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With the advent of computing technologies, researchers across social science fields are using 
increasingly complex methods to collect, process, and analyze data in pursuit of scientific evi-
dence. Given the complexity of research methods used, it is important to ensure that the research 
findings produced by a study are robust instead of being affected significantly by uncertainties 
associated with the design or implementation of the study. The field of metascience—the use of 
scientific methodology to study science itself—has examined various aspects of this robustness 
requirement for research that uses conventional designed studies (e.g., surveys, laboratory 
experiments) to collect data. Largely missing, however, are efforts to examine the robustness of 
empirical research using “organic data,” namely, data that are generated without any explicit 
research design elements and are continuously documented by digital devices (e.g., video cap-
tured by ubiquitous sensing devices; content and social interactions extracted from social net-
working sites, Twitter feeds, and click streams). Given the growing popularity of using organic 
data in management research, it is essential to understand issues concerning the usage and 
processing of organic data that may affect the robustness of research findings. This commentary 
first provides an overview of commonly present issues that threaten the validity of inferences 
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drawn from empirical studies using organic data. This is followed by a discussion on some key 
considerations and suggestions for making organic data a robust and integral part of future 
research endeavors in management.

Keywords:	 open science (e.g., transparency in research practices); research methods; 
research design; replication studies

With the advent of computing technologies, specifically the rapidly growing capability for 
data analytics, researchers across social science fields are using increasingly complex meth-
ods to collect, process, and analyze data in pursuit of scientific evidence. Given the complex-
ity of research methods used, it is important to ensure that the research findings produced by 
a study are robust instead of being affected significantly by uncertainties associated with the 
design or implementation of the study. Various aspects of this robustness requirement, and 
various ways to address it, have been raised and debated in multiple disciplines closely 
related to management (e.g., Open Science Collaboration, 2015, in social psychology) under 
different terms, like reproducibility, replicability, conceptual cross-validation, methodologi-
cal triangulation, and so on, which were often used interchangeably without a consensus on 
their definitions across different research fields (see Goodman, Fanelli, & Ioannidis, 2016). 
In this commentary, we use robustness to refer to the extent to which research findings (and 
inferences made by researchers) change as choices made in the study process vary.1

Despite the recent rise of awareness on issues related to robustness, social sciences in 
general, and the management field in particular, have paid limited attention to the robustness 
of findings from studies using “organic data.” While there is not yet a universally accepted, 
precise definition of the term organic data (as we shall elaborate later in this commentary), 
the common understanding in the research community is that the term refers to data not col-
lected following an explicit research design but documented by a technology, device, or 
interface capturing natural “digital footprints” of human activities, such as data from sensing 
devices, mobile applications, or online social networks (Groves, 2011). So far, the number of 
studies using these digital footprints in management research remains relatively small. 
Nonetheless, it is important for researchers to recognize and anticipate potential issues asso-
ciated with the usage of organic data so that practices for promoting robust research can be 
established ahead of the curve.

A variety of factors can lead to the lack of robustness in findings of a research study. For 
example, selecting statistical tests based on knowledge of test results and reporting only those 
tests returning statistically significant results obviously weaken the robustness of the research 
findings, as the findings have been manipulated by the researcher(s) and the method chosen is 
tied to the specific data set (Aguinis, Ramani, & Alabduljader, 2018; Nelson, Simmons, & 
Simonsohn, 2018). Instead of enumerating all possible concerns, our commentary focuses on 
one issue that is particularly pronounced for studies using organic data: the quality of infer-
ences drawn in a study (i.e., the validity of the study). While there is a rapid emergence of 
studies using organic data, it is not always clear to researchers whether certain inferences are 
acceptable or, as called in metascience, invalid due to “questionable research practices.” 
Drawing from Shadish, Cook, and Campbell’s (2002) validity framework, there are four types 
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of validity that researchers are generally concerned about: statistical conclusion validity, inter-
nal validity, construct validity, and external validity. We will discuss the implications of prac-
tices that are common in the organic-data research process for the appropriateness, accuracy, 
and strength of support for inferences, particularly those inferences made about constructs 
(i.e., construct validity) and causal relationships (i.e., internal validity).

Outside of management research, concerns about threats to validity in the usage of organic 
data have already surfaced. In industrial-organizational psychology, researchers have noticed 
threats to construct validity from how organic data are processed in the measurement stage 
(Braun & Kuljanin, 2015). In political science and computer science, researchers have cri-
tiqued the practices of drawing inferences beyond the range that can be supported by the data 
at hand (King & Zeng, 2007) or from organic data with biased representation of certain sub-
populations without proper adjustments in statistical analyses (Mislove, Lehmann, Ahn, 
Onnela, & Rosenquist, 2011). Compared with such existing work, our goal is not to zoom in 
on one specific practice. Instead, we will highlight a broad spectrum of threats to validity that 
are often embedded in research using organic data, which are relatively rare in conventional 
designed experiments or surveys. These threats call for specific attention from management 
researchers starting to incorporate organic data into their research programs. We also propose 
potential solutions that are not yet commonplace in management research. In the rest of this 
commentary, we first briefly describe the key features of organic data and a typical workflow 
of studies using organic data. We then discuss potential validity threats and offer solutions.

Overview of Validity Threats in Studies Using Organic Data

Definition of Organic Data

As mentioned earlier, organic data are characterized by the lack of conventional research 
design elements during the data generation stage. Instead, organic data mostly document cer-
tain naturally occurring activities through technological devices or platforms (Groves, 2011). 
It may be tempting to simply treat organic data and conventional designed data as a dichot-
omy, but we believe multiple continuous dimensions better describe the various types of data 
used in management research (e.g., organic data, archival data, and data from laboratory 
experiments). These dimensions include (but are not limited to) the purpose of data generation 
(e.g., for a specific research study or for other purposes), the volume of data, existing data 
structures (i.e., how data are formatted), signal-to-noise ratio, and continuity in the assessment 
process. Taking this multidimensional view is important for at least two reasons.

First, certain forms of organic data and conventional designed data can be similar in some 
dimensions but differ in others. For example, U.S. Census data, corporate e-mail traces, and 
Twitter data are similar in the dimension of data generation purpose, as none of them is origi-
nally generated for a specific research study.2 They are also similar on the dimension of data 
volume, as all can be voluminous. However, they differ on other dimensions, such as the 
existence of a clear data structure: Whereas all Census data and some e-mail traces are clearly 
structured (e.g., e-mails exchanged between mentors and newcomers during onboarding 
phase), Twitter data as well as some other e-mail traces (e.g., e-mails among a team of 
coworkers with fluid team membership over a long period of time) can be less structured and 
are best categorized as free text. Understanding the similarities and distinctions among vari-
ous data types in different dimensions is important because it is these dimensions (or, more 
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precisely, features in these dimensions), rather than the type of data, that drive research 
practices. For example, the research practices of filtering input data with keywords or search 
patterns (e.g., regular expressions; see Aho, 1990) are often driven by the large volume of 
input data. As another example, the lack of structure in input data often drives researchers to 
adopt automated tools, such as information-extraction algorithms, to convert the input data 
into scores on given variables (Cafarella, Madhavan, & Halevy, 2009). Having a proper 
understanding of which features on which dimensions drive which research practices helps 
better identify common validity threats and makes the corresponding solutions applicable to 
multiple forms of data.

Second, our adoption of the term organic data coined by earlier researchers (e.g., Groves, 
2011) is pragmatic, in order to raise awareness of an emerging trend in management research. 
As researchers start to conduct field experiments on online platforms (e.g., Facebook), either 
independently or in cooperation with platform providers, and attempt to establish causal 
relationships (e.g., Aral & Walker, 2011), the boundaries around “organic data” can become 
blurry. As we illustrate in the top part of Figure 1, in studies including experimentation on 
online platforms, data sets obtained for research reflect influences from both the manipula-
tions used and other data generation mechanisms, making it less meaningful to categorize the 
obtained data as either “designed” or “organic.” Therefore, for observational and experimen-
tal studies alike, it is important to avoid attributing validity issues to the data being “organic” 
and instead understand the root issues (i.e., dimensions and features) that give rise to the 
validity threats.

Typical Workflow of Studies Using Organic Data and Threats to Validity

The top section of Figure 1 depicts a typical workflow of studies using organic data. While 
most parts of the figure are self-explanatory, two parts differ from conventional experiments 
or surveys and may introduce validity threats not typically considered in conventional studies. 
The first is the data generation process, which is the “true model” underlying the observed 
pattern in the data (e.g., the “true” cause and effect between firm practices, employee personal 
attributes, and employee activities on social network sites; see discussions of the social media 
context in McFarland & Ployhart, 2015). The true model is never fully known by researchers, 
regardless of whether organic data are used. However, compared with conventional studies in 
a better-controlled environment (e.g., experiments in laboratories), the data generation process 
for organic data is even more opaque. This is because organic data are often affected by behav-
iors or decisions of the study participants or third parties (e.g., designers of websites) in addi-
tion to the researchers. Such behaviors and/or decisions are likely to be unknown to—and 
even unobservable by—the researchers. For example, users of wearable sensors (e.g., Fitbit) 
can manipulate or block data recording as study participants. Even more worrisome, large 
amounts of organic data may be deceptively created (Ott, Cardie, & Hancock, 2012), such as 
activities produced by automated software (i.e., “bots”) pretending to be human users.

The other important step that can differ from conventional studies is the use of automated 
tools to process the data, specifically the use of automated information-extraction algorithms 
(Cafarella et al., 2009) that convert input data (e.g., tweets from a given time period) into 
extracted “useful information” (as defined by the researcher; e.g., tweets mentioning certain 
events) and generate measurements that can be used for later statistical analyses (e.g., num-
ber of adjectives used). Researchers may use information-extraction algorithms designed 



Xu et al. / Validity Concerns    1261

with a theory-driven approach to scrape data from web pages (Landers, Brusso, Cavanaugh, 
& Collmus, 2016), selectively download and filter the data based on the relevance to the 
research purpose, and produce values of study variables (e.g., levels of work stress) from the 
downloaded, often unstructured (e.g., data in a free-text format), data (see examples of apply-
ing automated information-extraction algorithms in Sajjadiani, Sojourner, Kammeyer-
Mueller, & Mykerezi, 2019; Wang, Hernandez, Newman, He, & Bian, 2016). Note in Figure 
1 the feedback loop from statistical analysis back to the automated algorithms indicates the 
scenarios where the algorithm design has to be adjusted when further analysis of the extracted 
data unveils potential errors in the algorithmic outputs.

Threats to validity can arise in any part of the research process illustrated in Figure 1 
(Shadish et al., 2002; Sussmann & Robertson, 1986). In the rest of this commentary, we focus 
on threats to validity that are associated with (a) the usage of automated information-extrac-
tion algorithms and (b) the organic data generation process, respectively. Note these two 
steps are orthogonal—organic data may be processed manually, while automated informa-
tion-extraction algorithms (e.g., natural language processing [NLP], algorithms that provide 
automated analyses of text written in human languages) have been extensively used to pro-
cess designed data, as well (e.g., Campion, Campion, Campion, & Reider, 2016). While the 
linkage between issues incurred by the opaqueness of the data generation process and differ-
ent types of validity can be more easily identified and isolated, validity threats stemming 
from the adoption of automated information-extraction algorithms to replace manual efforts 
often cut across multiple types of validity (i.e., affecting multiple aspects of inferences drawn 
from the study). For example, when using NLP algorithms to process texts (e.g., responses to 
open-ended questions in job applications, performance reviews), the errors introduced by 
these algorithms can cause a variety of concerns. On the one hand, measurements produced 
by NLP algorithms often have poor accuracy when the text being processed contains irony or 
sarcasm, which affects construct validity (Davidov, Tsur, & Rappoport, 2010). On the other 

Figure 1
Typical Workflow of Studies Using Organic Data

Note. Boxes represent typical steps and arrows represent general direction of workflow in studies using organic data, 
with the dashed arrow representing possible feedback loops in the research process. Circle represents the data source 
that studies operate on (e.g., e-mail traces, information recorded by social media platforms).
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hand, NLP algorithms have been found to produce lower error rates on data from some race/
gender combinations than others (e.g., social media posts from minority and female vs. white 
and male; see Blodgett & O’Connor, 2017), threatening external validity, as well. As such, in 
the following, we start by discussing validity threats stemming from the usage of automated 
information-extraction algorithms, which cut across all aspects of validity. Then, we discuss 
validity threats incurred by the opaqueness of the data generation process, focusing on con-
struct validity and internal validity.

Threats to Validity From the Usage of Automated Information-
Extraction Algorithms

We highlight two major threats in this category: errors in algorithmic outputs and a large 
parameter/procedure space of an information-extraction algorithm.

Threats From Errors in Algorithmic Outputs

When “correct” answers can be identified based on certain standards (e.g., for the ques-
tion of counting the number of words that include the letter a), if the outputs from an analytic 
system (e.g., human coders) deviate from the correct answer, we consider there is an error or 
a mistake. Just like human coders, automated algorithms designed to replace human coders 
in the information-extraction process can make mistakes. For some specific tasks, such as 
identifying the mentioning of an event from text data, like e-mails, the performance of state-
of-the-art automated algorithms can rival that of untrained human coders (e.g., King & Lowe, 
2003). However, for many other information-extraction tasks commonly used in manage-
ment research, even the state-of-the-art automated algorithms today still produce signifi-
cantly more errors than trained human coders (Schwaiger, Lang, Ritter, & Johannsen, 2016). 
While all errors may appear to be threats to validity, indeed, the use of numerous algorithms 
that incur a considerable amount of errors—far exceeding that of a human expert—poses no 
significant validity threat. The key determinant here is not the amount of errors but whether 
the nature of errors can be known to the researcher, who can then use such knowledge to 
account for the errors in design or statistical analyses and thereby minimize (or even elimi-
nate) the validity threats incurred by the errors. In fact, a seemingly high accuracy rate of an 
algorithm could mask the potential threats and make them even more lethal.

Benign errors.  Some errors in algorithmic outputs can be diagnosed by researchers and 
rectified through study design or statistical analyses. These can be considered benign errors. 
For example, consider a study on the relationship between team member composition and 
quality of software produced by a team of engineers. Instead of asking human experts to 
examine millions of lines of code to measure the quality of team outputs, a more practical 
solution is to use algorithms to test the quality of the software, such as whether the software 
contains potential security vulnerabilities (Arcuri & Briand, 2014). Many such algorithms, 
however, are randomized search algorithms (Harman & McMinn, 2010) that do not enumer-
ate all potential execution branches of a software because of the prohibitively expensive 
computational cost (Arcuri & Briand, 2014).3 Instead, the algorithms randomly pick the 
branches to follow at each run. As a result, the algorithm may produce different outputs from 
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one run to another, even with the exact same input data. The use of such a randomized algo-
rithm can introduce a significant amount of extraneous variance. Fortunately, the nature of 
the variance is clear—it is affected by nothing but chance, which, importantly, has no interac-
tion with other variables of interest in the study (e.g., personality traits of the engineers who 
wrote the code or practices of the firm that owns the code). Because the nature of the error is 
clear to the researcher and is irrelevant to the study variables, its effect on the finding of the 
study can be made (asymptotically) close to zero by either running the algorithm multiple 
times to obtain a more reliable output or having a sufficiently large input data set that allows 
the effect of interest to surface even in the presence of random noise introduced by the ran-
domized algorithm.

Malignant errors.  The nature of some errors in algorithmic outputs can be unknown to 
the researchers. We consider these malignant errors. Even though algorithms like deep neu-
ral networks (Krizhevsky, Sutskever, & Hinton, 2012) have achieved tremendous success 
for some information-extraction tasks in practice, many of the state-of-the-art algorithms 
in this category have been found to produce such highly expressive models that how these 
models function for a given data set becomes hard to interpret (Bau, Zhou, Khosla, Oliva, & 
Torralba, 2017). Moreover, how the performance of these models generalizes to other input 
data sets becomes hard to predict even by experts (Szegedy et al., 2013). Such opaqueness in 
the information-extraction algorithms may pose significant validity threats. For example, a 
recent study on the performance of several popular commercial algorithms for facial analysis 
(e.g., those used for gender classification) found that the error rate of the algorithm var-
ies significantly between genders and skin colors—with an error rate of 34.7% for darker-
skinned females but only 0.8% for lighter-skinned males (Buolamwini & Gebru, 2018). If a 
researcher uses such algorithms in a study that involves gender or skin color as a study vari-
able but is oblivious to the uneven errors produced by the algorithms, then the study findings 
could confound effects that are of theoretical interest (e.g., gender difference in job interview 
behaviors) with those resulting from the method factor, or they could even purely reflect an 
artifact of the algorithm performance.

One could arguably attribute malignant errors to a researcher’s “blind trust” on the perfor-
mance of an algorithm or a lack of motivation to study how the algorithm works, just like 
how some researchers used to blindly run structural equation modeling software without 
understanding assumptions of the statistical methods and the default setup of the software 
program (McIntosh, Edwards, & Antonakis, 2014). While the similarity is readily observ-
able, we would like to note that with the fast advance of computer algorithm design, espe-
cially in the field of machine learning, even experts in the field may not be able to adequately 
explain why a state-of-the-art algorithm performs well on some data sets but not as well on 
others (Bau et al., 2017; C. Zhang, Bengio, Hardt, Recht, & Vinyals, 2017). This special 
characteristic of algorithmic error makes it even more important for researchers who use the 
algorithms to be aware of the potential occurrence of malignant errors and to take such errors 
into account in the research process whenever possible.

Potential solutions.  To address these potential threats, researchers should extensively test 
the information-extraction algorithms being used to understand the potential errors produced 
by the algorithms and whether such errors reduce the statistical power to detect the effects of 
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theoretical interest or, even worse, distort the data to produce incorrect conclusions of cause 
and effect. Errors attributed (only) to chance may be mitigated by a larger input data set or, 
in the case of a randomized algorithm, by running the algorithm multiple times. As for errors 
inherent in the algorithm design, the burden rests on the researcher who uses the algorithm 
to carefully examine the distribution of the algorithmic errors and their relationships with 
the study variables. Remedies here generally require extensive performance testing of the 
algorithms being used, with the understanding that there is no single silver-bullet perfor-
mance test that can certify the use of an algorithm will be error free (Ng, 1997; C. Zhang 
et al., 2017). For example, one may compare multiple competing algorithms to cross-check 
each other’s errors. One could also ask human experts to examine a small sample of algorith-
mic input/output pairs to identify potential problems (Ribeiro, Singh, & Guestrin, 2016). To 
avoid the uneven performance of an algorithm across subpopulations, the sample may need 
to be generated in a stratified manner to cover the full range of the variable that may interact 
with the algorithm (e.g., equal representation from all races and genders when testing a gen-
der identification algorithm).

Threats From a Large Parameter/Procedure Space for an Algorithm

It is not uncommon to see an information-extraction algorithm applied on organic data 
starting with preprocessing steps (i.e., “data cleaning”), like “excluding users with fewer than 
2 posts in the past year due to inactivity.” Taking these steps implies a choice of parameter 
(e.g., “2” posts instead of “3”) as well as a choice of procedure (e.g., filtering nonactive users 
based on the number of posts rather than the number of friend connections made). Although 
the number of choices for each parameter/procedure might be limited (e.g., “1 to 3” posts), 
the overall parameter/procedure space of all possible choices grows exponentially with the 
number of parameters/procedures and quickly becomes astronomical even for a simple infor-
mation-extraction algorithm, considering the multiple steps and parameters an algorithm 
often requires.

Validity threats.  The existence of parameter selection and design choices made by the 
researcher—even when made with no sound justification—is not in and of itself a validity 
threat. After all, many complex algorithms, such as those in machine learning, require care-
fully tuned parameters and procedures to function properly, yet such tuning is often carried out 
manually without clear theoretical guidance (Bergstra, Yamins, & Cox 2013; C. Zhang et al., 
2017). What truly threatens robustness (or even replicability) of the findings is just like what 
social science researchers are often warned: If one attempts too many unplanned (post hoc) 
analyses on the same data, then simply by chance, some tests will result in false positives (Nel-
son et al., 2018). Following the same logic, a large parameter/procedure space could threaten 
robustness of the results if a researcher is motivated to test many parameter/procedure choices 
simply to generate a set of measures that will hit a false positive by chance (Hofman, Sharma, 
& Watts, 2017). In this case, the line between testing many parameter/procedure choices to 
ensure good algorithmic performance and cherry-picking the test results can be blurred.

Potential solutions.  One might find similarities between these validity threats and those 
caused by p-hacking (Nelson et. al., 2018), which is the practice of repeated attempts of 
modifying statistical models over the same data until a researcher finds statistically significant 
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results. While both types of threats ultimately result in false positives in research findings, 
there are subtle yet important differences between the remedies for the two. For example, 
pre-registration has been suggested as a remedy for p-hacking (e.g., Nelson et al., 2018), as 
it requires a researcher to fix the statistical model for hypothesis testing before collecting the 
data. In contrast, requiring the same pre-registration for algorithmic parameters can be chal-
lenging for two main reasons.

One is when the pre-registration should take place. Adopting the same rule as traditional 
experiment design (i.e., pre-register before seeing the data) is challenging because without 
seeing the data, a researcher often cannot even decide what procedures are needed for the 
processing of data (note the feedback loop in Figure 1). For example, without knowing (a) 
whether the data set has a large number of cells with missing values, (b) how many different 
missing values there are, and (c) the distribution of such missing values, it is difficult for a 
researcher to decide whether to simply discard all cases with missing values (Daniel, 
Kenward, Cousens, & De Stavola, 2012), adopt predictive estimation models for the missing 
values (Cambronero, Feser, Smith, & Madden, 2017), or apply more complex machine-
learning algorithms to account for missing values (Zhu, Ghahramani, & Lafferty, 2003) when 
most values of an attribute are missing. In theory, the researcher could consider all possible 
cases and pre-register all corresponding strategies. But given the numerous uncertainties 
about data quality that could require dedicated preprocessing (Rahm & Do, 2000), it is 
extremely difficult, if not impossible, for a researcher to anticipate all contingency strategies 
and register each one of them before seeing the data.

Moreover, if the design of the pre-registered process itself cannot be properly evaluated, 
then threats to the validity of the research could remain even if the pre-registered process is 
faithfully carried out. While this may not be of significant concern in disciplines like social 
psychology, where researchers (or readers, reviewers, etc.) can often properly judge the 
validity of the pre-registered research processes (e.g., measures and statistical analyses used), 
so far the computer science research community has not yet established common principles, 
standards, or guidelines on how to judge the appropriateness of the parameter/procedure-
tuning process (i.e., how much tuning is deemed too much). There have been numerous 
attempts of such in different subfields of computer science, such as in data mining (Keogh, 
Lonardi, & Ratanamahatana, 2004), machine learning (Neyshabur, Bhojanapalli, McAllester, 
& Srebro, 2017), database systems (Weikum, Moenkeberg, Hasse, & Zabback, 2002), and 
NLP (Howard & Ruder, 2018). Yet none of these attempts has risen to the level of widely 
adopted methodological standards (cf. Lipton & Steinhardt, 2018). Without a clear guideline 
to critique the pre-registered process, it is unclear whether the validity threat could be fully 
addressed even with pre-registration.

Since the threats from a large parameter/procedure space involve both data and parameter/
procedure selection, the remedy is also twofold. First, considering that certain features can be 
specific to a given data set, a researcher may use part of the input data set as a tuning sample 
to tune the information-extraction algorithm and reserve the rest of the input data set as a 
holdout sample for testing the algorithm after tuning is done. This way, data used for tuning 
and testing become separated, effectively addressing the false-positive concern (see an 
example in Campion et al., 2016). It should be noted, however, that the holdout sample is 
highly similar to the tuning sample as both were obtained at the same time in the same con-
text, which can limit generalizability to other data sets from different settings (Sussmann & 
Robertson, 1986). More importantly, while a holdout sample has been shown as an effective 
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tool for preventing the tuned parameters from “overfitting” (Ng, 1997) the data (see illustra-
tion in Putka, Beatty, & Reeder, 2018), researchers should still exercise caution when using 
a holdout sample because it is the proper usage of a holdout sample in parameter tuning, not 
the mere construction of a holdout sample itself, that addresses the validity threat stemming 
from a large parameter space.

For example, a holdout sample can be used only once, which is often neglected in prac-
tice. Consider a researcher who first validates the result over a holdout sample, then uses 
knowledge of the validation result to form another hypothesis and tests this second hypoth-
esis in the same holdout sample. This practice is not uncommon in conceptual replication 
studies where researchers use the same data set to validate an existing finding first and then 
explore (in a post hoc fashion) related relationships (e.g., a mediation or moderating relation-
ship). Yet doing so would make the original holdout sample no longer qualified as a valida-
tion tool for the second hypothesis because the sample supports the hypothesis by design 
(Dwork, Feldman, Hardt, Pitassi, Reingold, & Roth, 2015b). As another example, recent 
research in machine learning, a field where holdout samples are universally used for perfor-
mance testing, has found widespread abuse of holdout sample usage, which has created sig-
nificant overfitting problems and artificially low error rates that cannot be replicated on other 
data sets (Cawley & Talbot, 2010; Reunanen, 2003). Fortunately, when collecting new data 
from multiple samples is costly or impossible, recent developments in theoretical computer 
science suggest that using a randomized approach can enable the same holdout sample to be 
reused (see further explanations in Dwork et al., 2015b; Dwork, Feldman, Hardt, Pitassi, 
Reingold, & Roth, 2015a).

The other potential remedy is to investigate the parameter/procedure space to detect signs 
of questionable practices. There are two types of solutions here. One is to institute editorial 
policies that require researchers to fully disclose the parameters or procedures attempted 
before reaching the final design. While there can be some deterrence effect of such policies, 
as discussed earlier, it is important to note that the larger machine-learning research com-
munity has not yet established common guidelines on how to judge the appropriateness of the 
parameter/procedure-tuning process. The other type of solution is running robustness checks. 
For example, one can randomly sample other parameter/procedure combinations that may 
make changes to the input data set and test whether the research finding remains consistent. 
The premise here is that if the finding changes after adjusting the parameter for data filtering 
(e.g., “excluding users with fewer than 1 [rather than 2] posts”) or the procedure (e.g., filter-
ing nonactive users based on the number of friend connections made rather than the number 
of posts), then the finding is more likely to be an artifact of the specific parameter/procedure 
selection than a robust relationship of theoretical relevance. While this method is feasible in 
simple procedures, like the aforementioned example, it is still an open question how it can be 
applied to more complex algorithms for which the relationship between parameter settings 
and algorithm performance remains opaque even for experts (Bergstra et al., 2013; Szegedy 
et al., 2013). There is a chance that only one set of parameters/procedures works well for a 
specific data source, and it could be premature to attribute the failure of other parameter set-
tings to the lack of validity of a research finding, considering the opaqueness of the complex 
algorithms. Another issue to be considered is that multiple algorithm specifications with 
variations in parameter values may generate highly similar outputs and thus yield similar 
findings, which resembles the issue of model selection uncertainty in statistical analyses 
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(Burnham & Anderson, 2002). Researchers should be cautious about interpreting such equi-
finality in algorithm specification as evidence of lack of robustness of the algorithm used.

Threats to Validity From the Opaque Data Generation Process

A key difference between the usage of “organic” and “designed” data is readily spelled out 
in the names—researchers have much less control on how organic data were generated. This 
opaqueness of the data generation process poses special challenges for researchers to prop-
erly make inferences about the relationships between operationalizations and constructs (i.e., 
construct validity) and about the relationships among variables (i.e., internal validity). While 
our discussions in this section hence focus on these two validity components, it is important 
to note that the opaqueness of the organic data generation process can also incur threats to 
external validity and statistical conclusion validity, because (a) external validity and statisti-
cal conclusion validity are closely related to construct validity and internal validity (Shadish 
et al., 2002); (b) the usage of organic data often demands the usage of information-extraction 
algorithms, the issues of which we elaborated earlier; and (c) factors in the data generation 
process that differ from one population to another and yet are unknown to the researchers 
because of the opaqueness of the processes can threaten external validity as well as internal 
validity and construct validity. This last issue needs to be carefully addressed in observa-
tional studies in order to establish causality. The existence of unknown factors that drive 
observed data threatens internal validity because it is difficult to ensure that the observed 
effect cannot be attributed to any confounding factors (which fails to satisfy the critical con-
dition for establishing causality; Pearl, 2009). When these unknown data generation factors 
also vary from context to context, the external validity would be affected, as well.

Threats to Construct Validity

Two steps in the processing of organic data can incur threats to construct validity: (a) ad 
hoc data prefiltering and (b) post hoc measurement design.

Ad hoc data prefiltering.  The large volume of organic data, along with the fact that they 
are not generated for any specific research goal and therefore contain a large amount of 
irrelevant data, makes it necessary to filter the data before using them for research purposes. 
For example, to use data from Twitter, instead of including every tweet in the statistical 
analyses, a practical solution is to first filter tweets based on preset criteria, such as key-
words, and then analyze only those tweets that pass the filter. Fully validating a filter would 
require thoroughly examining the data set, which would defeat the purpose of setting up 
filters. Therefore, many existing studies have resorted to ad hoc filter designs, such as an 
arbitrary selection of keywords subjectively decided by the researchers to be “relevant” to 
the topic of interest. Unfortunately, such ad hoc designs likely introduce significant biases to 
the subsequent measurements of constructs using the filtered data. Past studies found that, 
for the same topic, the sets of keywords used by different individuals may have little overlap 
with each other but correlated with individuals’ opinions or past experiences about the topic 
(H. Zhang, Hill, & Rothschild, 2016). For example, whether one uses the hashtag #oscar 
or #neveroscar when discussing the Academy Awards ceremony depends on the person’s 
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opinion on the event. If a filter includes only #oscar but not #neveroscar, the selected tweets 
could be systematically biased. In addition, it can be difficult to ensure a proper filter design 
without knowing what data might appear in the input data set. For example, an intuitive filter 
to use for identifying tweets relevant to different cities is city names. However, such a filter 
may produce a data set with much more noise from tweets including city names like Houston 
(e.g., including tweets mentioning “Whitney Houston” in the filtered data set) versus others 
(e.g., Indianapolis). In all these cases, the filter is designed according to the researcher’s 
assumptions about the data generation process that unfortunately miscategorized important 
data. When the filtered data set systematically contains irrelevant data or misses parts of the 
conceptual space, the measurements developed later can be contaminated or deficient.

Measurement design.  The proper operationalization of a construct is often more chal-
lenging over organic data not generated by research design than traditional observational 
studies using established scales. For example, when researchers need to capture the similar-
ity between two Twitter accounts as perceived by other Twitter users, it is impractical for 
researchers to directly elicit a similarity score from Twitter users using a survey. Instead, they 
have to resort to inference-based operationalization, such as measuring the number and per-
centage of users who follow both accounts (e.g., Culotta & Cutler, 2016). However, such a 
seemingly direct correspondence between the construct and the operationalization can often 
include contaminated parts in the measure. For example, a study of social link creation time 
on Twitter found that nearly half of following events happen within a day after the follower 
joined Twitter (Meeder, Karrer, Sayedi, Ravi, Borgs, & Chayes, 2011). This suggests that 
two accounts may acquire a large number of common followers simply by being in the news 
and hence appearing in Twitter’s “Trends for you” or “Who to follow” lists on the same 
day (Gupta, Goel, Lin, Sharma, Wang, & Zadeh, 2013). In fact, research has shown that the 
rationale underlying a user’s “following” action differs significantly from one account being 
followed to another.4 Therefore, the number of common followers of two accounts may not 
be a proper measure of the similarity between these two accounts.

Potential solutions.  A general recommendation from Landers et al. (2016) is to develop 
a data source theory to guide data processing and measurement development in organic data 
studies. As demonstrated by Landers et al., the data source theory must be clearly communi-
cated to readers, and when hypotheses derived from the data source theory are not supported, 
data-processing procedures need to be revised and implications on findings need to be fully 
discussed. More specifically, in the case of keyword-based data filtering, instead of only rely-
ing on the preselected, subjectively decided set of keywords, the researcher can test the com-
prehensiveness of the filter by using a technique called “bootstrapping” in computer science 
literature (e.g., M. Zhang, Zhang, & Das, 2013). Commonly used in information retrieval, 
the bootstrapping technique first identifies additional keywords from those data retrieved by 
the preselected keywords and then checks whether a significant amount of additional data 
can be retrieved from discarded data based on the new keywords. This process can be carried 
out iteratively until no additional data can be revived from the discarded pile. In the case of 
measurement design, given the researcher’s lack of control over the data generation process 
and the difficulty of accessing data sources (e.g., individual human users of Twitter), many 
conventional construct validity tests, such as the multitrait-multimethod model, may not be 
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directly applicable to organic data. Nonetheless, this does not mean validating a measure 
is infeasible for organic data (see examples of validation in Sajjadiani et al., 2019; Wang  
et al., 2016). Quite the contrary, conceptual replications using slightly varied operationaliza-
tions for the same constructs can still alleviate many threats to construct validity. For exam-
ple, in addition to counting the total number of common followers, one could measure the 
common followers in each country separately, the common followers who interact with both 
friends through retweets, or the common words in tweets mentioning the two brands. If there 
is an agreement among multiple similar measures, the converging evidence could alleviate 
concerns about the threats to construct validity stemming from the mono-operationalization 
approach (Shadish et al., 2002).

Threats to Internal Validity

Although the principles of experimental design remain the same for studies using organic 
data as in traditional experiments, in practice, many experiments using organic data are con-
ducted on complex technological platforms with opaque designs (e.g., online social net-
works, movement-tracking sensors). This opaqueness often makes it impossible or 
prohibitively expensive to enable proper experimental manipulations. For example, research-
ers often do not have direct controls on what recommendations or advertisements a user sees 
on a website. Instead, they often resort to alternatives such as natural experiments (Sismeiro 
& Mahmood, 2018), which leverage natural incidents, like website outages, as the manipula-
tion. Or they may leverage techniques like the causal inference approach developed by Pearl 
(2009), which attempts to infer causal relationships from observational data based on tools 
like causal diagrams. It is well known that the lack of control on manipulation and random-
ization of participants makes it difficult to exclude alternative explanations for the observed 
covariations, introducing concerns on internal validity. Making it even more challenging to 
draw causal inferences, the black-box design of technological platforms can introduce hid-
den linkages between different variables captured in the same study, thereby confusing cause 
and effect with the internal works of the technological platforms. Such threats may occur in 
the following three forms.

Links between features.  Separate, seemingly independent features of a technological plat-
form may be linked at the back end. If a researcher is unaware of such linkages, then he or 
she might incorrectly attribute the observed covariation between two variables to a treatment 
effect when in fact that covariation is caused by the linkage inside the platform design. For 
example, researchers may be interested in testing how the new connections a user forms on a 
website (e.g., LinkedIn) affect the user’s behavior (e.g., searching or applying for job vacan-
cies). While the new-connection feature may appear separate from the job post–following 
feature of the website, many such websites provide recommendations for both interuser con-
nections and posts about products/corporations based on shared factors, such as a user’s past 
browsing history. In this case, the covariation one observes between the new connection and 
the change of job search behaviors may be both caused by the hidden factor of platform-
generated recommendations. This is a typical example of how a hidden link between fea-
tures of a technological platform threatens the internal validity of causal inferences from an 
experiment.
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Dynamic changes.  Features of online platforms (e.g., online social networks and e-com-
merce websites) evolve over time, often at a fast speed. However, the exact nature of these 
changes may not be announced timely or at all. The Android app of Instagram, for example, 
was updated 286 times from its first release in April 2012 to May 2018, averaging 3.86 times 
per month (Uptodown.com, 2018). While some of these updates were minor security fixes, 
others introduced major revisions to how the platform functioned (Segarra, 2018). Such 
major revisions could change what feeds into the measurements used in a study and thereby 
lead to incorrect inferences about the relationship of theoretical interest. For example, Apple 
has revised several times how the average review score is computed for an app in its iOS App 
Store (Dillet, 2017). The score started off as the average of all reviews for the app, was subse-
quently changed to be the average of reviews for the current version only, and then, in 2017, 
became much more fluid as Apple began to allow a developer to choose whether to reset the 
average review score when an app is updated. This last change could artificially increase the 
average review score, as a developer can choose whether to reset the score based on the trend 
of the last batch of reviews. If the current review score were used as an indicator of product 
performance or performance of the research-and-development team in a study, changes in the 
score over time could be mistaken as only reflecting a certain type of treatment effect when, 
in fact, it also reflected changes in the measurements (which may have captured different 
theoretical constructs).

Link between platforms.  With the increasing prevalence of cloud computing, many seem-
ingly unrelated technological platforms operated by different organizations may now have 
hidden links attributable to their common cloud service providers. For example, many web-
sites today use one or more content delivery networks (CDNs), a collection of geographically 
distributed data centers and servers, to quickly deliver content to their users around the globe. 
When one of the major CDNs (e.g., Akamai, Amazon CloudFront, Azure CDN) suffers a 
service outage, websites that use the same service will be simultaneously affected. Moreover, 
since many websites use more than one CDN, the affected users may be limited to isolated 
geographic regions or Internet service providers, making such links difficult to detect. Not 
being aware of such a link would be problematic when website outages are used as the basis 
of “natural experiments” in research aiming to understand how users move from one website 
to another (Sismeiro & Mahmood, 2018). If a researcher is unaware of the common CDNs 
used by multiple websites, then he or she might incorrectly attribute the observed covariation 
of traffic drops to the treatment effect (e.g., features manipulated on one website of theoreti-
cal interest leading users to another) when in fact the covariation is caused by the technical 
issue of the underlying shared CDN.

Potential solutions.  An ideal solution to the above-described problem is, of course, to 
thoroughly “unbox” the design of the technological platform. However, this is often infea-
sible due to the sensitivity of such designs. For instance, the recommendation algorithm is 
often considered a trade secret by websites such as Amazon. As such, the researcher has to 
be diligent to uncover the potential hidden links and dynamic changes, and properly institute 
checks to guard against the threats to internal validity. For example, to guard against potential 
validity threat from between-feature links in the earlier example, it is important to carefully 
document all data a user may be exposed to on the website and check through empirical 
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tests to identify which of them may be affected by the treatment condition. Similarly, one 
can use tools like CDN finders (e.g., whatsmycdn.com) to detect CDNs used by a website. 
The continuous monitoring of measured variables to detect sudden changes, using multiple 
operationalizations when possible, along with cross-checking changes with known system 
updates, can alleviate threats from dynamic changes. Nevertheless, none of these solutions 
can completely eliminate threats from the black-box design to internal validity because, as 
the name “black box” suggests, the platform provider might make unannounced changes that 
are extremely difficult, if not impossible, to detect (as an example, see technical work on how 
websites can institute hard-to-detect changes to thwart external attempts on reverse engineer-
ing its design; M. Zhang, Zhang, & Das, 2012). Despite the challenge, the diligent checks 
by researchers can alleviate many common concerns and boost confidence in the robustness 
of the findings.

Final Remarks

In this commentary, we discussed two broad types of validity threats concerning research 
using organic data, one stemming from the opaqueness of the organic data generation process 
and the other from the need of using automated information-extraction algorithms to process 
such data. We also shared some potential remedies. While much of our discussion focused on 
the potential pitfalls of using organic data, we would like to conclude the commentary by 
cautioning against a “defeatist attitude,” that is, one that completely dismisses the scientific 
value of organic data for research solely due to the validity concerns. This attitude could be 
detrimental to advancing research in any field, especially management, given the importance 
of organic data to today’s businesses and the potential for organic data to complement data 
from design-driven studies. We believe, instead of abandoning organic data (which is to des-
ert a gold mine of valuable information and knowledge), the research community should 
invest more in the proper understanding on the extent of, causes of, and remedies for validity 
threats in the workflow of any research using organic data. It is our hope that this commen-
tary demonstrates the pressing need of such research and inspires more future studies in this 
direction.
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Notes
1.	 Note that the robustness issues discussed in this commentary overlap with, but are not entirely identi-

cal to, issues covered by these related terms, such as reproducibility and replicability. For example, recent studies 
(Chapman, Benedict, & Schiöth, 2018) found that certain characteristics (e.g., gender) of the experimenter who 
interacts with subjects in a clinical trial could have significant effects on the research findings. While such exper-
imenter-related issues are generally covered under the umbrella of reproducibility or replicability, they are not as 
relevant in research using organic data and hence are not the focus of this commentary.

2.	 Both U.S. Census data and e-mail traces are generally considered archival data in management research. 
See a review of different types of archival data used in management research in Barnes, Dang, Leavitt, Guarana, and 
Uhlmann (2015).

https://orcid.org/0000-0001-5642-6543
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3.	 For example, an if statement, such as “if (age < 30) [code-block-1] else [code-block-2],” creates two 
branches. Which branch will be activated depends on input values (age) that may not be known prior to execution. 
This type of nested if statement creates an exponential number of possible execution paths, leading to a prohibitively 
high computational cost for enumerating all possibilities.

4.	 For example, see the sharp contrast between the engagement rates of the followers of @chefsymon and 
those of @zagat at https://moz.com/blog/social-authority.
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