
Review of Empty Sector Update
Circuit

Protocol Labs

J.P. Aumasson and Antony Vennard

20211210

Review of Empty Sector Update Circuit 20211210

Contents

1 Issues 2
1.1 trailing_zero() values . 2
1.2 Defensive coding: additional bounds checks . 2
1.3 Possibly lossy cast: . 3
1.4 True Randomness versus PRF definition. 3
1.5 Use of asserts: some may crash. 3

2 Questions and Comments 3
2.1 SectorNodes clarification . 3
2.2 Move cheaper asserts before circuit evaluations if possible. 4
2.3 Poseidon input from pairings . 4
2.4 Rust dereference issue . 4

1 Issues

1.1 trailing_zero() values

Many of the trailing_zeros() alls seem to assume that the value is a power of 2. This is fine if all
values are powers of 2, but will be risky if not.

Examples would be:

• constants.rs line 66.

Answer: The Merkle trees are all chosen via type parameters, but the code assumes that TreeD Is
always a arity-2 tree.

1.2 Defensive coding: additional bounds checks

• In this location gadgets.rs line 188

h is assumed to be in [1,bit_len-1]. Would it be worthwhile to do bounds checking?

The values of h are hardcoded so the risk is low.

• Similarly, bounds checks might be worthwhile here: gadgets.rs line 96-97.

Answer: We will implement this.

J.P. Aumasson and Antony Vennard 2

https://github.com/filecoin-project/rust-fil-proofs/blob/f71c113f14c03ec6a966199cd32539edcb4db153/storage-proofs-update/src/constants.rs#L66
https://github.com/filecoin-project/rust-fil-proofs/blob/f71c113f14c03ec6a966199cd32539edcb4db153/storage-proofs-update/src/gadgets.rs#L188
https://github.com/filecoin-project/rust-fil-proofs/blob/f71c113f14c03ec6a966199cd32539edcb4db153/storage-proofs-update/src/gadgets.rs#L96-L97

Review of Empty Sector Update Circuit 20211210

1.3 Possibly lossy cast:

Here, can the cast be lossy: gadgets.rs line 103?

Answer: Only if the gadget caller passed in values for challenges and bits_per_challenge which weren’t
computed using constants.rs.

We will consider if an additional check is possible.

1.4 True Randomness versus PRF definition.

Unless I miss sth, the “random” bits from gen_challenge_bits() are not actually random, but
derived (deterministically) and unpredictable unless you know all the PRF inputs

1.5 Use of asserts: some may crash.

For example in PublicInputs::new, the assert! macro will cause a panic in both debug and
release public builds, which will crash any process or thread it is part of.

It may be worth converting such statements either to std::Result returns, or if an assert is desired,
debug_assert!, which will only panic in debug modes.

Answer: We will go through all of the asserts to check them. Some would probably be better imple-
mented as results in another way.

However some asserts, e.g. checks of system parameters, would mean that a circuit could not be
constructed at all and indicate that the so�ware has been incorrectly compiled (e.g. by changing the
constants). So we will keep these as assert!s.

2 Questions and Comments

2.1 SectorNodes clarification

Is sector_nodes or SectorNodes always 230 or 231? constants.rs line 66

Answer: In production yes. For test and for development, we allow smaller values.

J.P. Aumasson and Antony Vennard 3

https://github.com/filecoin-project/rust-fil-proofs/blob/f71c113f14c03ec6a966199cd32539edcb4db153/storage-proofs-update/src/gadgets.rs#L103
https://github.com/filecoin-project/rust-fil-proofs/blob/f71c113f14c03ec6a966199cd32539edcb4db153/storage-proofs-update/src/constants.rs#L66

Review of Empty Sector Update Circuit 20211210

2.2 Move cheaper asserts before circuit evaluations if possible.

It may be interesting to move these cheap asserts before the more complex k and h validations
https://github.com/filecoin-project/rust-fil-proofs/blob/f71c113f14c03ec6a966199cd32539edcb4db153/storage-
proofs-update/src/circuit.rs#L403-L406

Answer: We like this suggestion.

2.3 Poseidon input from pairings

will the Fr-s hashed by Poseidon be of constant size? circuit.rs lines 491-494

Answer: Fr is a fixed size and changing it would be a major endeavour.

2.4 Rust dereference issue

Shouldnt this be *bit instead of ‘**bit? to count the non-zeros circuit.rs line 393

Answer (by ourselves): This is required as the lambda borrows from a borrow, as in the following
example:

1 fn main() {
2
3 let boolvec : Vec<bool> = vec![true, false, true, false, false];
4
5 let borrowed_boolvec = &boolvec;
6 let only_true = borrowed_boolvec.iter().filter(|v| v);
7 for v in only_true {
8 println!("Result is {}", v)
9 }

10 }

J.P. Aumasson and Antony Vennard 4

https://github.com/filecoin-project/rust-fil-proofs/blob/f71c113f14c03ec6a966199cd32539edcb4db153/storage-proofs-update/src/circuit.rs#L491-L494
https://github.com/filecoin-project/rust-fil-proofs/blob/f71c113f14c03ec6a966199cd32539edcb4db153/storage-proofs-update/src/circuit.rs#L393

	Issues
	trailing_zero() values
	Defensive coding: additional bounds checks
	Possibly lossy cast:
	True Randomness versus PRF definition.
	Use of asserts: some may crash.

	Questions and Comments
	SectorNodes clarification
	Move cheaper asserts before circuit evaluations if possible.
	Poseidon input from pairings
	Rust dereference issue

