOfCredit balance is below 10_000_000_000_-

000_000.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Scenario 2 - steal borrower liquidity

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As borrower and lender1, add credit position for 10_000_000_000_000_-

000 tokens and drawn rate set to 3000.

4. As borrower, borrow 5_000_000_000_000_000 tokens.

5. Forward blockchain time for 20 days.

6. As the lender1, call withdrawInterest ten times.

7. As the borrower, attempt to borrow 5_000_000_000_000_000 residual

tokens.

8. Observe that transaction reverts due to ERC20: transfer amount exceeds

balance error. Note that LineOfCredit balance is below 5_000_000_000_-

000_000.

9. As the borrower, attempt to call depositAndClose to pay off the debt.

10. Observe that transaction reverts due to ERC20: transfer amount

exceeds balance error.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to limit the withdrawal up to the amount of accrued

interest so far and update related storage-parameters to prevent

subsequent withdrawals.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.4 (HAL-04) ORACLE PRICE AFFECTS
THE POSSIBILITY OF DEBT REPAYMENT -
CRITICAL

Description:

The LineOfCredit contract tracks unpaid interest valuated in USD by

interestUsd parameter. This parameter is updated with addition in

_accrueInterest() internal function and subtraction in _repay() internal

function. The _accrueInterest() is used by accrueInterest(), setRates(),

increaseCredit(), borrow(), withdraw(), and withdrawInterest() functions

among the others. The _repay() is used by depositAndRepay() and

depositAndClose() functions.

Listing 8: LineOfCredit.sol (Line 631)

609 function _accrueInterest(bytes32 id)

610 internal

611 returns (uint256 accruedToken , uint256 accruedValue)

612 {

613 Credit memory credit = credits[id];

614 // get token demoninated interest accrued

615 accruedToken = interestRate.accrueInterest(

616 id ,

617 credit.principal ,

618 credit.deposit

619);

620

621 // update credits balance

622 credit.interestAccrued += accruedToken;

623

624 // get USD value of interest accrued

625 accruedValue = LoanLib.getValuation(

626 oracle ,

627 credit.token ,

628 accruedToken ,

629 credit.decimals

630);

631 interestUsd += accruedValue;

632

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

633 emit InterestAccrued(id , accruedToken , accruedValue);

634

635 credits[id] = credit; // save updates to intterestAccrued

636

637 return (accruedToken , accruedValue);

638 }

Listing 9: LineOfCredit.sol (Lines 572,586)

562 function _repay(bytes32 id , uint256 amount)

563 internal

564 returns (bool)

565 {

566 Credit memory credit = credits[id];

567 int price = oracle.getLatestAnswer(credit.token);

568

569 if (amount <= credit.interestAccrued) {

570 credit.interestAccrued -= amount;

571 uint256 val = LoanLib.calculateValue(price , amount ,

ë credit.decimals);

572 interestUsd -= val;

573

574 credit.interestRepaid += amount;

575 emit RepayInterest(id , amount , val);

576 } else {

577 uint256 principalPayment = amount - credit.

ë interestAccrued;

578

579 uint256 iVal = LoanLib.calculateValue(price , credit.

ë interestAccrued , credit.decimals);

580 uint256 pVal = LoanLib.calculateValue(price ,

ë principalPayment , credit.decimals);

581

582 emit RepayInterest(id , credit.interestAccrued , iVal);

583 emit RepayPrincipal(id , principalPayment , pVal);

584

585 // update global credit denominated in usd

586 interestUsd -= iVal;

587 principalUsd -= pVal;

588

589 // update individual credit position denominated in

ë token

590 credit.principal -= principalPayment;

591 credit.interestRepaid += credit.interestAccrued;

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

592 credit.interestAccrued = 0;

593

594 // if credit fully repaid then remove lender from

ë repayment queue

595 if (credit.principal == 0) ids = LoanLib.stepQ(ids);

596 }

597

598 credits[id] = credit;

599

600 return true;

601 }

The value of interestUsd parameter is strongly affected by the price

returned by Oracle. Thus, if the Oracle returns a higher value than

previously, an integer underflow occurs in _repay() function making debt

repayment impossible. To exploit this vulnerability, _accrueInterest()

must be called prior to _repay() to update interestUsd parameter.

Listing 10: LoanLib.sol (Lines 40,55)

36

37 /**

38 * @notice - Gets total valuation for amount of tokens

ë using given oracle.

39 * @dev - Assumes oracles all return answers in USD

ë with 1e8 decimals

40 - Does not check if price < 0. HAndled in

ë Oracle or Loan

41 * @param oracle - oracle contract specified by loan getting

ë valuation

42 * @param token - token to value on oracle

43 * @param amount - token amount

44 * @param decimals - token decimals

45 * @return - total value in usd of all tokens

46 */

47 function getValuation(

48 IOracle oracle ,

49 address token ,

50 uint256 amount ,

51 uint8 decimals

52)

53 external

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

54 returns(uint256)

55 {

56 return _calculateValue(oracle.getLatestAnswer(token), amount

ë , decimals);

57 }

Proof of Concept:

The codebase uses SimpleOracle mock for testing. Based on this contract,

the ChangingOracle was prepared that mimics the price increase after ten

days.

Listing 11: ChangingOracle.sol (Lines 15,38,49)

1 pragma solidity 0.8.9;

2

3 import { IOracle } from "../ interfaces/IOracle.sol";

4 import { LoanLib } from "../ utils/LoanLib.sol";

5

6 contract ChangingOracle is IOracle {

7

8 mapping(address => int) prices;

9

10 uint256 public immutable creationTime;

11

12 constructor(address _supportedToken1 , address _supportedToken2

ë) {

13 prices[_supportedToken1] = 1000 * 1e8; // 1000 USD

14 prices[_supportedToken2] = 2000 * 1e8; // 2000 USD

15 creationTime = block.timestamp;

16 }

17

18 function init() external returns(bool) {

19 return true;

20 }

21

22 function changePrice(address token , int newPrice) external {

23 prices[token] = newPrice;

24 }

25

26 function getLatestAnswer(address token) external returns(

ë int256) {

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

27 // mimic eip4626

28 // (bool success , bytes memory result) = token.call(abi.

ë encodeWithSignature (" asset ()"));

29 // if(success && result.length > 0) {

30 // // get the underlying token value (if ERC4626)

31 // // NB: Share token to underlying ratio might not be

ë 1:1

32 // token = abi.decode(result , (address));

33 // }

34 require(prices[token] != 0, "SimpleOracle: unsupported

ë token");

35

36 // simulate price change

37 uint256 difference = block.timestamp - creationTime;

38 if (difference > 900000) // 900000 = 10 days and 10 hours

39 return prices[token] * 10001 / 10000;

40 return prices[token];

41 }

42

43 function healthcheck () external returns (LoanLib.STATUS status

ë) {

44 return LoanLib.STATUS.ACTIVE;

45 }

46

47 function loan() external returns (address) {

48 return address (0);

49 }

50 }

1. All necessary contracts are deployed and initialized: RevenueToken,

ChangingOracle, LoanLib, LineOfCredit.

2. As the borrower and lender1, add credit position for 1_000_000_-

000_000_000 tokens.

3. As the borrower, borrow 1_000_000_000_000_000 tokens.

4. Forward blockchain time for 10 days.

5. Call accrueInterest function. Note that the interestUsd parameter

value is updated.

6. Forward blockchain time for 1 day. Note that after 11 days, the

ChangingOracle will return higher results.

7. As the borrower, attempt to call depositAndClose.

8. Observe that transaction reverts due to integer overflow.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to review and adjust the calculations related to the

interestUsd parameter.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.5 (HAL-05) WITHDRAWING ALL
LIQUIDITY BEFORE BORROWING CAN
DEADLOCK CONTRACT - CRITICAL

Description:

In the LineOfCredit contract, the lender has the possibility to withdraw

all unborrowed deposit previously provided for loan through withdraw()

function.

The assessment revealed that withdrawal of all deposits before the

borrower borrows any amount, can deadlock the contract. The withdraw()

function calls _accrueInterest() functions, so a small amount of

facility interest is accrued. Eventually, the borrower can’t pay off

the debt, close the credit, or release the spigots.

The whileBorrowing() modifier checks if any principal is borrowed;

however, it does not check if any interest is accrued. The

whileBorrowing() modifier is used both in LineOfCredit and SpigotedLoan

contracts in depositAndClose(), depositAndRepay(), claimAndRepay() and

claimAndTrade() functions.

Listing 12: LineOfCredit.sol

68 modifier whileBorrowing () {

69 require(ids.length > 0 && credits[ids [0]]. principal > 0);

70 _;

71 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As borrower and lender1, add credit position for 1_000_000_000_-

000_000 tokens.

3. As the lender, withdraw() all deposits.

4. As the borrower, attempt to depositAndClose. Observe that the

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

transaction reverted.

5. As the borrower, attempt to close credit. Observe that the

transaction reverted with Loan: close failed. credit owed error.

6. As the borrower, attempt to borrow deposit. Observe that the

transaction reverted with Loan: no liquidity error.

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to adjust whileBorrowing() modifier to verify if both

interestAccrued and principal parameters are above 0.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.6 (HAL-06) SWEEP FUNCTION DOES
NOT WORK FOR ARBITER - CRITICAL

Description:

The SpigotedLoan contract implements a fallback mechanism to withdraw all

unused funds from spigots in case of the borrower default. The sweep()

function can be called to send all unused funds (based on unusedTokens

collection) to the arbiter when the loan has defaulted and the status

is set to INSOLVENT. However, the INSOLVENT status is never assigned to

the loan in the solution, whereas the loan can have LIQUIDATABLE status

assigned e.g. in healthcheck() function when the debt deadline has passed.

Listing 13: SpigotedLoan.sol (Lines 261,270)

261 * @notice - sends unused tokens to borrower if repaid or

ë arbiter if liquidatable

262 - doesnt send tokens out if loan is unpaid but

ë healthy

263 * @dev - callable by anyone

264 * @param token - token to take out

265 */

266 function sweep(address token) external returns (uint256) {

267 if (loanStatus == LoanLib.STATUS.REPAID) {

268 return _sweep(borrower , token);

269 }

270 if (loanStatus == LoanLib.STATUS.INSOLVENT) {

271 return _sweep(arbiter , token);

272 }

273

274 return 0;

275 }

276

277 function _sweep(address to, address token) internal returns (

ë uint256 x) {

278 x = unusedTokens[token];

279 if (token == address (0)) {

280 payable(to).transfer(x);

281 } else {

282 require(IERC20(token).transfer(to , x));

283 }

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

284 delete unusedTokens[token];

285 }

As a result, all unused revenue and credit tokens stored in SpigotedLoan

(unusedTokens collection) are locked in the contract. The credit token

can be transferred to the lender using claimAndRepay() function, unless

the spigot is still owned by the SpigotedLoan contract, and it is providing

new revenue. On the other hand, the revenue token is locked permanently.

Proof of Concept:

1. All necessary contracts are deployed and initialized:

CreditToken, RevenueToken, SimpleOracle, LoanLib, SpigotedLoan,

SimpleRevenueContract. Set the ttl parameter to 1 day.

2. As the borrower and lender1, add credit position for 10_000_000_-

000_000_000 tokens.

3. As the borrower, borrow() half of the deposit - 5_000_000_000_000_-

000.

4. As th borrower and arbiter, add new spigot with addSpigot() function

and RevenueContract as input.

5. As the borrower, transfer the ownership of RevenueContract contract

to the SpigotController.

6. Mint 500_000_000_000_000 revenue tokens to the RevenueContract

contract to simulate token gain.

7. Forward blockchain time for 1 day and 1 second.

8. As the borrower, attempt to borrow() the remaining deposit. Observe

that the transaction reverted with Loan: can't borrow error.

7. As the arbiter, call healthcheck() function. Note that the loan’s

status changed from ACTIVE to LIQUIDATABLE.

8. As the arbiter, call updateOwnerSplit so 100% of revenue will go to

the SpigotController contract.

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

9. As the arbiter, call claimRevenue() in SpigotController contract to

claim revenue tokens. Note that 100% of tokens (550_000_000_000_000)

are transferred to the SpigotController.

10. As the arbiter, call claimAndRepay() in SpigotedLoan contract to

trade escrowed revenue tokens and pay off part of the debt. As

an input, trade exchange data provide 250_000_000_000_000 revenue

tokens that should be exchanged for credit tokens.

11. Observe the SpigotedLoan balances. Note that the contract

has 750,000,000,000,000 credit tokens and 250,000,000,000,000

revenue tokens. Also, 250,000,000,000,000 credit tokens and

250,000,000,000,000 revenue tokens are stored in unusedTokens

collection.

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

12. As arbiter, call sweep() function with revenue token address as an

input. Note that the function returns a 0 value.

13. As arbiter, call sweep() function with credit token address as an

input. Note that the function returns a 0 value.

14. Observe that SpigotedLoan balances remain unchanged.

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended that sweep() function checks loan status against

LIQUIDATABLE value instead of INSOLVENT.

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.7 (HAL-07) COLLATERAL TOKENS
LOCKOUT IN ESCROW - CRITICAL

Description:

In the Escrow contract, the releaseCollateral() function allows the

borrower to withdraw collateral with the assumption that the remaining

collateral is still above the minimum threshold. When the debt is paid

off, the borrower should be allowed to withdraw all remaining collateral.

However, the assessment revealed that withdraw of the remaining collateral

is not possible.

Listing 14: Escrow.sol (Lines 217-220)

203 function releaseCollateral(

204 uint256 amount ,

205 address token ,

206 address to

207) external returns (uint256) {

208 require(amount > 0, "Escrow: amount is 0");

209 require(msg.sender == borrower , "Escrow: only borrower can

ë call");

210 require(

211 deposited[token]. amount >= amount ,

212 "Escrow: insufficient balance"

213);

214 deposited[token]. amount -= amount;

215 require(IERC20(token).transfer(to, amount));

216 uint256 cratio = _getLatestCollateralRatio ();

217 require(

218 cratio >= minimumCollateralRatio ,

219 "Escrow: cannot release collateral if cratio becomes

ë lower than the minimum"

220);

221 emit RemoveCollateral(token , amount);

222

223 return cratio;

224 }

When the last part of the collateral is released, the releaseCollateral

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

() function updates the deposited[token].amount with 0 value. Then

the _getLatestCollateralRatio() returns 0 as collateralValue is also

0. Therefore, it is not possible to pass the assertion cratio >=

minimumCollateralRatio as it is always false.

Listing 15: Escrow.sol (Line 52)

43 /**

44 * @notice updates the cratio according to the collateral

ë value vs loan value

45 * @dev calls accrue interest on the loan contract to update

ë the latest interest payable

46 * @return the updated collateral ratio in 18 decimals

47 */

48 function _getLatestCollateralRatio () internal returns (uint256

ë) {

49 ILoan(loan).accrueInterest ();

50 uint256 debtValue = ILoan(loan).getOutstandingDebt ();

51 uint256 collateralValue = _getCollateralValue ();

52 if (collateralValue == 0) return 0;

53 if (debtValue == 0) return MAX_INT;

54

55 return _percent(collateralValue , debtValue , 18);

56 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: CreditToken,

RevenueToken, SimpleOracle, LoanLib, EscrowedLoan.

2. As arbiter, enable the RevenueToken token as collateral.

3. As the borrower, add 200_000_000_000_000 of RevenueToken tokens as

collateral.

4. As borrower and lender, add debt position.

5. As the borrower, borrow all deposits.

6. As the borrower, attempt to call releaseCollateral() to withdraw

all remaining collateral. Observe that the transaction reverts with

Escrow: cannot release collateral if cratio becomes lower than

the minimum error. Note that 200_000_000_000_000 of RevenueToken

tokens are locked in the Escrow contract.

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to fix the implementation of releaseCollateral() and

_getLatestCollateralRatio() functions to allow the borrower to withdraw

of the remaining collateral.

49

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.8 (HAL-08) GETOUTSTANDINGDEBT
FUNCTION RETURNS UNDERSTATED
VALUE - HIGH

Description:

In the LineOfCredit contract, the getOutstandingDebt() function allows

users to get information about total outstanding debt valuated in USD.

The presented amount is a sum of principal and interest. The assessment

revealed that the getOutstandingDebt() function does not consider the

accrued interest from the last evaluation period. Thus, it presents

misleading, understated value to the users as actual debt is higher.

Listing 16: LineOfCredit.sol

112 /**

113 * @notice - Returns total credit obligation of borrower.

114 Aggregated across all lenders.

115 Denominated in USD 1e8.

116 * @dev - callable by anyone

117 */

118 function getOutstandingDebt () external override returns (

ë uint256) {

119 (uint256 p, uint256 i) = _updateOutstandingCredit ();

120 return p + i;

121 }

122

123 function _updateOutstandingCredit ()

124 internal

125 returns (uint256 principal , uint256 interest)

126 {

127 uint256 len = ids.length;

128 if (len == 0) return (0, 0);

129

130 Credit memory credit;

131 for (uint256 i = 0; i < len; i++) {

132 credit = credits[ids[i]];

133

134 int256 price = oracle.getLatestAnswer(credit.token);

135

50

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

136 principal += LoanLib.calculateValue(

137 price ,

138 credit.principal ,

139 credit.decimals

140);

141 interest += LoanLib.calculateValue(

142 price ,

143 credit.interestAccrued ,

144 credit.decimals

145);

146 }

147

148 principalUsd = principal;

149 interestUsd = interest;

150 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As borrower and lender1, add credit position for 10_000_000_000_-

000_000 tokens.

3. As the borrower, borrow 500_000_000_000_000 tokens.

4. Forward blockchain time for 10 days.

5. Call getOutstandingDebt() function. Observe that returned value of

100000000 does not include accrued interest.

6. Call accrueInterest() function. Observe that returned value of

27652.

7. As borrower, borrow 500_000_000_000_000 tokens.

8. Forward blockchain time for 10 days.

9. Call the getOutstandingDebt() function. Observe that returned value

of 200027652. Note that this value includes the accrued interest

from step 6.

10. Call the accrueInterest() function. Observe that returned value of

54757. Note that this value includes the accrued interest only from

the last 10 days and was not included in step 9.

51

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 5

Impact - 3

52

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

It is recommended that the getOutstandingDebt() function returns a value

that includes the total accrued interest.

53

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.9 (HAL-09) BORROWING FROM
NON-FIRST POSITION CAN DEADLOCK
CONTRACT - HIGH

Description:

In the LineOfCredit contract, a borrower can add multiple credits with

various lenders. The borrower can borrow any amount from any credit

position using the borrow(bytes32 id, uint256 amount) function. However,

the borrower can only repay first credit position using depositAndRepay()

or depositAndClose() functions.

Listing 17: LineOfCredit.sol (Lines 309,342)

302 /**

303 * @notice - Transfers enough tokens to repay entire credit

ë position from `borrower ` to Loan contract.

304 * @dev - callable by borrower

305 */

306 function depositAndClose ()

307 external

308 override

309 whileBorrowing

310 onlyBorrower

311 returns (bool)

312 {

313 bytes32 id = ids [0];

314 _accrueInterest(id);

315

316 uint256 totalOwed = credits[id]. principal + credits[id].

ë interestAccrued;

317

318 // borrower deposits remaining balance not already repaid

ë and held in contract

319 bool success = IERC20(credits[id]. token).transferFrom(

320 msg.sender ,

321 address(this),

322 totalOwed

323);

324 require(success , "Loan: deposit failed");

54

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

325 // clear the credit

326 _repay(id , totalOwed);

327

328 require(_close(id));

329 return true;

330 }

331

332 /**

333 * @dev - Transfers token used in credit position from msg.

ë sender to Loan contract.

334 * @dev - callable by anyone

335 * @notice - see _repay () for more details

336 * @param amount - amount of `token ` in `id ` to pay back

337 */

338

339 function depositAndRepay(uint256 amount)

340 external

341 override

342 whileBorrowing

343 returns (bool)

344 {

345 bytes32 id = ids [0];

346 _accrueInterest(id);

347

348 require(amount <= credits[id]. principal + credits[id].

ë interestAccrued);

349

350 bool success = IERC20(credits[id]. token).transferFrom(

351 msg.sender ,

352 address(this),

353 amount

354);

355 require(success , "Loan: failed repayment");

356

357 _repay(id , amount);

358 return true;

359 }

When the borrower borrow() deposit from the second position, repaying

the debt will not be possible, as the whileBorrowing() modifier would

block that operation. At this point, the close(bytes32 id) function can

be called to close the first credit position unless the _accrueInterest

() internal function is called and interest is accrued, preventing the

55

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

closing of the unpaid debt.

Listing 18: LineOfCredit.sol

68 modifier whileBorrowing () {

69 require(ids.length > 0 && credits[ids [0]]. principal > 0);

70 _;

71 }

To escape from the situation, the borrower can still borrow() any amount

from the first position unless the lender does not withdraw all liquidity.

The withdrawal operation accrues the interest, which cannot be paid, as

the whileBorrowing() modifier only considers the principal. Also, the

borrower can’t borrow() anymore from the empty deposit. As a result, a

deadlock occurs in the contract, and the borrower can’t pay off the debt.

The root cause of this issue is the _sortIntoQ(bytes32 p) function, which

supposes to shift the credit position with the borrowed deposit to the

beginning of the ids collection, but it does not work as expected. Sample

invalid flow:

1. For i = 0; _i = i = 0 as first credit’s principal is 0.

2. For i = 1, function returns true, as _i = 0.

3. No position swap occurs.

Listing 19: LineOfCredit.sol

682 function _sortIntoQ(bytes32 p) internal returns (bool) {

683 uint256 len = ids.length;

684 uint256 _i = 0; // index that p should be moved to

685

686 for (uint256 i = 0; i < len; i++) {

687 bytes32 id = ids[i];

688 if (p != id) {

689 if (credits[id]. principal > 0) continue; // `id `

ë should be placed before `p`

690 _i = i; // index of first undrawn LoC found

691 } else {

692 if (_i == 0) return true; // `p` in earliest

ë possible index

56

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

693 // swap positions

694 ids[i] = ids[_i];

695 ids[_i] = p;

696 }

697 }

698

699 return true;

700 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As borrower and lender1, add credit position for 10_000_000_000_-

000_000 tokens. This action registers the first credit position.

3. As a borrower and lender2, add credit position for 10_000_000_000_-

000_000 tokens. This action registers the second credit position.

4. As the borrower, borrow 10_000_000_000_000_000 tokens from the

second position.

5. Note that the ids collection was not updated; the second credit

position is not set to the first.

6. Forward blockchain time for 1 second.

7. Call the accrueInterest function. Note that the interestAccrued

parameter value in the first credit record is updated.

8. As the borrower, attempt to depositAndRepay with any value. Observe

that the transaction reverted.

9. As the borrower, attempt to depositAndClose. Observe that the

transaction reverted.

57

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

10. As the borrower, attempt to close the first credit position. Observe

that the transaction reverted with Loan: close failed. credit owed

error.

11. As the lender2, attempt to close the second credit position. Observe

that the transaction reverted with Loan: close failed. credit owed

error.

12. As the lender1, withdraw all liquidity.

13. As the borrower, attempt to borrow. Observe that the transaction

reverted with a Loan: no liquidity error.

14. As the borrower, attempt to close the first credit position again.

Observe that the transaction reverted with Loan: close failed.

credit owed error.

58

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 3

Impact - 5

Recommendation:

It is recommended to allow the borrower to pay off any credit position

without extra steps (such as calling borrow() function).

59

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.10 (HAL-10) UPDATEOWNERSPLIT
FUNCTION CAN BE ABUSED BY LENDER OR
BORROWER - HIGH

Description:

In the SpigotedLoan contract, a borrower and arbiter can add a spigot.

Both of them must agree on a percentage value in ownerSplit parameter

from SpigotSettings structure. The ownerSplit parameter determines the

amount of revenue tokens that stays in SpigotController contract and are

used to pay off the debt.

Listing 20: SpigotedLoan.sol

213 function addSpigot(

214 address revenueContract ,

215 SpigotController.SpigotSettings calldata setting

216) external mutualConsent(arbiter , borrower) returns (bool) {

217 return spigot.addSpigot(revenueContract , setting);

218 }

Listing 21: Spigot.sol

14 struct SpigotSettings {

15 address token; // token to claim as revenue

ë from contract

16 uint8 ownerSplit; // x/100 % to Owner , rest to

ë Treasury

17 bytes4 claimFunction; // function signature on

ë contract to call and claim revenue

18 bytes4 transferOwnerFunction; // function signature on

ë conract to call and transfer ownership

19 }

The updateOwnerSplit() function can be used to update the ownerSplit

parameter in particular spigot basing on loan health. If the loan status

is active, then defaultRevenueSplit is applied. The defaultRevenueSplit

parameter is set in constructor. Based on unit tests, this parameter

60

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

should have 10 as a value.

Listing 22: Spigot.sol (Lines 55,67,70)

54 /**

55 * @notice changes the revenue split between borrower treasury

ë and lan repayment based on loan health

56 * @dev - callable `arbiter ` + `borrower `

57 * @param revenueContract - spigot to update

58 */

59 function updateOwnerSplit(address revenueContract) external

ë returns (bool) {

60 (, uint8 split , , bytes4 transferFunc) = spigot.getSetting

ë (

61 revenueContract

62);

63

64 require(transferFunc != bytes4 (0), "SpgtLoan: no spigot");

65

66 if (

67 loanStatus == LoanLib.STATUS.ACTIVE && split !=

ë defaultRevenueSplit

68) {

69 // if loan is healthy set split to default take rate

70 spigot.updateOwnerSplit(revenueContract ,

ë defaultRevenueSplit);

71 } else if (

72 loanStatus == LoanLib.STATUS.LIQUIDATABLE && split !=

ë MAX_SPLIT

73) {

74 // if loan is in distress take all revenue to repay

ë loan

75 spigot.updateOwnerSplit(revenueContract , MAX_SPLIT);

76 }

77

78 return true;

79 }

The assessment revealed that the updateOwnerSplit() function could be

abused by the borrower or the lender, depending on the situation. If the

ownerSplit parameter is set below the defaultRevenueSplit parameter, the

lender can call it to increase the split percentage. Then more revenue

would be used to pay off the debt. If the ownerSplit parameter is set

61

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

above the defaultRevenueSplit parameter, the borrower can call it to

decrease the split percentage. Then less revenue would be used to pay

off the debt, and more revenue would return to the treasury (which is by

default set to the borrower). Also, the healthy loan is always set to

ACTIVE.

Additionally, based on the comment, the function is meant to be called

by the arbiter or the borrower; however, no such authorization check is

implemented.

Proof of Concept:

1. All necessary contracts are deployed and initialized:

CreditToken, RevenueToken, SimpleOracle, LoanLib, SpigotedLoan,

SimpleRevenueContract. In the SpigotedLoan set the

defaultRevenueSplit parameter to 10.

2. As borrower and arbiter, add a new spigot with the addSpigot()

function. Set the ownerSplit parameter to 5.

3. As the lender, call the updateOwnerSplit() function for the spigot

added in the previous step. Note that the ownerSplit parameter is

now set to 10.

4. As borrower and arbiter, add a new spigot with the addSpigot()

function. Set the ownerSplit parameter to 20.

5. As the borrower, call the updateOwnerSplit() function for the spigot

added in the previous step. Note that the ownerSplit parameter is

now set to 10.

62

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 5

Impact - 3

Recommendation:

It is recommended to add an authorization check that only the arbiter can

call the updateOwnerSplit() function.

63

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.11 (HAL-11) UNUSED REVENUE TOKENS
LOCKOUT WHILE LOAN IS ACTIVE - HIGH

Description:

In the SpigotedLoan contract, the borrower can add spigots with revenue

contracts that will support repayment of the debt. The revenue contract

earns revenue tokens that later can be exchanged for the credit tokens

using the claimAndRepay() and claimAndTrade() functions. These functions

call the _claimAndTrade() internal function responsible for claiming

escrowed tokens from the SpigotController contract and trading the claimed

tokens. Also, the _claimAndTrade() function updates the unusedTokens

collection with claimed tokens (revenue tokens) that were not traded.

The assessment revealed that it is possible to trade less revenue tokens

than previously claimed. The rest of the claimed tokens are locked in the

SpigotedLoan contract. They remain locked until the debt is paid off by

other means, and the borrower can transfer all tokens from unusedTokens

collection using the sweep() function. The SpigotedLoan contract has no

other function that allows to trade and repay revenue tokens that were

previously claimed.

This vulnerability remains the same for both cases when the revenue token

is either ERC20 token or ether.

This vulnerability can also be abused by the borrower to use less revenue

tokens to pay off the debt than was intended, making the revenue split

mechanism ineffective.

Listing 23: SpigotedLoan.sol (Lines 199-203)

155 function _claimAndTrade(

156 address claimToken ,

157 address targetToken ,

158 bytes calldata zeroExTradeData

159) internal returns (uint256 tokensBought) {

64

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

160 uint256 existingClaimTokens = IERC20(claimToken).balanceOf

ë (

161 address(this)

162);

163 uint256 existingTargetTokens = IERC20(targetToken).

ë balanceOf(

164 address(this)

165);

166

167 uint256 tokensClaimed = spigot.claimEscrow(claimToken);

168

169 if (claimToken == address (0)) {

170 // if claiming/trading eth send as msg.value to dex

171 (bool success ,) = swapTarget.call{value:

ë tokensClaimed }(

172 zeroExTradeData

173);

174 require(success , "SpigotCnsm: trade failed");

175 } else {

176 IERC20(claimToken).approve(

177 swapTarget ,

178 existingClaimTokens + tokensClaimed

179);

180 (bool success ,) = swapTarget.call(zeroExTradeData);

181 require(success , "SpigotCnsm: trade failed");

182 }

183

184 uint256 targetTokens = IERC20(targetToken).balanceOf(

ë address(this));

185

186 // ideally we could use oracle to calculate # of tokens to

ë receive

187 // but claimToken might not have oracle. targetToken must

ë have oracle

188

189 // underflow revert ensures we have more tokens than we

ë started with

190 tokensBought = targetTokens - existingTargetTokens;

191

192 emit TradeSpigotRevenue(

193 claimToken ,

194 tokensClaimed ,

195 targetToken ,

196 tokensBought

65

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

197);

198

199 // update unused if we didnt sell all claimed tokens in

ë trade

200 // also underflow revert protection here

201 unusedTokens[claimToken] +=

202 IERC20(claimToken).balanceOf(address(this)) -

203 existingClaimTokens;

204 }

Proof of Concept:

1. All necessary contracts are deployed and initialized:

CreditToken, RevenueToken, SimpleOracle, LoanLib, SpigotedLoan,

SimpleRevenueContract.

2. As borrower and lender1, add credit position for 10_000_000_000_-

000_000 tokens.

3. As borrower, borrow() all deposits.

4. As borrower and arbiter, add new spigot with addSpigot() function

and RevenueContract as input. Set the ownerSplit parameter to 10.

5. As the borrower, transfer the ownership of the RevenueContract

contract to the SpigotController.

6. Mint 500_000_000_000_000 revenue tokens to the RevenueContract

contract to simulate token gain.

7. As borrower, call claimRevenue() in SpigotController contract to

claim revenue tokens. Note that 90% of tokens (450_000_000_000_000)

are transferred to the treasury (which is the borrower), the

10% (50_000_000_000_000) of tokens are transferred to the

SpigotController.

66

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

6. As the borrower, call claimAndRepay() in the SpigotedLoan contract

to trade escrowed revenue tokens and pay off part of the debt. As

an input, trade exchange data provide 1_000_000_000_000 of revenue

tokens that should be exchanged for credit tokens.

7. Observe the SpigotedLoan balances. Note that the contract has

1,000,000,000,000 credit tokens and 49,000,000,000,000 revenue

tokens. Also, 49,000,000,000,000 revenue tokens are stored in

unusedTokens collection.

8. As the borrower, call depositAndClose() to pay off the debt.

67

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

9. As the borrower, call sweep() function with revenue token address

as an input to receive 49,000,000,000,000 revenue tokens from

SpigotedLoan contract.

Risk Level:

Likelihood - 4

Impact - 4

Recommendation:

It is recommended to allow users to trade all claimed revenue tokens to

pay off the debt.

68

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.12 (HAL-12) PAYING OFF DEBT WITH
SPIGOT EARNING IN ETHER IS NOT
POSSIBLE - HIGH

Description:

In the SpigotedLoan contract, the borrower can add spigots with revenue

contracts that will support repayment of the debt. The revenue contract

earns revenue tokens that later can be exchanged for the credit tokens

using the claimAndRepay() and claimAndTrade() functions. These functions

call the _claimAndTrade() internal function responsible for claiming

escrowed tokens from the SpigotController contract and trading the claimed

tokens. It is possible to add a spigot with revenue contracts that earns

revenue in ether. However, the assessment revealed that claiming and

trading ether from a spigot is not possible in the _claimAndTrade()

function. This function assumes that the revenue token is an ERC20 token

in every case. As a result, the escrowed ether remains locked until the

debt is paid off by other means, and the borrower can transfer it from

the SpigotController contract.

Listing 24: SpigotedLoan.sol (Lines 160-162,201-203)

155 function _claimAndTrade(

156 address claimToken ,

157 address targetToken ,

158 bytes calldata zeroExTradeData

159) internal returns (uint256 tokensBought) {

160 uint256 existingClaimTokens = IERC20(claimToken).balanceOf

ë (

161 address(this)

162);

163 uint256 existingTargetTokens = IERC20(targetToken).

ë balanceOf(

164 address(this)

165);

166

167 uint256 tokensClaimed = spigot.claimEscrow(claimToken);

168

169 if (claimToken == address (0)) {

69

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

170 // if claiming/trading eth send as msg.value to dex

171 (bool success ,) = swapTarget.call{value:

ë tokensClaimed }(

172 zeroExTradeData

173);

174 require(success , "SpigotCnsm: trade failed");

175 } else {

176 IERC20(claimToken).approve(

177 swapTarget ,

178 existingClaimTokens + tokensClaimed

179);

180 (bool success ,) = swapTarget.call(zeroExTradeData);

181 require(success , "SpigotCnsm: trade failed");

182 }

183

184 uint256 targetTokens = IERC20(targetToken).balanceOf(

ë address(this));

185

186 // ideally we could use oracle to calculate # of tokens to

ë receive

187 // but claimToken might not have oracle. targetToken must

ë have oracle

188

189 // underflow revert ensures we have more tokens than we

ë started with

190 tokensBought = targetTokens - existingTargetTokens;

191

192 emit TradeSpigotRevenue(

193 claimToken ,

194 tokensClaimed ,

195 targetToken ,

196 tokensBought

197);

198

199 // update unused if we didnt sell all claimed tokens in

ë trade

200 // also underflow revert protection here

201 unusedTokens[claimToken] +=

202 IERC20(claimToken).balanceOf(address(this)) -

203 existingClaimTokens;

204 }

70

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Proof of Concept:

1. All necessary contracts are deployed and initialized:

CreditToken, RevenueToken, SimpleOracle, LoanLib, SpigotedLoan,

SimpleRevenueContract.

2. As the borrower and lender1, add credit position for 10_000_000_-

000_000_000 tokens.

3. As the borrower, borrow() all deposits.

4. As the borrower and arbiter, add a new spigot with addSpigot()

function and RevenueContract as input. Set the revenue token to

zero address (0x0). Note that zero address represents ether in the

SpigotController contract.

5. As the borrower, transfer the ownership of the RevenueContract

contract to the SpigotController.

6. Transfer 5_000_000_000_000_000_000 ether to the RevenueContract

contract to simulate ether gain.

7. As the borrower, call claimRevenue() in SpigotController contract

to claim ether.

8. As the borrower, attempt to call claimAndTrade() or claimAndRepay()

in the SpigotedLoan contract to trade escrowed ether and pay off

part of the debt.

9. Observe that the above transaction reverts. Note that ether remains

in SpigotController.

71

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 5

Impact - 4

72

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

It is recommended to adjust the _claimAndTrade() internal function to

check the proper balance when ether is used as a claim token.

73

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.13 (HAL-13) DOUBLE UPDATE OF
UNUSEDTOKENS COLLECTION POSSIBLE -
HIGH

Description:

In the SpigotedLoan contract, the borrower can add spigots with revenue

contracts that will support repayment of the debt. The revenue contract

earns revenue tokens that later can be exchanged to the credit tokens

using the claimAndRepay() and claimAndTrade() functions. These functions

call the _claimAndTrade() internal function responsible for claiming

escrowed tokens from the SpigotController contract and trading the claimed

tokens. Also, the claimAndTrade() function updates the unusedTokens

collection with target tokens (credit tokens) that were traded. It is

possible to add a new spigot with the revenue contract that earns in

credit tokens. Then, the assumption is that in the _claimAndTrade()

function, the trade of the tokens is done with a ratio of 1-to-1, or the

decentralized exchange contract simply returns a false value (instead of

revert). This scenario was confirmed by the project team. As a result,

the unusedTokens collection is updated twice for credit tokens, first time

in the _claimAndTrade() function and second time in the claimAndTrade()

function.

Listing 25: SpigotedLoan.sol (Lines 152,176-180,201-203)

137 function claimAndTrade(address claimToken , bytes calldata

ë zeroExTradeData)

138 external

139 whileBorrowing

140 returns (uint256 tokensBought)

141 {

142 require(msg.sender == borrower || msg.sender == arbiter);

143

144 address targetToken = credits[ids [0]]. token;

145 tokensBought = _claimAndTrade(

146 claimToken ,

147 targetToken ,

148 zeroExTradeData

74

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

149);

150

151 // add bought tokens to unused balance

152 unusedTokens[targetToken] += tokensBought;

153 }

154

155 function _claimAndTrade(

156 address claimToken ,

157 address targetToken ,

158 bytes calldata zeroExTradeData

159) internal returns (uint256 tokensBought) {

160 uint256 existingClaimTokens = IERC20(claimToken).balanceOf

ë (

161 address(this)

162);

163 uint256 existingTargetTokens = IERC20(targetToken).

ë balanceOf(

164 address(this)

165);

166

167 uint256 tokensClaimed = spigot.claimEscrow(claimToken);

168

169 if (claimToken == address (0)) {

170 // if claiming/trading eth send as msg.value to dex

171 (bool success ,) = swapTarget.call{value:

ë tokensClaimed }(

172 zeroExTradeData

173);

174 require(success , "SpigotCnsm: trade failed");

175 } else {

176 IERC20(claimToken).approve(

177 swapTarget ,

178 existingClaimTokens + tokensClaimed

179);

180 (bool success ,) = swapTarget.call(zeroExTradeData);

181 require(success , "SpigotCnsm: trade failed");

182 }

183

184 uint256 targetTokens = IERC20(targetToken).balanceOf(

ë address(this));

185

186 // ideally we could use oracle to calculate # of tokens to

ë receive

75

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

187 // but claimToken might not have oracle. targetToken must

ë have oracle

188

189 // underflow revert ensures we have more tokens than we

ë started with

190 tokensBought = targetTokens - existingTargetTokens;

191

192 emit TradeSpigotRevenue(

193 claimToken ,

194 tokensClaimed ,

195 targetToken ,

196 tokensBought

197);

198

199 // update unused if we didnt sell all claimed tokens in

ë trade

200 // also underflow revert protection here

201 unusedTokens[claimToken] +=

202 IERC20(claimToken).balanceOf(address(this)) -

203 existingClaimTokens;

204 }

This flaw impacts the sweep() function, which reverts as the contract’s

balance has fewer tokens than recorded in the unusedTokens collection.

Thus, the tokens are locked in the contract.

Listing 26: SpigotedLoan.sol (Lines 278,282)

266 function sweep(address token) external returns (uint256) {

267 if (loanStatus == LoanLib.STATUS.REPAID) {

268 return _sweep(borrower , token);

269 }

270 if (loanStatus == LoanLib.STATUS.INSOLVENT) {

271 return _sweep(arbiter , token);

272 }

273

274 return 0;

275 }

276

277 function _sweep(address to, address token) internal returns (

ë uint256 x) {

278 x = unusedTokens[token];

279 if (token == address (0)) {

76

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

280 payable(to).transfer(x);

281 } else {

282 require(IERC20(token).transfer(to , x));

283 }

284 delete unusedTokens[token];

285 }

Proof of Concept:

1. All necessary contracts are deployed and initialized:

CreditToken, RevenueToken, SimpleOracle, LoanLib, SpigotedLoan,

SimpleRevenueContract. Note that SimpleRevenueContract must earn

in credit tokens.

2. As borrower and lender1, add credit position for 10_000_000_000_-

000_000 tokens.

3. As borrower, borrow() half of the deposit.

4. As borrower and arbiter, add new spigot with addSpigot() function

and RevenueContract as input. Set the ownerSplit parameter to 100.

5. As the borrower, transfer the ownership of the RevenueContract

contract to the SpigotController.

6. Mint 10_000_000_000 credit tokens to the RevenueContract contract

to simulate token gain.

7. As the borrower, call claimRevenue() in SpigotController contract

to claim revenue tokens. Note that 100% of tokens (10_000_000_000)

are transferred to the SpigotController.

8. As the borrower, call claimAndTrade() in SpigotedLoan contract to

trade escrowed credit tokens. As an input, trade exchange data

provide 10_000_000_000 revenue tokens (credit tokens) that should

be exchanged for credit tokens.

9. Observe the SpigotedLoan balances. Note that the contract has

500,010,000,000,000 credit tokens. Also, 20,000,000,000 credit

tokens are stored in unusedTokens collection.

10. As the borrower, call depositAndClose(). Observe that credit is

paid off. Note that the contract has 10,000,000,000 credit tokens.

11. As the borrower, attempt to call sweep() function with credit token

address as an input. Note that the function reverts the ERC20:

transfer amount exceeds balance error.

77

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 4

Impact - 4

Recommendation:

When the spigot’s revenue contract earns in credit tokens as revenue

tokens, the unusedTokens should be updated only once.

78

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.14 (HAL-14) UNEXPECTED
LIQUIDATABLE STATUS IN NEW
ESCROWEDLOAN - HIGH

Description:

In the EscrowedLoan contract, the _healthcheck() internal function is

supposed to check if the loan has the correct collateral ratio. Otherwise,

the loan status is set to LIQUIDATABLE. The _healthcheck() function

base on the _getLatestCollateralRatio() function, which returns 0 for

empty collateral. Therefore, calling the healthcheck() function at the

beginning of the loan’s life cycle will set the EscrowedLoan contract’s

status to LIQUIDATABLE.

When contract has LIQUIDATABLE status several spigot’s functions can be

called without authorisation: releaseSpigot(), updateOwnerSplit(), sweep

(). As a result, the loan can get malformed state:

- the spigot’s owner can be set to the arbiter, and it will not be usable

by EscrowedLoan (SpigotedLoan),

- the spigot’s split can be set to 100%,

- the unused tokens from EscrowedLoan (SpigotedLoan) can be transferred

to the arbiter if only some tokens were stored in the contract.

The borrower can set the contract’s status back to ACTIVE by adding

collateral and repeatedly calling the healthcheck() function.

Listing 27: EscrowedLoan.sol (Line 26)

25 function _healthcheck () virtual internal returns(LoanLib.STATUS)

ë {

26 if(escrow.getCollateralRatio () < escrow.minimumCollateralRatio

ë ()) {

27 return LoanLib.STATUS.LIQUIDATABLE;

28 }

29

30 return LoanLib.STATUS.ACTIVE;

31 }

79

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Listing 28: Escrow.sol

226 /**

227 * @notice calculates the cratio

228 * @dev callable by anyone

229 * @return - the calculated cratio

230 */

231 function getCollateralRatio () external returns (uint256) {

232 return _getLatestCollateralRatio ();

233 }

Listing 29: Escrow.sol (Line 52)

43 /**

44 * @notice updates the cratio according to the collateral

ë value vs loan value

45 * @dev calls accrue interest on the loan contract to update

ë the latest interest payable

46 * @return the updated collateral ratio in 18 decimals

47 */

48 function _getLatestCollateralRatio () internal returns (uint256

ë) {

49 ILoan(loan).accrueInterest ();

50 uint256 debtValue = ILoan(loan).getOutstandingDebt ();

51 uint256 collateralValue = _getCollateralValue ();

52 if (collateralValue == 0) return 0;

53 if (debtValue == 0) return MAX_INT;

54

55 return _percent(collateralValue , debtValue , 18);

56 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: CreditToken,

RevenueToken, SimpleOracle, LoanLib, EscrowedLoan.

2. As borrower and lender, add credit position.

3. As borrower and arbiter, add new spigot with addSpigot() function

and RevenueContract as input. Set the ownerSplit parameter to 10.

4. As the borrower, transfer the ownership of the RevenueContract

contract to the SpigotController.

5. As the attacker, call thehealthcheck() function. Note that the

80

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

loan’s status is set to LIQUIDATABLE.

6. As the arbiter, enable the RevenueToken token as collateral.

7. As the borrower, add 200_000_000_000_000 of RevenueToken tokens as

collateral.

8. As the borrower, attempt to borrow all deposit. Observe that

transaction reverts due to the (Loan: no op) error.

9. As the attacker, call updateOwnerSplit() function. Observe that

owner split is now set to 100.

10. As the attacker, call releaseSpigot() function. Observe that

spigot’s owner’s address has been changed.

11. As the borrower, call thehealthcheck() function. Note that the

loan’s status is set to ACTIVE.

12. As the borrower, borrow all deposits. Observe that transaction

finishes successfully.

81

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 4

Impact - 4

Recommendation:

It is recommended to forbid changing the new loan’s status to LIQUIDATABLE

.

82

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.15 (HAL-15) CANNOT LIQUIDATE
LIQUIDATABLE SECUREDLOAN DUE TO
COLLATERAL RATIO CHECK - HIGH

Description:

The SecuredLoan can get the LIQUIDATABLE status in two cases: when the

loan’s deadline has passed or when the collateral ratio is below the

threshold. When the loan has the LIQUIDATABLE status, the arbiter can

take control over the spigots and collateral and use the released funds to

repay the debt for the lender. The assessment revealed that in some cases,

the arbiter could not liquidate the collateral when the loan’s deadline

has passed, and the loan gets the LIQUIDATABLE status. The Escrow’s

liquidate() function has an assertion that checks if the collateral ratio

value is below the threshold. The collateral ratio decreases while the

loan’s interest increases. Thus, it may take time to get the ratio low

enough.

Additionally, the borrower can still release part of the collateral within

this time.

Listing 30: SecuredLoan.sol (Line 57)

34 // Liquidation

35 /**

36 * @notice - Forcefully take collateral from borrower and repay

ë debt for lender

37 * @dev - only called by neutral arbiter party/contract

38 * @dev - `loanStatus ` must be LIQUIDATABLE

39 * @dev - callable by `arbiter `

40 * @param positionId -the debt position to pay down debt on

41 * @param amount - amount of `targetToken ` expected to be sold

ë off in _liquidate

42 * @param targetToken - token in escrow that will be sold of to

ë repay position

43 */

44

45 function liquidate(

46 bytes32 positionId ,

47 uint256 amount ,

83

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

48 address targetToken

49)

50 external

51 returns(uint256)

52 {

53 require(msg.sender == arbiter);

54

55 _updateLoanStatus(_healthcheck ());

56

57 require(loanStatus == LoanLib.STATUS.LIQUIDATABLE , "Loan: not

ë liquidatable");

58

59 // send tokens to arbiter for OTC sales

60 return _liquidate(positionId , amount , targetToken , msg.sender)

ë ;

61 }

62

Listing 31: EscrowedLoan.sol (Line 53)

44 function _liquidate(

45 bytes32 positionId ,

46 uint256 amount ,

47 address targetToken ,

48 address to

49)

50 virtual internal

51 returns(uint256)

52 {

53 require(escrow.liquidate(amount , targetToken , to));

54

55 emit Liquidate(positionId , amount , targetToken);

56

57 return amount;

58 }

Listing 32: Escrow.sol (Lines 263-266)

244 /**

245 * @notice liquidates borrowers collateral by token and amount

246 * @dev requires that the cratio is at or below the

ë liquidation threshold

247 * @dev callable by `loan `

84

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

248 * @param amount - the amount of tokens to liquidate

249 * @param token - the address of the token to draw funds from

250 * @param to - the address to receive the funds

251 * @return - true if successful

252 */

253 function liquidate(

254 uint256 amount ,

255 address token ,

256 address to

257) external returns (bool) {

258 require(amount > 0, "Escrow: amount is 0");

259 require(

260 msg.sender == loan ,

261 "Escrow: msg.sender must be the loan contract"

262);

263 require(

264 minimumCollateralRatio > _getLatestCollateralRatio (),

265 "Escrow: not eligible for liquidation"

266);

267 require(

268 deposited[token]. amount >= amount ,

269 "Escrow: insufficient balance"

270);

271

272 deposited[token]. amount -= amount;

273 require(IERC20(token).transfer(to, amount));

274

275 emit Liquidate(token , amount);

276

277 return true;

278 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: CreditToken,

RevenueToken, SimpleOracle, LoanLib, EscrowedLoan. Set the ttl

parameter to 1 day. Set the minimumCollateralRatio parameter to

10%.

2. As the borrower and lender1, add credit position for 1_000_000_000_-

000_000 tokens withdrawn rate set to 10000 and facility rate set to

100.

85

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3. As the arbiter, enable the RevenueToken token as collateral.

4. As the borrower, add 150_000_000_000_000 of RevenueToken tokens as

collateral.

5. As the borrower, borrow all deposits. Note that the collateral ratio

value is ‘15%‘‘.

6. Forward blockchain time for 1 day and 1 second.

7. As the arbiter, call thehealthcheck() function. Note that the loan’s

status is set to LIQUIDATABLE.

8. As the arbiter, attempt to call liquidate() function. Observe

that the transaction reverts with the Escrow: not eligible for

liquidation error.

9. As the borrower, call releaseCollateral() function. Observe that

transaction finishes successfully. Note that the collateral ratio

value is ‘14,9%‘‘.

86

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

10. Forward blockchain time for 182 days. Note that the collateral ratio

value is below 10%.

11. As the arbiter, call liquidate() function. Observe that the

transaction finishes successfully.

87

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 4

Impact - 4

Recommendation:

It is recommended to allow the call liquidate() function when the loan’s

status is set to LIQUIDATABLE despite the collateral ratio value.

88

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.16 (HAL-16) CREDIT CAN BE CLOSED
WITHOUT PAYING INTEREST FROM UNUSED
FUNDS - MEDIUM

Description:

In the LineOfCredit contract, a borrower and lender can add credit. The

algorithm assumes that unused funds accrue interest based on the facility

rate (frate parameter). There is no requirement that the borrower must

borrow the deposit upon closing the credit. The close(id) function does

not call _accrueInterest() internal function. Hence, closing credit

without accruing interest from unused funds is possible.

Proof of Concept:

Scenario 1 - without accrueInterest function calling

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As borrower and lender1, add credit position for 10_000_000_000_-

000_000 tokens with facility rate set to 1.

3. Forward blockchain time for 10 days.

4. As the borrower, close the credit. Observe that credit is closed

without accruing interest from unused funds.

89

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Scenario 2 - with accrueInterest function calling

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As borrower and lender1, add credit position for 10_000_000_000_-

000_000 tokens with facility rate set to 1.

3. Forward blockchain time for 10 days.

4. Call accrueInterest() function. Note that the interestAccrued()

parameter value in first credit record is updated.

5. As the borrower, attempt to close() the credit. Observe that the

transaction reverted with Loan: close failed. credit owed error.

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

The close() function combined with depositAndRepay() should allow the

user to close credit without accruing interest infinitely; however,

then, the risk presented in the finding remains valid. The project

team should reconsider the purpose and uncertain nature of the close

90

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

() function and possibly change the implementation while aligning with

business requirements.

It is recommended to either force borrower to pay off accrued interest

from unused funds up calling the close() function or remit it.

91

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.17 (HAL-17) CLOSE FUNCTION CAN BE
FRONT-RUN BY LENDER - MEDIUM

Description:

In the LineOfCredit contract, the borrower has two possibilities to pay

off the debt: by calling depositAndRepay() and then close() functions,

or by calling a single depositAndClose() function. The close() function

combined with depositAndRepay() should allow the borrower to close the

debit. The close(id) function does not call _accrueInterest() internal

function.

The assessment revealed that the lender can front-run close() function

called by the borrower with the accrueInterest() function. As a result,

the close() function will revert, and a small amount of facility interest

will be added to the debt. Eventually, the borrower could escape from

the situation by using the depositAndClose() function.

Proof of Concept:

1. All necessary contracts are deployed and initialized: RevenueToken,

SimpleOracle, LoanLib, LineOfCredit.

2. As borrower and lender, add credit position for 10_000_000_000_-

000_000 tokens with facility rate set to 1.

3. As borrower, borrow() all deposits.

4. As the borrower, pay off the debt and interest using the

depositAndRepay() function.

5. As borrower, attempt to close() the credit, but firstly call

accrueInterest() function as a lender to simulate front-running.

6. Observe that close() function reverts with Loan: close failed.

credit owed error. Note that a small amount of facility rate is

accrued.

92

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

It is recommended to either remove the close() function completely or

change the function’s authorization, so only the lender can call it.

Adjusting close() function to transfer additional funds by borrower is

not an option, as it would duplicate the depositAndClose() functionality.

93

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.18 (HAL-18) UNUSED CREDIT TOKENS
LOCKOUT UNTIL NEW REVENUE - MEDIUM

Description:

In the SpigotedLoan contract, the borrower can add spigots with revenue

contracts that will support repayment of the debt. The revenue contract

earns revenue tokens that later can be exchanged for the credit tokens

using the claimAndRepay() and claimAndTrade() functions. These functions

call the _claimAndTrade() internal function responsible for claiming

escrowed tokens from the SpigotController contract and trading the claimed

tokens. Also, the claimAndTrade() function updates the unusedTokens

collection with target tokens (credit tokens) that were traded.

Listing 33: SpigotedLoan.sol (Line 152)

137 function claimAndTrade(address claimToken , bytes calldata

ë zeroExTradeData)

138 external

139 whileBorrowing

140 returns (uint256 tokensBought)

141 {

142 require(msg.sender == borrower || msg.sender == arbiter);

143

144 address targetToken = credits[ids [0]]. token;

145 tokensBought = _claimAndTrade(

146 claimToken ,

147 targetToken ,

148 zeroExTradeData

149);

150

151 // add bought tokens to unused balance

152 unusedTokens[targetToken] += tokensBought;

153 }

In the SpigotController contract, the _claimRevenue() internal function

is responsible for calculating the claimed token value. However, it

reverts when no tokens can be claimed (line 140).

The assessment revealed that it is not possible to use traded credit tokens

94

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

to pay off the debt until new revenue is claimed in the SpigotController

contract. The SpigotController contract gains tokens from the revenue

contract, which is a third-party component; thus, the point of time of

new revenue arrival is uncertain.

The borrower can also abuse this vulnerability to trade revenue tokens but

not use them to pay off the debt, making the spigot mechanism ineffective.

Listing 34: Spigot.sol (Line 140)

122 function _claimRevenue(address revenueContract , bytes calldata

ë data , address token)

123 internal

124 returns (uint256 claimed)

125 {

126 uint256 existingBalance = _getBalance(token);

127 if(settings[revenueContract]. claimFunction == bytes4 (0)) {

128 // push payments

129 // claimed = total balance - already accounted for

ë balance

130 claimed = existingBalance - escrowed[token];

131 } else {

132 // pull payments

133 require(bytes4(data) == settings[revenueContract].

ë claimFunction , "Spigot: Invalid claim function");

134 (bool claimSuccess , bytes memory claimData) =

ë revenueContract.call(data);

135 require(claimSuccess , "Spigot: Revenue claim failed");

136 // claimed = total balance - existing balance

137 claimed = _getBalance(token) - existingBalance;

138 }

139

140 require(claimed > 0, "Spigot: No revenue to claim");

141 if(claimed > MAX_REVENUE) claimed = MAX_REVENUE;

142

143 return claimed;

144 }

Proof of Concept:

1. All necessary contracts are deployed and initialized:

CreditToken, RevenueToken, SimpleOracle, LoanLib, SpigotedLoan,

95

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

SimpleRevenueContract.

2. As borrower and lender1, add credit position for 10_000_000_000_-

000_000 tokens.

3. As borrower, borrow() all deposits.

4. As borrower and arbiter, add new spigot with addSpigot() function

and RevenueContract as input. Set the ownerSplit parameter to 10.

5. As the borrower, transfer the ownership of the RevenueContract

contract to the SpigotController.

6. Mint 500_000_000_000_000 revenue tokens to the RevenueContract

contract to simulate token gain.

7. As the borrower, call claimRevenue() in SpigotController contract

to claim revenue tokens. Note that 90% of tokens (450_000_000_-

000_000) are transferred to the treasury (which is the borrower),

the 10% (50_000_000_000_000) of tokens are transferred to the

SpigotController.

6. As the borrower, call claimAndTrade() in the SpigotedLoan contract

to trade escrowed revenue tokens. As an input, trade exchange data

provide 50_000_000_000_000 revenue tokens that should be exchanged

for credit tokens.

96

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

7. Observe the SpigotedLoan balances. Note that the contract has

50,000,000,000,000 credit tokens. Also 50,000,000,000,000 credit

tokens are stored in unusedTokens collection.

8. As the borrower, attempt to call claimAndTrade() or claimAndRepay

() functions. Observe that these functions revert with the error

Spigot: No escrow to claim.

9. Mint 1000 revenue tokens to the RevenueContract contract to simulate

token gain.

10. As the borrower, call claimRevenue() in the SpigotController

contract to claim revenue tokens.

11. As the borrower, call claimAndRepay(). Observe that all unused

tokens were used to pay off part of the debt.

97

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 4

Impact - 2

98

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

It is recommended to allow users to use all traded credit tokens to pay

off the debt, regardless of revenue to claim.

99

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.19 (HAL-19) BORROWER CAN CLAIM
REVENUE WHILE LOAN IS
LIQUIDATABLE - MEDIUM

Description:

In the SpigotController, the claimRevenue() function allows claiming

revenue from the revenue contract, split it between treasury and escrow,

and send part of it to the treasury. By default, the treasury is the

borrower. The ownerSplit parameter is the initial split agreed upon and

set up by the borrower and the arbiter.

When the credit deadline has passed, and it has defaulted, the healthcheck

() function from the LineOfCredit contract must be called explicitly to

set loan status to LIQUIDATABLE. Afterward, the arbiter can call the

updateOwnerSplit() function from the SpigotedLoan contract to update the

ownerSplit parameter, so 100% of revenue is escrowed, and none is sent

to the treasury.

Listing 35: Spigot.sol (Line 113)

89 /**

90

91 * @notice - Claim push/pull payments through Spigots.

92 Calls predefined function in contract settings to

ë claim revenue.

93 Automatically sends portion to treasury and

ë escrows Owner 's share.

94 * @dev - callable by anyone

95 * @param revenueContract Contract with registered settings to

ë claim revenue from

96 * @param data Transaction data , including function signature

ë , to properly claim revenue on revenueContract

97 * @return claimed - The amount of tokens claimed from

ë revenueContract and split in payments to `owner ` and `treasury `

98 */

99 function claimRevenue(address revenueContract , bytes calldata

ë data)

100 external nonReentrant

101 returns (uint256 claimed)

100

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

102 {

103 address token = settings[revenueContract]. token;

104 claimed = _claimRevenue(revenueContract , data , token);

105

106 // split revenue stream according to settings

107 uint256 escrowedAmount = claimed * settings[

ë revenueContract]. ownerSplit / 100;

108 // update escrowed balance

109 escrowed[token] = escrowed[token] + escrowedAmount;

110

111 // send non -escrowed tokens to Treasury if non -zero

112 if(claimed > escrowedAmount) {

113 require(_sendOutTokenOrETH(token , treasury , claimed -

ë escrowedAmount));

114 }

115

116 emit ClaimRevenue(token , claimed , escrowedAmount ,

ë revenueContract);

117

118 return claimed;

119 }

Listing 36: SpigotedLoan.sol (Lines 72,75)

54 /**

55 * @notice changes the revenue split between borrower treasury

ë and lan repayment based on loan health

56 * @dev - callable `arbiter ` + `borrower `

57 * @param revenueContract - spigot to update

58 */

59 function updateOwnerSplit(address revenueContract) external

ë returns (bool) {

60 (, uint8 split , , bytes4 transferFunc) = spigot.getSetting

ë (

61 revenueContract

62);

63

64 require(transferFunc != bytes4 (0), "SpgtLoan: no spigot");

65

66 if (

67 loanStatus == LoanLib.STATUS.ACTIVE && split !=

ë defaultRevenueSplit

68) {

69 // if loan is healthy set split to default take rate

101

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

70 spigot.updateOwnerSplit(revenueContract ,

ë defaultRevenueSplit);

71 } else if (

72 loanStatus == LoanLib.STATUS.LIQUIDATABLE && split !=

ë MAX_SPLIT

73) {

74 // if loan is in distress take all revenue to repay

ë loan

75 spigot.updateOwnerSplit(revenueContract , MAX_SPLIT);

76 }

77

78 return true;

79 }

The assessment revealed that the loan’s LIQUIDATABLE status is not

propagated to the spigots. Also, claimRevenue() function has no

authorization implemented. As a result, the borrower can front-run the

updateOwnerSplit() function with the claimRevenue() to obtain one more

revenue share from spigot.

Proof of Concept:

1. All necessary contracts are deployed and initialized:

CreditToken, RevenueToken, SimpleOracle, LoanLib, SpigotedLoan,

SimpleRevenueContract. Set the ttl parameter to 1 day.

2. As borrower and lender1, add credit position for 10_000_000_000_-

000_000 tokens.

3. As the borrower borrow() half of the deposit - 5_000_000_000_000_000.

4. As borrower and arbiter, add a new spigot with the addSpigot()

function and Set the ownerSplit parameter to 10.

5. As the borrower, transfer the ownership of the RevenueContract

contract to the SpigotController.

6. Mint 500_000_000_000_000 revenue tokens to the RevenueContract

contract to simulate token gain.

7. Forward blockchain time for 1 day and 1 second.

8. As the borrower, attempt to borrow() the remaining deposit. Observe

that the transaction reverted with the Loan: can't borrow error.

102

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

7. As the arbiter, call the healthcheck() function. Note that the

loan’s status changed from ACTIVE to LIQUIDATABLE.

8. As the borrower, call claimRevenue() to simulate front-run of the

updateOwnerSplit() function, so 90% of revenue will go to the

borrower and 10% go to the SpigotController contract.

103

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 4

Impact - 3

Recommendation:

It is recommended to implement safety measures that prevent claiming

revenue by the borrower when credit is defaulted.

104

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.20 (HAL-20)
MINIMUMCOLLATERALRATIO LACKS INPUT
VALIDATION - MEDIUM

Description:

In the Escrow contract, the minimumCollateralRatio parameter defines the

minimum threshold of collateral ratio that allows the borrower to borrow

the deposit (using the _healthcheck() function). Basing on project’s

documentation this parameter is expected to have 18 decimals, e.g. 1 ether

= 100%. However, the contract does not implement any input validation,

thus prone to human errors. A user could set too small a value, e.g.,

100, which would make the mechanism ineffective. No function to update

the minimumCollateralRatio parameter is available in the contract.

Listing 37: Escrow.sol

10 // the minimum value of the collateral in relation to the

ë outstanding debt e.g. 10% of outstanding debt

11 uint256 public minimumCollateralRatio;

Listing 38: Escrow.sol (Line 37)

31 constructor(

32 uint256 _minimumCollateralRatio ,

33 address _oracle ,

34 address _loan ,

35 address _borrower

36) public {

37 minimumCollateralRatio = _minimumCollateralRatio;

38 oracle = _oracle;

39 loan = _loan;

40 borrower = _borrower;

41 }

105

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://docs.debtdao.finance/overview/products/line-of-credit/unit-denominations
https://docs.debtdao.finance/overview/products/line-of-credit/unit-denominations

Listing 39: EscrowedLoan.sol (Line 26)

25 function _healthcheck () virtual internal returns(LoanLib.STATUS)

ë {

26 if(escrow.getCollateralRatio () < escrow.minimumCollateralRatio

ë ()) {

27 return LoanLib.STATUS.LIQUIDATABLE;

28 }

29

30 return LoanLib.STATUS.ACTIVE;

31 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: CreditToken,

RevenueToken, SimpleOracle, LoanLib, EscrowedLoan. For the

minimumCollateralRatio parameter in the EscrowedLoan contract,

provide small value, e.g. 100.

2. Observe that the EscrowedLoan contract deployed successfully.

3. As any account, call the minimumCollateralRatio() function. Observe

the result, note that this confirms the contract’s constructor

appceted too low value for the minimumCollateralRatio parameter.

Risk Level:

Likelihood - 3

Impact - 4

Recommendation:

It is recommended to implement input validation for the

minimumCollateralRatio parameter in the Escrow contract.

106

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.21 (HAL-21) REVENUE CONTRACT
OWNERSHIP LOCKOUT POSSIBLE IN
REMOVESPIGOT - MEDIUM

Description:

In the Spigot contract, the removeSpigot() function allows the contract’s

owner to transfer tokens held by the spigot, and transfer the ownership

of the revenueContract to the operator (the borrower) and remove the

revenueContract’s data from spigot’s settings collection. The amount

of tokens to transfer is based on the escrowed collection. The Spigot

allows multiple revenueContract contracts, and such contracts can provide

revenue in the same revenue tokens. In such circumstances, the first

call to the removeSpigot() function will transfer all escrowed tokens

from every related revenueContract, but escrowed[token] will not be

reset. Any subsequent call will revert, as a function would attempt to

transfer escrowed tokens with an empty contract’s balance. As a result,

transferring the ownership of the remaining revenueContract will not be

possible. However, the contract’s owner could escape from this situation

by transferring the tokens back to the contract, which is cumbersome.

Listing 40: Spigot.sol (Lines 279,280,294)

276 function removeSpigot(address revenueContract) external

ë returns (bool) {

277 require(msg.sender == owner);

278

279 address token = settings[revenueContract]. token;

280 uint256 claimable = escrowed[token];

281 if(claimable > 0) {

282 require(_sendOutTokenOrETH(token , owner , claimable));

283 emit ClaimEscrow(token , claimable , owner);

284 }

285

286 (bool success , bytes memory callData) = revenueContract.

ë call(

287 abi.encodeWithSelector(

288 settings[revenueContract]. transferOwnerFunction ,

107

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

289 operator // assume function only takes one

ë param that is new owner address

290)

291);

292 require(success);

293

294 delete settings[revenueContract];

295 emit RemoveSpigot(revenueContract , token);

296

297 return true;

298 }

Proof of Concept:

1. All necessary contracts are deployed and initialized: CreditToken,

RevenueToken, SimpleOracle, LoanLib, SpigotedLoan.

2. Deploy the first SimpleRevenueContract with RevenueToken.

3. Deploy the second SimpleRevenueContract with RevenueToken.

4. As borrower and lender, add credit position for 1_000_000_000_000_-

000 tokens.

5. As borrower and arbiter, add first spigot with addSpigot() function

and the first SimpleRevenueContract as input.

6. As borrower and arbiter, add second spigot with addSpigot() function

and the second SimpleRevenueContract as input.

7. As the borrower, transfer the ownership of the first

SimpleRevenueContract contract to the SpigotController.

8. As the borrower, transfer the ownership of the second

SimpleRevenueContract contract to the SpigotController.

9. Mint 10_000_000_000_000 revenue tokens to the first

SimpleRevenueContract contract to simulate token gain.

10. Mint 10_000_000_000_000 revenue tokens to the second

SimpleRevenueContract contract to simulate token gain.

11. As the borrower, borrow() all deposits.

12. As borrower, claim revenue for the first SimpleRevenueContract

contract in SpigotController.

13. As borrower, claim revenue for the second SimpleRevenueContract

contract in SpigotController.

14. As the borrower, pay off the debt.

108

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

15. As a borrower, release the spigot in the SpigotedLoan controller.

16. As borrower, call removeSpigot() function with the first

SimpleRevenueContract contract as an input.

17. As borrower, attempt to call removeSpigot() function with the

second SimpleRevenueContract contract as an input. Observe that the

transaction reverts with the ERC20: transfer amount exceeds balance

error. Note that the contract’s ownership still belongs to the

SpigotController.

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

It is recommended to reset the escrowed[token] collection in the

removeSpigot() function.

109

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.22 (HAL-22) MALICIOUS ARBITER CAN
ALLOW OWNERSHIP TRANSFER FUNCTION
TO OPERATOR - LOW

Description:

In the SpigotedLoan the solution assumes that the borrower adds a spigot

with the revenue contract and transfers the ownership of the revenue

contract to the SpigotController.

In the SpigotedLoan contract, the arbiter can call the updateWhitelist

function to allow or disallow execution of the particular function

for the operator (and the operator is the borrower by default) in the

context of the revenue contract.

The assessment revealed that a malicious arbiter could whitelist

the ownership transfer function for the operator. Thus, the

operator can transfer the ownership from SpigotController back to

the borrower using the _operate() function. This functions disallows

to execute claimFunction(), however it does not disallow to execute

transferOwnerFunction.

Listing 41: Spigot.sol

212 /**

213 * @notice - Checks that operation is whitelisted by Spigot

ë Owner and calls revenue contract with supplied data

214 * @param revenueContract - smart contracts to call

215 * @param data - tx data , including function signature , to

ë call contracts with

216 */

217 function _operate(address revenueContract , bytes calldata data

ë) internal nonReentrant returns (bool) {

218 // extract function signature from tx data and check

ë whitelist

219 require(whitelistedFunctions[bytes4(data)], "Spigot:

ë Unauthorized action");

220 // cant claim revenue via operate () because that fucks up

ë accounting logic. Owner shouldn 't whitelist it anyway but just in

ë case

110

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

221 require(settings[revenueContract]. claimFunction != bytes4(

ë data), "Spigot: Unauthorized action");

222

223

224 (bool success , bytes memory opData) = revenueContract.call

ë (data);

225 require(success , "Spigot: Operation failed");

226

227 return true;

228 }

Proof of Concept:

1. All necessary contracts are deployed and initialized:

CreditToken, RevenueToken, SimpleOracle, LoanLib, SpigotedLoan,

SimpleRevenueContract.

2. As borrower and arbiter, add a new spigot with the addSpigot()

function and RevenueContract as input.

3. As the borrower, transfer the ownership of the RevenueContract

contract to the SpigotController.

4. As arbiter whitelist transferOwnership() function from

RevenueContract contract using updateWhitelist() function

and the transferOwnership() selector as an input.

5. As the borrower, transfer the ownership again using the operate

() function. Note that the encoded transferOwnership() function

selector and borrower’s address must be provided as input.

111

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

It is recommended to disallow execution of the transferOwnerFunction()

function, as it is done for claimFunction().

112

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.23 (HAL-23)
UPDATEWHITELISTFUNCTION EVENT IS
ALWAYS EMITTED WITH TRUE VALUE - LOW

Description:

In the SpigotController contract, the contract’s owner can call the

_updateWhitelist function to allow or disallow execution of the particular

function for the operator in the context of the revenue contract. Upon

function execution, the UpdateWhitelistFunction event is emitted with

true value, despite the actual value present in the allowed parameter.

As a result, the contract may emit false and misleading information when

some function is disallowed.

Listing 42: Spigot.sol (Lines 370,374)

366 /**

367

368 * @notice - Allows Owner to whitelist function methods across

ë all revenue contracts for Operator to call.

369 * @param func - smart contract function signature to

ë whitelist

370 * @param allowed - true/false whether to allow this function

ë to be called by Operator

371 */

372 function _updateWhitelist(bytes4 func , bool allowed) internal

ë returns (bool) {

373 whitelistedFunctions[func] = allowed;

374 emit UpdateWhitelistFunction(func , true);

375 return true;

376 }

Risk Level:

Likelihood - 3

Impact - 2

113

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

It is recommended to emit the event with the allowed parameter as an

input instead of fixed true value.

114

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.24 (HAL-24) BORROWER CAN MINIMIZE
DRAWN INTEREST ACCRUING - LOW

Description:

The borrower can postpone borrowing the deposit (borrow() function),

which would start drawing interest accruing as far as the credit would

be required. When the lender attempt to withdraw() the deposit, the

borrower could front-run it with the borrow() function, and immediately

call the repay() function to pay off the debt, so no drawn interest would

be applied, and all deposit still would be available. The borrower could

repeat that until the credit deadline has passed, or the deposit would be

required. During this time, the facility interest would still be accrued.

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

It is recommended to apply cooldown periods between borrower’s function

calls.

115

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.25 (HAL-25) REMOVESPIGOT DOES NOT
CHECK CONTRACT’S BALANCE - LOW

Description:

In the Spigot contract, the removeSpigot() allows the contract’s owner

to transfer tokens held by the spigot, and transfer the ownership

of the revenueContract to the operator (the borrower) and remove the

revenueContract’s data from the spigot’s settings collection.

The amount of tokens to transfer is based on the escrowed collection.

However, the contract’s balance and the escrowed collection may contain

different values. The contract’s balance may be affected by push

payments or by the MAX_REVENUE check in the _claimRevenue() function.

The contract’s balance may have a higher value than recorded in the

escrowed collection. Thus, spigot removal may end up with an amount of

tokens locked in the contract.

Adding a new spigot may be required to unlock the tokens, which is

cumbersome.

Listing 43: Spigot.sol (Lines 280,282)

276 function removeSpigot(address revenueContract) external

ë returns (bool) {

277 require(msg.sender == owner);

278

279 address token = settings[revenueContract]. token;

280 uint256 claimable = escrowed[token];

281 if(claimable > 0) {

282 require(_sendOutTokenOrETH(token , owner , claimable));

283 emit ClaimEscrow(token , claimable , owner);

284 }

285

286 (bool success , bytes memory callData) = revenueContract.

ë call(

287 abi.encodeWithSelector(

288 settings[revenueContract]. transferOwnerFunction ,

289 operator // assume function only takes one

ë param that is new owner address

290)

116

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

291);

292 require(success);

293

294 delete settings[revenueContract];

295 emit RemoveSpigot(revenueContract , token);

296

297 return true;

298 }

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

It is recommended to verify if value in the escrowed collection is equal

to the contract’s balance and revert otherwise.

117

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.26 (HAL-26) INCREASECREDIT
FUNCTION LACKS CALL TO SORTINTOQ -
LOW

Description:

In the LineOfCredit contract, the increaseCredit() allows borrowers and

lenders to increase their credit. This function also allows transferring

specified principal to the borrower immediately. However, this function

does not call the _sortIntoQ() function, which updates the credit position

in the repaid queue. As a result, the credit position with increased

credit and the transferred principal may not be updated in the queue and

left behind other credit positions with the repaid principal. In some

rare scenarios, to update the queue, the borrower would be forced to

close other credit positions or to borrow from such a position (if the

deposit is available).

Listing 44: LineOfCredit.sol (Lines 283,288)

248 function increaseCredit(

249 bytes32 id ,

250 address lender ,

251 uint256 amount ,

252 uint256 principal

253)

254 external

255 override

256 whileActive

257 mutualConsent(lender , borrower)

258 returns (bool)

259 {

260 _accrueInterest(id);

261 require(principal <= amount , 'LoC: amount must be over

ë princpal ');

262 Credit memory credit = credits[id];

263 require(lender == credit.lender , 'LoC: only lender can

ë increase ');

264

265 require(IERC20(credit.token).transferFrom(

118

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

266 credit.lender ,

267 address(this),

268 amount

269), "Loan: no tokens to lend");

270

271 credit.deposit += amount;

272

273 int256 price = oracle.getLatestAnswer(credit.token);

274

275 emit IncreaseCredit(

276 id ,

277 amount ,

278 LoanLib.calculateValue(price , amount , credit.decimals)

279);

280

281 if(principal > 0) {

282 require(

283 IERC20(credit.token).transfer(borrower , principal),

284 "Loan: no liquidity"

285);

286

287 uint256 value = LoanLib.calculateValue(price ,

ë principal , credit.decimals);

288 credit.principal += principal;

289 principalUsd += value;

290 emit Borrow(id , principal , value);

291 }

292

293 credits[id] = credit;

294

295 return true;

296 }

Risk Level:

Likelihood - 2

Impact - 2

119

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

It is recommended to call the _sortIntoQ() function in the increaseCredit

() function when principal is not 0.

120

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.27 (HAL-27) GAS OVER-CONSUMPTION
IN LOOPS - INFORMATIONAL

Description:

In all the loops, the counter variable is incremented using i++. It is

known that, in loops, using ++i costs less gas per iteration than i++.

Code Location:

LineOfCredit.sol

- Line 94: for (uint256 i = 0; i < len; i++)

- Line 131: for (uint256 i = 0; i < len; i++)

- Line 159: for (uint256 i = 0; i < len; i++)

- Line 686: for (uint256 i = 0; i < len; i++)

Escrow.sol

- Line 88: for (uint256 i = 0; i < length; i++)

Spigot.sol

- Line 206: for(uint256 i = 0; i < data.length; i++)

LoanLib.sol

- Line 122: for(uint i = 0; i < positions.length; i++)

- Line 151: for(uint i = 1; i < len; i++)

Proof of Concept:

For example, based in the following test contract:

Listing 45: Test.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.9;

3

4 contract test {

5 function postiincrement(uint256 iterations) public {

121

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

6 for (uint256 i = 0; i < iterations; i++) {

7 }

8 }

9 function preiincrement(uint256 iterations) public {

10 for (uint256 i = 0; i < iterations; ++i) {

11 }

12 }

13 }

We can see the difference in the gas costs:

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of

an uint variable inside a loop to save some gas. This is not applicable

outside of loops.

122

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.28 (HAL-28) UNNEEDED
INITIALIZATION OF UINT256 VARIABLES
TO 0 - INFORMATIONAL

Description:

As i is an uint256, it is already initialized to 0. uint256 i = 0

reassigns the 0 to i which wastes gas.

Code Location:

Code Location:

LineOfCredit.sol

- Line 94: for (uint256 i = 0; i < len; i++)

- Line 131: for (uint256 i = 0; i < len; i++)

- Line 159: for (uint256 i = 0; i < len; i++)

- Line 684: uint256 _i = 0; // index that p should be moved to

- Line 686: for (uint256 i = 0; i < len; i++)

Escrow.sol

- Line 83: uint256 collateralValue = 0;

- Line 88: for (uint256 i = 0; i < length; i++)

Spigot.sol

- Line 206: for(uint256 i = 0; i < data.length; i++)

LoanLib.sol

- Line 119: uint256 count = 0;

- Line 122: for(uint i = 0; i < positions.length; i++)

- Line 151: for(uint i = 1; i < len; i++)

Risk Level:

Likelihood - 1

Impact - 1

123

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

It is recommended to not initialize uint256 variables to 0 to save some

gas. For example, use instead:

for (uint256 i; i < proposal.targets.length; ++i).

124

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.29 (HAL-29) ASSERTIONS LACK
MESSAGES - INFORMATIONAL

Description:

Several instances of assertions without messages were identified. The

lack of message in require assertion might be unfavorable for end users.

Code Location:

LineOfCredit.sol

- Line 69: require(ids.length > 0 && credits[ids[0]].principal > 0);

- Line 199: require(interestRate.setRate(id, drate, frate));

- Line 228: require(interestRate.setRate(id, drate, frate));

- Line 344: require(amount <= credits[id].principal + credits[id].

interestAccrued)

- Line 401: require(_sortIntoQ(id));

- Line 491: require(_close(id));

SecuredLoan.sol

- Line 53: require(msg.sender == arbiter);

SpigotedLoan.sol

- Line 97: require(msg.sender == borrower || msg.sender == arbiter);

- Line 142: require(msg.sender == borrower || msg.sender == arbiter);

- Line 229: require(msg.sender == arbiter);

Escrow.sol

- Line 144: require(msg.sender == ILoan(loan).arbiter());

Spigot.sol

- Line 154: require(msg.sender == owner);

- Line 193: require(msg.sender == operator);

- Line 205: require(msg.sender == operator);

- Line 243: require(msg.sender == operator);

- Line 256: require(revenueContract != address(this));

125

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

- Line 277: require(msg.sender == owner);

- Line 292: require(success);

- Line 277: require(msg.sender == owner);

- Line 315: require(msg.sender == owner);

- Line 330: require(msg.sender == operator);

- Line 345: require(msg.sender == treasury || msg.sender == operator);

- Line 330: require(msg.sender == operator);

- Line 362: require(msg.sender == owner);

EscrowedLoan.sol

- Line 55: require(escrow.liquidate(amount, targetToken, to));

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to add a meaningful message to each assertion.

126

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.30 (HAL-30) DEFAULTREVENUESPLIT
LACKS INPUT VALIDATION -
INFORMATIONAL

Description:

The defaultRevenueSplit parameter lacks input validation in the

SpigotedLoan contract.

Code Location:

Listing 46: SpigotedLoan.sol (Line 45)

35 constructor(

36 address oracle_ ,

37 address arbiter_ ,

38 address borrower_ ,

39 address swapTarget_ ,

40 uint256 ttl_ ,

41 uint8 defaultRevenueSplit_

42) LineOfCredit(oracle_ , arbiter_ , borrower_ , ttl_) {

43 spigot = new SpigotController(address(this), borrower ,

ë borrower);

44

45 defaultRevenueSplit = defaultRevenueSplit_;

46

47 swapTarget = swapTarget_;

48 }

Risk Level:

Likelihood - 1

Impact - 1

127

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

It is recommended to add input validation for defaultRevenueSplit

parameter.

128

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.31 (HAL-31) UNUSED CODE -
INFORMATIONAL

Description:

Within the LoanLib contract, part of the code seems unused and redundant:

calculateValue() function, DEBT_TOKEN constant, and some values

from STATUS enum: UNINITIALIZED, INITIALIZED, UNDERCOLLATERALIZED,

DELINQUENT, LIQUIDATING, OVERDRAWN, DEFAULT, ARBITRATION, INSOLVENT.

Note that INSOLVENT is being used, but it is never set.

Within the EscrowedLoan contract, the _liquidate() function has

positionId input parameter. This variable is used only to emit the

Liquidate event from the IEscrowedLoan interface. Apart from that, no

processing related to the credit with positionId is being done. Also,

the liquidate() function from Escrow contract emits another Liquidate

event from IEscrow interface. The positionId parameter and emission

of the Liquidate event from the IEscrowedLoan interface seem to be

redundant.

Code Location:

Listing 47: LoanLib.sol

9 address constant DEBT_TOKEN = address (0 xdebf);

10

11 enum STATUS {

12 // £hoo dis

13 // Loan has been deployed but terms and conditions are

ë still being signed off by parties

14 UNINITIALIZED ,

15 INITIALIZED ,

16

17 // ITS ALLLIIIIVVEEE

18 // Loan is operational and actively monitoring status

19 ACTIVE ,

20 UNDERCOLLATERALIZED ,

21 LIQUIDATABLE , // [#X

129

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

22 DELINQUENT ,

23

24 // Loan is in distress and paused

25 LIQUIDATING ,

26 OVERDRAWN ,

27 DEFAULT ,

28 ARBITRATION ,

29

30 // Lön izz ded

31 // Loan is no longer active , successfully repaid or

ë insolvent

32 REPAID ,

33 INSOLVENT

34 }

Listing 48: LoanLib.sol

46 function calculateValue(

47 int price ,

48 uint256 amount ,

49 uint8 decimals

50)

51 internal

52 returns(uint256)

53 {

54 return _calculateValue(price , amount , decimals);

55 }

Listing 49: IEscrowedLoan.sol

4 event Liquidate(bytes32 indexed positionId , uint256 indexed amount

ë , address indexed token);

Listing 50: EscrowedLoan.sol

44 function _liquidate(

45 bytes32 positionId ,

46 uint256 amount ,

47 address targetToken ,

48 address to

49)

50 virtual internal

130

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

51 returns(uint256)

52 {

53 require(escrow.liquidate(amount , targetToken , to));

54

55 emit Liquidate(positionId , amount , targetToken);

56

57 return amount;

58 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to remove the redundant functionality to save some gas.

131

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.32 (HAL-32) LACK OF CHECK EFFECTS
INTERACTIONS PATTERN OR REENTRENCY
GUARD - INFORMATIONAL

Description:

The SpigotController contract inherits ReentrancyGuard. The functions

_operate(), claimRevenue(), and claimEscrow() are protected by the

nonReentrant modifier. The functions claimRevenue() and claimEscrow()

uses _sendOutTokenOrETH() function to transfer the ether. However, the

removeSpigot() also uses _sendOutTokenOrETH() function, but it is not

protected by the nonReentrant modifier, also it modifies the contract’s

state after transferring the ether.

Listing 51: Spigot.sol (Lines 279,280,282,294)

276 function removeSpigot(address revenueContract) external returns (

ë bool) {

277 require(msg.sender == owner);

278

279 address token = settings[revenueContract]. token;

280 uint256 claimable = escrowed[token];

281 if(claimable > 0) {

282 require(_sendOutTokenOrETH(token , owner , claimable));

283 emit ClaimEscrow(token , claimable , owner);

284 }

285

286 (bool success , bytes memory callData) = revenueContract.

ë call(

287 abi.encodeWithSelector(

288 settings[revenueContract]. transferOwnerFunction ,

289 operator // assume function only takes one

ë param that is new owner address

290)

291);

292 require(success);

293

294 delete settings[revenueContract];

295 emit RemoveSpigot(revenueContract , token);

296

132

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

297 return true;

298 }

In the SpigotedLoan the sweep() function transfers ether, however, it

is not protected by the nonReentrant modifier, also it modifies the

contract’s state after transferring the ether.

Listing 52: SpigotedLoan.sol (Lines 278,280,284)

261 * @notice - sends unused tokens to borrower if repaid or

ë arbiter if liquidatable

262 - doesnt send tokens out if loan is unpaid but

ë healthy

263 * @dev - callable by anyone

264 * @param token - token to take out

265 */

266 function sweep(address token) external returns (uint256) {

267 if (loanStatus == LoanLib.STATUS.REPAID) {

268 return _sweep(borrower , token);

269 }

270 if (loanStatus == LoanLib.STATUS.INSOLVENT) {

271 return _sweep(arbiter , token);

272 }

273

274 return 0;

275 }

276

277 function _sweep(address to, address token) internal returns (

ë uint256 x) {

278 x = unusedTokens[token];

279 if (token == address (0)) {

280 payable(to).transfer(x);

281 } else {

282 require(IERC20(token).transfer(to , x));

283 }

284 delete unusedTokens[token];

285 }

Risk Level:

Likelihood - 1

133

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Impact - 1

Recommendation:

It is recommended to apply the nonReentrant modifier or introduce check

effects interaction pattern for functions mentioned above as a part of

defense in depth security strategy.

134

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

135

AUTOMATED TESTING

DRAFT

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the scoped contracts. Among the tools used was Slither,

a Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly

into their abi and binary formats, Slither was run on the all-scoped

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

IEscrow.sol

IEscrowedLoan.sol

IInterestRateCredit.sol

ILineOfCredit.sol

ILoan.sol

136

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

IOracle.sol

ISpigotedLoan.sol

LoanLib.sol

MutualConsent.sol

EscrowedLoan.sol

137

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

SecuredLoan.sol

138

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

139

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

140

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

141

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

Escrow.sol

142

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

InterestRateCredit.sol

Oracle.sol

• The usage of solc-0.8.9 is false-positive.

• The different version of Solidity usage instances are

false-positives.

• The unused code was reported in UNUSED CODE finding.

• The _getNonCaller function is used in mutualConsent modifier.

143

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

• The reentrancy issues in EscrowedLoan, LineOfCredit are

false-positives.

• Two instances of possible reentrancy issues are reported in LACK OF

CHECK EFFECTS INTERACTIONS PATTERN OR REENTRENCY GUARD finding.

• The sending ether to arbitrary user instances are false-positives.

• The ignoring return value instances are false-positives.

• The low-level call instances are false-positives.

• The external calls inside a loop instances are false-positives.

• The usage of dangerous strict equality instances are false positives.

• The usage of literals with too many digits findings are false

positives.

• The lacks of zero-check of contract address is considered no more as

an issue. Since Solidity, 0.5.0 msg.data length is being checked.

• The some of identified issues are related to OppenZepplin’s

libraries.

• The scans of LineOfCredit.sol, SpigotedLoan.sol and Spigot.sol were

included in scan of SecuredLoan.sol.

• No major issues were found by Slither.

144

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

LineOfCredit.sol

InterestRateCredit.sol

145

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

SecuredLoan.sol

146

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

147

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

Oracle.sol

• The floating pragma findings are false positives.

• The state variable default visibility instance is false positive.

• The Integer Overflow and Underflow findings are false positives.

148

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

• The scan of EscrowedLoan.sol, Escrow.sol, Loanlib.sol, and

MutualConsent.sol yielded not results.

• The scans of LineOfCredit.sol, SpigotedLoan.sol, and Spigot.sol were

included in the scan of SecuredLoan.sol.

• No major issues were discovered by Mythx software.

149

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

THANK YOU FOR CHOOSING

DRAFT

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Code Location
	Code Location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results

