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General Article

Readers of the Association for Psychological Science’s 
(APS’s) journals have seen serious criticisms leveled at 
the field of psychological science lately. For example, 
authors have stated that “the typical study in psychol-
ogy appears to be underpowered” (Bakker, van Dijk, 
& Wicherts, 2012, p. 544), that “the average power of 
typical psychological research is estimated to be embar-
rassingly low” (Perugini, Gallucci, & Constantini, 2014, 
p. 319), and, perhaps worst of all, that “psychology is 
suffering from a ‘crisis of confidence’” (Pashler & 
Wagenmakers, 2012, p. 528; this latter comment referred 
to the low rate of successful replication, for which the 
prevalence of underpowered studies appears to be a 
contributing factor). Given all of this, there has never 
been a more important time to carefully consider how 
studies can be properly planned so as to have appropri-
ate statistical power (the probability of rejecting the 
null hypothesis of no effect when the true effect is 
nonnull in the population—which we henceforth refer 
to simply as power).1 The goal of the present article is 

to provide guidance on effective strategies for sample-
size planning for sufficient power in common experi-
mental designs used in psychology and related fields.

When the goal of a study is to determine the exis-
tence or direction of an effect, the appropriate sample 
size for a given level of power depends on the size of 
the effect. Given that the true (population) effect size 
is unknown, there are two general types of approaches 
to using effect size as a basis for planning sample size. 
In one type of approach, the researcher determines a 
sample size that will provide desired power for detect-
ing a minimally important effect,2 regardless of the true 
value of the effect size. In the other type of approach, 
the researcher attempts to estimate how large the true 
effect is likely to be and to calculate a corresponding 
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sample size based on that estimate. The estimated effect 
size can be found in a few ways, but one option is to 
use a sample effect size from a prior published or pilot 
study. We focus on this specific approach for three 
reasons. First, it is a popular method for theory testing. 
In fact, this was the most commonly used approach to 
sample-size planning reported in two recent issues of 
Psychological Science. Second, we show that although 
this method is intuitively appealing, it can be severely 
flawed if sample effect sizes are taken at face value. 
The desired level of power will be achieved only if the 
sample effect size is an accurate estimate of the popula-
tion value. Later in this article, we illustrate that intu-
itions regarding the relationship between an effect-size 
estimate and the true value may sometimes be surpris-
ingly inaccurate, especially when the estimate comes 
from an underpowered study. In some situations, even 
small differences between the true and estimated values 
can have a dramatic impact on power when these esti-
mates are used in sample-size planning. Third, we have 
developed an adjustment that yields a more appropriate 
value of the effect-size estimate from a prior study, 
which can lead to more accurate sample-size planning. 
We evaluate this proposed method using Monte Carlo 
simulations, show that it overcomes the shortcomings 
of the widely used approach, and discuss an R package 
(BUCSS; Anderson & Kelley, 2017) and user-friendly 
Web applications that we have made freely available to 
allow researchers to use our suggestions in their own 
sample-size planning.

Statistical Power in Psychological 
Studies

The topic of power in psychology is not new, but has 
become a mainstream point of discussion in recent 
years. In fact, a PsycINFO search of titles that included 
“power analysis” or “sample size” in the decade from 
1990 through 1999 yielded 239 results, whereas the 
same search criteria yielded 583 results from 2006 
through 2015. However, it is not obvious that this 
increase in writing on the topic has led to a correspond-
ing increase in power in the published literature. Con-
sider that in 1962, Cohen reported that across the 
experiments reported in 70 articles from the Journal of 
Abnormal and Social Psychology, the average power to 
detect a medium-size effect was .48 (although the cri-
teria for what constitutes a medium-effect size were 
lowered following this work). This eye-opening review 
catalyzed an entire subdiscipline devoted to formal 
power analysis. Twenty-seven years later, Sedlmeier and 
Gigerenzer (1989) published a report on the change in 
power following Cohen’s and other researchers’ writ-
ings on this subject. The findings were paradoxical: 

Twenty-five years of articles emphasizing the impor-
tance of power had not resulted in an improvement of 
the power of experiments conducted in the field of 
psychology.

Unfortunately, research indicates that the situation 
may not be much better today. Despite the abundance 
of articles on the topic, navigating the complex litera-
ture to determine the appropriate sample size for suf-
ficient power in a study can be daunting and confusing. 
Further, journals are just beginning to require formal 
justification for the sample sizes of experiments reported 
in submitted manuscripts.

In a recent survey, Bakker et al. (2012) posited that 
average power in psychological experiments is .35, 
assuming typical effect sizes and sample sizes. Other 
surveys indicate that the average may vary by subject 
area (see, e.g., Fraley & Vazire, 2014, and Button et al., 
2013, for literature reviews of social psychology and 
neuroscience, respectively). Further, in a comprehen-
sive review of studies assessing average power in psy-
chology, Smaldino and McElreath (2016) demonstrated 
that power to detect a small-size effect has shown “no 
sign of increase over six decades” (p. 5; R2 = .00097). 
Correspondingly, sample sizes for experimental research 
are often small. For example, Marszalek, Barber, Kohlhart, 
and Holmes (2011) found a mean total sample size, N, 
of 40 in a representative survey of four top-tier psychol-
ogy journals, and our analysis of data3 from a review 
published in the same year (Wetzels et  al., 2011) 
revealed that the median per-group sample size, n, was 
24 for independent-samples t tests and 23 for dependent-
samples t tests. Moreover, when we surveyed four Psy-
chological Science issues from 2016 (March–June), we 
found a median n of 26 for in-person studies (and 250 
for online studies).

Consequences of Low Power

Low power has some nonintuitive consequences, which 
go beyond low probability of detecting the effect of 
interest when it exists. Because published articles are 
almost exclusively restricted to studies with statistically 
significant results, high power can certainly benefit the 
individual researcher. However, power also has implica-
tions for the field at large and the trust that can be 
placed in published studies.

First, when studies are underpowered, the false-
discovery rate (i.e., the proportion of studies falsely 
finding an effect) is increased. Ioannidis (2005) showed 
that, all other things being equal, there is a higher prob-
ability that a published research claim is false in a lit-
erature with lower-powered studies. Second, even 
underpowered studies that do find real effects tend to 
yield inflated effect-size estimates (Lane & Dunlap, 
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1978; Maxwell, Lau, & Howard, 2015), a problem that 
we describe in more detail later. Third, underpowered 
studies decrease the likelihood that a researcher will 
be able to successfully replicate the original results. 
Reflected by the Open Science Collaboration’s (2015) 
article on the low rate of reproducibility in psychology, 
mistrust in published findings has become an increas-
ingly serious concern. The replication crisis in psychol-
ogy is multiply determined, and factors such as multiple 
testing and p-hacking likely play a role (see Simmons, 
Nelson, & Simonsohn, 2011, and John, Loewenstein, & 
Prelec, 2012, for descriptions of questionable research 
practices, or QRPs). However, even when researchers 
conduct a well-intentioned power analysis to determine 
the sample size of a replication study, the power of the 
original study limits their ability to determine an accu-
rate sample size, sometimes severely (Anderson & 
Maxwell, 2016, 2017; Button et al., 2013).

Current Practices

Despite the growing emphasis on achieving adequate 
power, formal power analysis is still not typical in many 
areas within psychology. In fact, Bakker et al. (2012) 
noted that power was referred to “as a rationale for the 
choice of sample size or design” (p. 544) in only 11% 
of a recent sample of psychological publications report-
ing results of null-hypothesis significance testing. A 
more recent survey of psychology researchers found 
that, although almost half mentioned power analysis 
when they explained how they decided on sample 
sizes, practical considerations were sometimes valued 
more than a rigorous approach to sample-size planning 
even within this group. Moreover, the half who did not 
mention power analysis used strategies involving “intu-
ition, rules of thumb, and prior practice” (Bakker, 
Hartgerink, Wicherts, & van der Maas, 2016, p. 1069), 
in addition to accommodating practical constraints.

Our own focused analysis of common strategies for 
sample-size planning reported in two recent issues of 
Psychological Science (April and June 2016) also 
revealed a variety of justifications for sample size. 
Details about sample-size planning were provided in 
16 of the 29 articles, but in almost half of these cases 
(7 out of 16), there was no mention of effect size. Six 
articles reported that the sample sizes used were com-
parable to those found in published studies on a similar 
topic, and the authors of one article relied on practical 
considerations. Unfortunately, when researchers use 
these ad hoc strategies, they may be unsuccessful in 
reaching the level of power that they believe they are 
achieving (intended power; e.g., .80), as the chosen 
sample sizes are not based on the size of the effects in 
question. Strategies based on prior sample size alone 

(“rules of thumb”) can result in selecting sample sizes 
that are either too large or too small, depending on the 
power of the prior studies involved (Green, 1991; see 
Anderson & Maxwell, 2017, for a simulation). An over-
estimate of the required sample size may not always be 
an advantage either, especially in fields where partici-
pants are costly or belong to specialized subpopulations 
that are difficult to recruit, and where oversampling can 
be considered an ethical issue (Maxwell & Kelley, 2011).

Effect size was taken into account by the authors of 
10 of the 16 articles that reported details about sample-
size planning.4 In 2 of these cases, the targeted sample 
size was based on an assumption of a medium-size 
effect in the population. In the other 8 cases, the 
authors calculated the suggested sample size for an 
intended level of power (e.g., with G*Power; Faul, 
Erdfelder, Lang, & Buchner, 2007) using a sample effect 
size from a prior published study (5 studies) or a pilot 
study (3 studies) as a substitute for the population effect 
size. This was the most common strategy we found in 
our review. Despite Psychological Science’s assertion 
that “it is typically not appropriate to base sample size 
solely on the sample sizes and/or effect sizes reported 
in prior research or on the results of small pilot studies” 
(APS, 2016), “there has been a venerable tradition of 
using pilot studies to estimate . . . effect sizes that, in 
turn, are used to inform the design of subsequent larger 
scale hypothesis testing studies” (Leon, Davis, & 
Kraemer, 2011, p. 628). Although using an estimated 
effect size to plan the sample size of a future study 
seems logical because the sample effect size does esti-
mate the population value, researchers who use this 
approach typically design studies with less power than 
intended, and thus reduce their probability of obtaining 
statistically significant results.

Specifically, there are two main problems with this 
“effect size at face value” approach as currently applied. 
First, sample effect sizes reported in published research 
are upwardly biased, because of journals’ preference 
for statistically significant findings5 (Brand, Bradley, 
Best, & Stoica, 2008; Lane & Dunlap, 1978; Maxwell 
et  al., 2015) and the prevalence of multiple testing. 
Moreover, the nonlinear relationship between effect 
size and power means that an overestimated effect size 
will decrease power more than an equivalent underes-
timate increases power (Maxwell et al., 2015).

To understand the impact of publication bias, sup-
pose that it is Tuesday morning and a researcher eagerly 
opens a new article via the weekly “This Week in Psy-
chological Science” e-mail. The article reports an inter-
esting result with an effect size of 0.6, as measured by 
Cohen’s d, based on an independent-samples t test with 
25 participants per group. The astute researcher may 
wonder what population effect size (δ) is most 
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consistent with this sample d of 0.6.6 Consider three 
alternatives: δ = 0.2, δ = 0.5, and δ = 0.8, which cor-
respond to Cohen’s small, medium, and large effects, 
respectively. Intuition would probably suggest that the 
observed sample d should be a good estimate (or at a 
minimum, the only available estimate) of the unknown 
population δ, so that a reasonable estimate for δ would 
be 0.6 or, among the three alternatives, 0.5. However, 
publication bias makes this intuition misguided. Figure 
1 depicts the distribution of d for these three δ values, 
given 25 participants per group, in the presence of 
publication bias.7 We note that the x-axis does not go 
below 0.50. In a journal that publishes only experi-
ments resulting in p values less than .05, the minimum 
sample d reported among studies with n of 25 is 0.57, 
regardless of how large or small the effect is in the 
population. Publication bias will thus prevent any pub-
lished study with this sample size from producing an 
accurate estimate of the population effect unless δ is 
0.57 or larger. Moreover, unless δ is much larger than 0.57, 
publication bias will still cause the sample d to systemati-
cally overestimate δ. A published sample d of 0.6 (vertical 

line in Fig. 1) is not most consistent with a δ of 0.5, but 
is most consistent with a δ of 0.2. In fact, the most likely 
value of δ for this sample d is 0.16 (Hedges, 1984).

The second main problem with the current “effect 
size at face value” approach is that even if publication 
bias is not a concern,8 sample effect sizes are only 
estimates of their population counterparts. Thus, there 
is uncertainty in these estimates. This uncertainty is 
reflected in the width of a confidence interval for the 
population value, but is not reflected when a researcher 
uses only the point estimate for sample-size planning 
(e.g., Dallow & Fina, 2011; Taylor & Muller, 1996).9 
Consequently, to make a sample effect size more effec-
tive as the basis for planning a future study for a desired 
power, the effect-size estimate should be adjusted for 
uncertainty in addition to publication bias.

To understand the joint impact of publication bias 
and uncertainty, suppose a second researcher reads a 
different article, which reports a d of 0.8, also for an 
independent-samples t test with 25 participants per 
group. What is the most likely value of δ in this case? 
Figure 2 illustrates the possibilities from a different 
perspective than Figure 1, with values of δ rather than 
d on the x-axis. The graph shows the likelihood of 
various values of δ between zero and 1.0 for ns of 25 
and 100, given a sample d of 0.8 and the presence of 
publication bias. When n is 25, the most likely δ for 
this study is not 0.8, but rather 0.56, much lower than 
the reported sample value. What is even more interest-
ing is the relative flatness of the curve for this n: A large 
effect size reported in the published literature when n 
is 25 tells readers relatively little about the true effect 
size. In fact, δ is almost as likely to be zero as 0.8. The 
curve for an n of 100 highlights the fact that larger 
sample sizes are necessary to obtain a more precise 
estimate of δ.10

However, going beyond the two fundamental prob-
lems of publication bias and uncertainty, the process 
of basing the appropriate sample size on a sample 
effect size is not straightforward for two additional rea-
sons. First, effect-size measures commonly used in 
analysis of variance (ANOVA) are inconsistently defined. 
For example, even in a case as simple as a dependent-
samples t test, d can be defined in at least three ways 
(see Lakens, 2013, for a primer on these various repre-
sentations of d), and the effect-size measure f 2 for 
ANOVA can also be defined in several distinct ways. 
However, published studies rarely specify the particular 
definition or formula used for the effect size presented 
(e.g., Kelley & Preacher, 2012), so researchers must 
hope that the software they use for their power analysis 
uses a definition of effect size that matches the pub-
lished study’s formulation. Second, the effect-size mea-
sures f 2 and f, which are needed for the popular 
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Fig. 1.  Distribution of Cohen’s d for experiments with 25 participants 
per group. Separate distributions are shown for three values of the 
population effect size, δ: 0.2, 0.5, and 0.8. Values of d less than 0.50 
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power-analysis software G*Power (Faul et  al., 2007), 
and the related effect-size measure η̂2 can be particu-
larly problematic to use for sample-size planning, as 
the sample estimators result in upwardly biased esti-
mates of the true population values (Olejnik & Algina, 
2000; Skidmore & Thompson, 2013). This bias is due 
to the formulas for the estimators themselves and is 
distinct from publication bias.

These factors have caused methodologists to bemoan 
the difficulties in accurately estimating effect sizes and 
thus planning appropriate sample sizes. Lipsey (1990) 
aptly referred to effect size as the “problematic param-
eter” (p. 47) in sample-size planning, most importantly 
because it is “unknown and difficult to guess” (p. 47). 
Similarly, Gelman and Carlin (2014) stated that “the 
largest challenge in a design calculation [is] coming up 
with reasonable estimates of plausible effect sizes based 
on external information” (p. 641). Thankfully, sample 
effect-size measures are only an intermediate step in 
sample-size planning, and are not necessary for deter-
mining power, as we show in the next section.

What Determines Power

To calculate power in ANOVA, one has to consider the 
noncentral F distribution.11 This distribution is defined 

by appropriate numerator and denominator degrees of 
freedom and the noncentrality parameter, which 
describes how far the center of the (alternative) distribu-
tion shifts away from the distribution under the null 
hypothesis.12 A general expression for the noncentrality 
parameter (λ) in an ANOVA with equal ns in all cells is

	 λ = nξ,� (1)

where the general population effect size ξ is given (in 
matrix form) by

	 ξ =
(Cµ)′ (CC′)−1(Cµ)

σ2 ,� (2)

where µ is a vector of population means, C is a contrast 
matrix (or vector) reflecting the type of effect of interest 
(e.g., main effect, interaction, contrast), and σ2 is the 
population within-group variance (Muller & Fetterman, 
2002, pp. 450–451). The parameter ξ reflects the mag-
nitude of the population mean differences to be tested 
relative to the population variance. For example, in an 
independent-samples t test, ξ reduces to δ2/2. Notably, 
Equation 1 shows that the noncentrality parameter com-
bines effect size and sample size.

Central to our approach to sample-size planning is 
the utility of separating sample size from effect size, 
which is evident in Equation 1. One can isolate n, hold-
ing ξ constant at any value. We emphasize a simple 
relationship between sample size and the noncentrality 
parameter: Doubling n doubles λ, halving n halves λ, 
and so forth.13 More generally, one can choose a 
multiplicative factor for n that produces a λ that cor-
responds to one’s intended power. An immediate com-
plication is that power depends on λ, whose value one 
cannot know in practice because it is a population 
parameter. We now turn our attention to how the results 
from a published study can be used to more accurately 
estimate λ.

Proposed Method: A Better Approach 
to Sample-Size Planning

As discussed, when researchers conduct a power analy-
sis, they often base their calculations on the sample 
effect size obtained in a study on their topic of interest. 
The method we propose here allows researchers to use 
such an effect-size estimate in a way that allows their 
power analysis to more accurately reflect the population 
effect size. In this section, we describe this method. The 
underlying logic, and more methodological detail, is 
provided in the Supplemental Material available online 
(see Conceptual Logic of Taylor and Muller’s Method).

Taylor and Muller (1996) proposed a likelihood-
based procedure to adjust sample effect-size estimates 
for varying degrees of publication bias and uncertainty. 
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Specifically, a new, adjusted estimate of the noncentral-
ity parameter, λ̂A,14 which will be used in determining 
sample size, is derived from a truncated noncentral F 
distribution, in which the truncation reflects publication 
bias. The likelihood function, LT, of this truncated dis-
tribution is given by

	

L

L

F =

F |

CDFF F |

T P num den

F P num den

n

[ ; , , ]

[ , , ]

1 [ crit (1 P)

ν ν λ

ν ν λ

− − α ν uum den, , ]ν λ
.
� (3)

The numerator is the likelihood of obtaining the F value 
observed in the prior study, FP, given the noncentrality 
parameter, λ, and the degrees of freedom in the numer-
ator and denominator, νnum and νden, respectively, in the 
absence of publication bias. The denominator can be 
thought of as the power of the test given the specified 
λ, νnum, and νden; αP is the α level that was required in 
order for the published study to be eligible for publica-
tion, Fcrit is the critical value at the (1 – α)100th per-
centile of the distribution, and CDFF is the cumulative 

distribution function of the noncentral F distribution. 
The denominator serves to truncate what would other-
wise be a standard F likelihood, as, given our model of 
publication bias, nonsignificant results are censored 
from the distribution.

The method produces a likelihood distribution for 
the value of λ̂A, given the observed F value from a prior 
study, under an assumption that publication bias may 
be operative. Note that the researcher does not have to 
make any assumptions regarding the number of unpub-
lished studies (the “file drawer”) in order to adequately 
adjust for publication bias. The only information needed 
is the α level required in order for the study to be 
accessible to the reader (usually .05). The value of αP 
can be specified as greater than .05 when the degree 
of publication bias is thought to be lower. If publication 
bias is thought not to apply, αP can be set equal to 1.

A benefit of obtaining a distribution of values is the 
option of deciding how much (if at all) to accommodate 
uncertainty in the estimate of the noncentrality param-
eter. For example, choosing the value of λ̂A associated 
with the median (50th percentile) of the likelihood 
distribution results in a median-unbiased estimator of 
the population noncentrality parameter, that is, an esti-
mator adjusted for publication bias only. Researchers 
can also adjust for both uncertainty and publication 
bias by selecting the λ̂A associated with a more conser-
vative (lower) quantile of the likelihood distribution. 
Taylor and Muller (1996) recommended using the lower 
limit of a one-sided 95% confidence interval of the 
noncentrality parameter, or the 5th percentile of the 
distribution.

The researcher’s choice of quantile for the uncer-
tainty adjustment is directly related to the assurance 
the researcher desires to reach: quantile = 1 − desired 
assurance. Assurance is the percentage of times power 
would reach or exceed the intended level if the sample-
size planning process was to be reproduced many 
times. Taylor and Muller’s (1996) method is designed 
to reach 50% and 95% assurance when one uses the 
50th and 5th percentiles, respectively.

Figure 3 makes the concept of assurance more con-
crete. It shows the power of a future study based on 
the d observed in each of 100 hypothetical prior studies 
(n = 25) and a population effect size, δ, of 0.5, in a 
world where all studies get published, so as to isolate 
the role of uncertainty. The unadjusted effect size from 
each of these individual studies forms the basis for the 
sample size of a future study. Because we know the 
value of δ, we know that 64 participants per group are 
needed for the future study to have .80 power (the 
horizontal line in Fig. 3). Because of uncertainty alone, 
approximately one half of the 100 sample estimates will 
happen to fall above the population value (too large), 
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Fig. 3.  Plot illustrating 50% assurance with .80 power. The plot 
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tion δ, and the corresponding future studies exceed .80 power (the 
horizontal bar). The other half of the sample ds fall above δ and lead 
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and the other half will fall below (too small). When the 
studies obtaining a d value less than 0.5 are used in 
sample-size planning, they will suggest sample sizes 
larger than the necessary 64 per group. The resulting 
future studies will have power at or above .80. How-
ever, when the studies obtaining sample d values 
greater than 0.5 are used to plan future sample sizes, 
the suggested sample sizes will be smaller than 64 per 
group. These future studies will have power lower than 
.80. Because half of the future studies reach or exceed 
the intended power, Figure 3 represents a situation with 
50% assurance.

Now that we have described the properties of our 
proposed method, we provide an example of an inves-
tigator using the approach in practice. Recall our hypo-
thetical researcher who read an article in which an 
independent-samples t test (with 25 participants per 
group) indicated that the sample d was 0.8. Using 
Taylor and Muller’s (1996) 50th-percentile method to 
adjust the sample estimate of 0.8 for publication bias 
results in a new (adjusted) δ estimate, δ̂A, of 0.64. This 
value of δ̂A can then be used for subsequent sample-
size planning, in place of the face value of d (i.e., 0.8).

Alternatively, a lower percentile could be chosen so 
as to adjust for uncertainty in addition to publication 
bias (lower percentiles lead to more adjustment and 
thus higher assurance). For the example in the previous 
paragraph, using the more conservative 5th percentile, 
recommended by Taylor and Muller (1996), results in 
an uncertainty-adjusted δ̂A of zero. This highlights an 
important consideration with this method: When a 
researcher takes a conservative approach to adjusting 
a published effect-size estimate for uncertainty and 
bias, the resulting estimate may suggest that the true 
population effect could be zero. This does not indicate 
a problem with the method, but rather is a signal that 
the prior study’s effect size is so uncertain and biased 
that the population effect size cannot be accurately 
estimated at the desired level of assurance (e.g., Gelman 
& Carlin, 2014; Yuan & Maxwell, 2005).

Practically speaking, if a zero estimate arises for a 
specified level of assurance, a researcher may choose 
to decrease the intended assurance (generally a mini-
mum of 50%), to increase the α level required for the 
prior study to be published (αP), or both. The benefit 
of doing either or both is that sample-size planning can 
proceed with a nonzero estimate with levels of assur-
ance and adjustment for publication bias that are still 
known and planned for ahead of time. Nevertheless, a 
zero estimate is a signal that there is not as much infor-
mation in the observed estimate as would be desirable. 
In practice, we encourage researchers to adjust assur-
ance downward or αP upward (or both) as minimally 
as possible, so as to achieve a nonzero estimate with 

assurance and bias adjustment as close to the desired 
levels as possible.

Comparison of Approaches to  
Sample-Size Planning: A Simulation 
Study

To thoroughly evaluate the performance of the pro-
posed method and compare it with a typically used 
procedure for sample-size planning, we conducted a 
Monte Carlo simulation study. Readers can likely recall 
many strategies for determining sample size. However, 
several reasons led us to compare our suggested 
method with using a sample effect size at face value in 
this simulation study. First, using a sample effect size 
directly is common among researchers reporting 
sample-size justifications, even when their studies make 
novel contributions and are not simply replications. 
Second, this approach gives the impression of being 
effective, objective, and informed by the literature, as 
it requires formal power-analysis software and an 
empirical basis for estimating the magnitude of the 
effect. Third, as we mentioned earlier, other practices 
that were common in the Psychological Science articles 
we reviewed have been shown to provide overestimates 
or underestimates of the necessary sample sizes for 
future studies (e.g., rules of thumb; Anderson & 
Maxwell, 2017). Consequently, it is most efficient to 
compare approaches aimed at providing an intended 
level of power. Nevertheless, we discuss several other 
approaches to sample-size planning later (see Alternative 
Approaches to Sample-Size Planning).

Our simulation tested the effectiveness of four strate-
gies (all with intended power of .80): (a) using the face 
value of the sample effect size obtained in a previously 
published study, (b) using Taylor and Muller’s (1996) 
method at the 50th percentile, (c) using Taylor and 
Muller’s method at the 20th percentile,15 and (d) using 
Taylor and Muller’s method at the 5th percentile. We 
generated data consistent with a variety of effects in 
experimental designs: the mean difference in a two-
independent-group design (independent-samples t 
test), the paired mean difference in a two-level repeated 
measures design (dependent-samples t test), the three-
level main effect in a 3 × 2 between-subjects ANOVA 
design, and the interaction effect in a 3 × 4 split-plot 
design (mixed-model ANOVA). We assumed that the 
researcher was basing sample-size calculations for a 
future study on the effect size reported for a previously 
published study with 25 participants per group, and 
that only studies yielding results with p values less than 
.05 were published. For each design, we assessed the 
performance of the four methods for three different 
magnitudes of the population noncentrality parameter, 
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based on Cohen’s small, medium, and large effect 
sizes.16 Specifically, we calculated the mean actual 
power, the median suggested sample size, and the 
assurance achieved in the future study. (Details regard-
ing the simulation procedure are presented in the Sup-
plemental Material—see Full Simulation Procedure and 
Results—and simulation code is available from the first 
author upon request.)

For the sake of brevity, we present results only for the 
interaction in a 3 × 4 split-plot ANOVA (Table 1). Results 
for the other designs showed similar patterns and can 
be found in the Supplemental Material (see Full 
Simulation Procedure and Results). Table 1 shows that 
the average power was lowest when the face value of 
the sample effect size was used to determine sample size 
for a new study. In fact, average power using this tech-
nique was less than .15 for a small population effect size, 
a value distressingly below the intended .80. Taylor and 
Muller’s (1996) method was more powerful, with the 
5th-percentile version providing the highest power, as 
is to be expected because it provides maximum allow-
ance for uncertainty by choosing a smaller estimate of 
the noncentrality parameter than either the 20th- or the 
50th-percentile versions. With larger population effect 
sizes, the methods performed more similarly to one 
another, though Taylor and Muller’s method consistently 
outperformed using the sample effect size at face value.

Table 1 also shows the median sample sizes sug-
gested by each method. At first, it may seem preferable 

to opt for using the sample effect size at face value in 
determining one’s sample size, given that the sample 
sizes for this method seem to be the most reasonable 
and obtainable. However, recall that these sample sizes 
are adequate to detect only an effect of the published 
effect size, which we have emphasized can be quite 
inaccurate (e.g., for a small population f 2 of 0.01, the 
median “published” f 2 in our simulation was 0.07, larger 
than Cohen’s criterion for a medium effect size). Con-
sequently, these sample sizes provide the power that 
was actually obtained with each method (i.e., as low 
as .139 in our simulations; see Table 1), rather than the 
.80 benchmark. The suggested sample sizes from Taylor 
and Muller’s (1996) method are larger, increasing with 
the conservativeness of the chosen percentile. Critically, 
however, the more effective the method is at ensuring 
.80 power, the larger the sample size required. Such 
larger sample sizes may sometimes necessitate collabo-
ration among multiple investigators.

Finally, Table 1 also presents the assurance achieved 
by each method. For a small population effect size, the 
assurance from using the sample effect size at face 
value was zero. That is, in 10,000 replications, this 
method never resulted in the intended .80 power. Taylor 
and Muller’s (1996) method is designed to reach 50%, 
80%, and 95% assurance when the median, 20th per-
centile, and 5th percentile, respectively, are used. When 
the population effect size was medium or large, these 
goals were met or exceeded. In fact, the method worked 

Table 1.  Results of the Monte Carlo Simulations for a 3 × 4 Split-Plot Analysis of Variance

Population ES

Approach to sample-size planning

Taking the sample 
ES at face value

Taylor and Muller’s (1996) method

50th-percentile 
version

20th-percentile 
version

5th-percentile 
version

Actual power
Small .139 .616 .771 .825
Medium .529 .792 .911 .972
Large .641 .818 .902 .958

Median suggested sample size
Small 17 84 126 147
Medium 11 20   36   76
Large 6   8   11   14

Achieved assurance
Small 0.0% 38.3% 54.1% 61.3%
Medium 4.0% 54.3% 82.6% 95.7%
Large 15.2% 66.1% 89.2% 98.0%

Note: The simulations were based on a prior study with 25 participants per group. The intended power 
was .80, and values that exceeded this level are highlighted in boldface. The values used for small, 
medium, and large effect sizes were based on Cohen’s (1988) guidelines. ES = effect size.
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as intended in all cases, despite the fact that the desired 
assurances (and adjustments for publication bias) were 
lowered when λ̂A was zero.

It is clear from the simulations that actual power 
achieved using the common strategy of taking the sam-
ple effect size at face value can be far removed from 
the intended power. To be clear, this poor performance 
was due to the uncertainty and bias in sample effect 
sizes; given this uncertainty and bias, the face value of 
a reported sample effect size is not generally an accurate 
representation of the population effect size. If uncer-
tainty and publication bias were not present, this method 
would be effective. However, given the ubiquity of bias 
and uncertainty in estimates of effect size, researchers 
who conscientiously plan their sample sizes using pub-
lished effect sizes from prior studies can have actual 
power that is abysmal, especially when the population 
effect size is small. This is true when the prior study has 
an n of 25, which, as we have noted, is quite typical for 
experimental studies. Further, this finding is consistent 
across several common research designs (see Full Simu-
lation Procedure and Results in the Supplemental Mate-
rial). Taylor and Muller’s (1996) method performs rather 
well in comparison, particularly in the case of the 20th- 
and 5th-percentile versions, which adjust for both bias 
and uncertainty. Of course, Taylor and Muller’s method 
is not a panacea when a prior study both assessed a 
small effect size and used a small sample size.

However, we note that studies with small sample 
sizes are not necessarily uninformative: Factors such as 
the population effect size, the correlation between 
repeated measures, and the study design contribute to 
power as well. To illustrate this point, we performed 
another simulation comparing the four strategies for 
sample-size planning when the prior study involved a 
dependent-samples t test with 15 participants. We 
assumed a very large population effect size of 0.8 and 
a large correlation between pairs, ρ = .75. An effect size 
this large is not atypical in some areas of psychology, 
especially in repeated measures designs that may have 
high correlations between experimental conditions. In 
this simulation, all three variations of Taylor and Muller’s 
(1996) method achieved an average power of just below 
.80 or higher, and all assurances met the target.

Three Illustrative Examples

Now that we have shown the general effectiveness of 
our proposed method, to place our simulations into a 
more practical context, we describe its performance in 
the specific cases of three hypothetical researchers, each 
planning a sample size for .80 intended power on the 
basis of a similar previously published study.17 In addi-
tion to showing how various methods of sample-size 

planning work for various designs, we show how close 
each method would come to achieving the intended 
power. Although true population power would not gen-
erally be known, we adopt an omniscient perspective.

Underpowered

Suppose Researcher 1 is interested in studying the 
effect of working memory load (high vs. low) on asso-
ciative activation. We assume that the true but unknown 
population effect size, δ, is 0.2. The researcher reads a 
previously published article about a study on this topic. 
This article indicates that an independent-samples t test 
with 25 participants per group yielded a d of 0.68.18 
The authors correctly rejected the null hypothesis 
despite the study’s extremely low power (.107) to detect 
the effect of interest, but did so only because they had 
badly overestimated the population effect size. Although 
Researcher 1 would not know this additional informa-
tion, we can use it to give an indication of the likely 
power of her new study, given various methods of 
sample-size planning.

It turns out that if Researcher 1 uses the sample effect 
size directly in power calculations, she will recruit 35 
participants per group, achieving an abysmally low 
power of .13. Taylor and Muller’s (1996) 20th-percentile 
method returns a λ̂A of zero in this case, which means 
that the method is working exactly as designed: The 
prior study was severely underpowered, and the sample 
d reported is quite inaccurate. Given the results of the 
20th-percentile method, Researcher 1 may decide to 
decrease her target assurance. Taylor and Muller’s 50th-
percentile method suggests 332 participants per group, 
but results in a power of .73, much higher than the 
power that would be achieved if Researcher 1 plans her 
sample size by taking the sample effect size at face value.

Adequately powered

Researcher 2 is studying the effects of sex ratio of the 
participants in the room (majority men, even split, 
majority women) and participant’s sex (male, female) 
on diversification of financial resources in a 3 × 2 
between-subjects ANOVA. His primary interest is the 
main effect of sex ratio. He reads that a similar study 
obtained a sample f 2 of 0.09 for this effect, with 25 
participants per group (N = 150). Unbeknownst to 
Researcher 2, the population f 2 is 0.0625 (Cohen’s 
medium effect size), and the true power to detect the 
effect of interest in the published study was .78.19

If Researcher 2 conducts his power analysis taking 
this sample f 2 at face value, he will need 19 participants 
per group and achieve a power of .65. Using Taylor and 
Muller’s (1996) 50th-percentile method suggests 24 
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participants per group, which will result in a power of 
.76. The 20th- and 5th-percentile methods suggest 64 
and 1,418 participants per group, respectively, and both 
lead to a power of almost 1. The latter suggested n is 
almost certainly prohibitive unless data can be collected 
at little or no cost online. Even so, we believe that one 
of the benefits of our suggested approach is that it can 
specify the degree of assurance for a broad range of 
options instead of pretending that there is only one “cor-
rect” sample size for a future study given a desired 
power, which would be true only if one could know the 
population effect size with certainty. Again, using the 
sample effect size at face value results in lower power 
than using Taylor and Muller’s method, though the mag-
nitude of the difference is smaller than in the first sce-
nario. As Researcher 2 will not know the actual power 
of each method, he might select the 20th-percentile 
method, aware of the fact that, on average, it will reach 
.80 or higher power 80% of the time (80% assurance).

Overpowered

Finally, Researcher 3 is interested in studying the effect 
of performance pressure on attention using event-
related potentials. She reads a prior study comparing 
participants’ attention in high-pressure versus low-
pressure trials using a dependent-samples t-test with 
100 participants that is, unbeknownst to her, overpow-
ered (power > .80 to detect the focal effect, for which 
δ is 0.5). The article reports a Cohen’s dz of 0.5.20 Note 
that, in this case, the sample effect size is consistent 
with the population δ, and the true power is almost 1.

Researcher 3’s power will be .81 if she uses the 
sample effect size at face value to plan her sample size. 
If she uses Taylor and Muller’s (1996) method, her 
power will be .81, .93, and .99 for the 50th-, 20th-, and 
5th-percentile versions, respectively. These power val-
ues are achieved with sample sizes of 34, 34, 49, and 
79, in the four methods, respectively. What is most 
important about this third scenario is that any of the 
methods of sample-size planning is adequate, and that 
even the most conservative method suggests a new 
sample size smaller than that of the published study. 
Thus, Taylor and Muller’s method does not always sug-
gest a sample size larger than in the prior study. In this 
case, the prior study in the literature is overpowered, 
which is a benefit resulting from its large sample size. 
Of course, studies with smaller sample sizes can also 
be overpowered, but the population effect size must 
be quite large for this to be true. Although Researcher 
3 has the most flexibility in terms of which method to 
use, overpowered studies are likely quite rare, as indi-
cated by several literature reviews assessing power in 
psychology. The n of 25 that we used in our simulations 

is much more consistent with the sample sizes used in 
many experimental areas.

R Package and Web Applications:  
Bias- and Uncertainty-Corrected 
Sample Size (BUCSS)

We have developed an R package, BUCSS (Anderson & 
Kelley, 2017; freely available on CRAN), to allow 
researchers to use our suggested method to plan appro-
priate sample sizes that can provide power closer to 
the intended level. For researchers who do not use R, 
we have also provided Shiny Web applications (avail-
able at www.DesigningExperiments.com, the site that 
accompanies Maxwell, Delaney, & Kelley, 2018) to run 
the various functions from BUCSS using a user-friendly 
interface (see the Supplemental Material for a screen-
shot taken from these apps). Our package and apps are 
simple to use. Users only need to input their desired 
levels of assurance, power, and publication-bias adjust-
ment, as well as readily available information regarding 
the effect of interest: the prior study’s observed F or  
t value, the total sample size, and (for ANOVA designs) 
the number of levels of each factor. By directly input-
ting the observed F or t, users circumvent other soft-
ware’s potential proneness to error due to inconsistently 
defined effect-size measures. Some designs necessitate 
providing the type of effect of interest (e.g., interaction, 
main effect) because of varying formulas for degrees 
of freedom. Our package and apps will compute an 
adjusted effect size for any fixed effect in an ANOVA 
analysis and output the suggested sample size for the 
future study in a single step. We have provided separate 
functions for the independent-samples t test, dependent-
samples t test, between-subjects ANOVA, within-subjects 
ANOVA, and split-plot ANOVA. The functions support 
omnibus effects for one- and two-way designs in which 
each factor can have any number of levels. We have also 
provided more general functions that can support effects 
beyond omnibus tests (e.g., contrasts), as well as designs 
beyond two-way designs.

Recommendations and Limitations

We have shown that Taylor and Muller’s (1996) method 
can allow researchers to use information from a prior 
study in planning the sample size for a future study. 
However, researchers may wonder what level of assur-
ance is appropriate, given that there are many options 
available. We emphasize that selecting the desired level 
of assurance is akin to choosing the desired power: 
There is no single correct value for power or assurance. 
An important advantage of Taylor and Muller’s method 
is that researchers can report both the target power and 
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the target assurance when describing their sample-size 
planning, so that readers and reviewers can know how 
often the chosen approach will be successful in achiev-
ing the desired level of power.

Although our proposed method has many advan-
tages over several currently used practices, we recog-
nize that it has limitations. It is designed to work with 
a single prior study, but there may be situations in 
which researchers have access to more than one prior 
study. In such situations, researchers can use a meta-
analytic approach or perform sample-size planning with 
each available prior study, selecting the median sample 
size, the largest sample size, or the sample size associ-
ated with the most similar study. Conceptually, we 
assume a stringent p-value cutoff for publication: Stud-
ies in which the p values are above a certain threshold 
are not published, although what that threshold is can 
vary per user specification; in fact, the user can specify 
no publication bias whatsoever. Although publication 
bias is likely more complex than our model assumes, 
this assumption is generally consistent with the existing 
state of the literature in many areas of psychology. First, 
although published “marginally significant” results (e.g., 
p values between .05 and .10) are not unheard of, there 
has been recent speculation that “the tolerance for mar-
ginally significant” p values has decreased (Lakens, 
2015a, p. 4). Second, simulations support the existence 
of a strict cutoff for significance, which mirrors our own 
assumption of a stringent cutoff at p values less than 
.05. For example, in a distributional analysis of p values 
from the published literature, Lakens (2015b) recently 
found “a clear drop” in p values greater than .05, a find-
ing that supports a “strong effect of publication bias” 
(p. 832).

The method proposed here does not deal with addi-
tional issues that affect power, such as p-hacking. How-
ever, no method of sample-size planning that we are 
aware of corrects for p-hacking, as, by definition, 
researchers do not often reveal in their published arti-
cles how many tests they ran and what liberties they 
took. Statistically, we assume that all assumptions have 
been met (e.g., normality, homogeneity of variance). 
In particular, for tests of within-subjects effects with 
three or more levels, we assume sphericity.

Finally, in our simulations, we assumed equal ns 
across groups for the prior study as well as the pro-
posed study. However, this supposition is fairly reason-
able in experimental studies, in which researchers have 
more control over equating sample sizes across groups 
than they do when conducting field studies. Moreover, 
using equal ns usually maximizes power and enhances 
robustness to violation of assumptions, and power is 
determined most strongly by the group with the small-
est n (Maxwell & Delaney, 2004). Consequently, our 

proposed method can be thought of as appropriate for 
planning the smallest n.

Alternative Approaches to Sample-Size 
Planning

The method we have presented is not the only appro-
priate approach for planning sample sizes and certainly 
has its own limitations. However, it does allow research-
ers to continue to use the sample effect-size estimate 
from a prior study in sample-size planning, after appro-
priate adjustments for publication bias and uncertainty. 
Yet other methods should not go unmentioned. We note 
that the choice of method often depends on one’s goal, 
the experimental design, and the information available. 
We encourage readers interested in learning more about 
these approaches to consult the sources we cite or a 
review (e.g., Maxwell, Kelley, & Rausch, 2008).

First, an often-recommended strategy is to calculate 
the sample size for a theoretical minimum effect size 
of interest, which may be especially useful when a 
future study is the first on a topic. This approach is well 
suited for applied research and interventions, in which 
it may be clear how large an effect size needs to be to 
make a practical difference. For example, suppose a 
researcher wishes to detect an effect only if it is 0.8 or 
larger in an intervention study because only a large 
effect will convince policymakers that the intervention 
is worthy of implementation. Setting 0.8 as the mini-
mum effect size of interest and calculating a sample 
size based on this value is appropriate for this goal 
regardless of the population effect size. Although power 
to detect a true effect will be less than the desired level 
if the effect size is less than 0.8, the researcher will 
presumably not care about this because if the effect 
size is less than 0.8, there is no practical value in imple-
mentation and thus the failure to find a significant result 
will be of no practical consequence even though the 
null hypothesis is false. However, “psychological theo-
ries are almost exclusively qualitative rather than quan-
titative,” so they may be “not well equipped to help us 
identify when an effect is too small to be of theoretical 
interest” (Simonsohn, 2015, p. 560). Thus, sample-size 
planning using a minimally important effect size may 
be of limited value in theory testing.

Second, uncertainty can be handled from alternative 
perspectives. In one approach, researchers simply cal-
culate the necessary sample sizes for a range of pos-
sible effect-size values (e.g., 0.2, 0.4, 0.6; O’Brien & 
Muller, 1993). However, this still requires the researcher 
to choose the most likely values for the population 
effect size. In another approach, the confidence interval 
surrounding the sample effect size is used to adjust for 
uncertainty (Perugini et al., 2014). However, this method 



1558	 Anderson et al.

does not adjust for publication bias and was shown to 
be more conservative than Taylor and Muller’s (1996) 
method when equivalent percentiles were selected 
(Anderson & Maxwell, 2017).

Third, in lieu of using a sample effect-size estimate 
from a published study, researchers conducting ANOVAs 
may instead have an idea of what the individual group 
means are likely to be; such expectations may be 
based either on prior studies or on theoretical expec-
tations. Raw means from a published study may not 
always be as susceptible to publication bias as the 
sample effect size, as group means may come from 
nonsignificant comparisons that are also reported in 
the article.

Fourth, researchers may consider group-sequential 
methods of sample-size planning, which involve inter-
mediate analyses on the data. These methods can 
increase efficiency, because significant results can be 
obtained in interim analyses based on a fraction of the 
planned sample size at which data collection would be 
terminated. Thus, these methods potentially require a 
much smaller final sample size than originally planned 
(e.g., Lai, Lavori, & Shih, 2012; Lakens, 2014). Sequential 
methods require researchers to specify in advance the 
number of interim analyses as well as the number of 
participants for each stage (Schönbrodt, Wagenmakers, 
Zehetleitner, & Perugini, 2015). Peace and Chen (2011) 
explained that the sample size at each stage is simply 
the total sample size of a nonsequential study divided 
by the number of planned stages.21 As they emphasized, 
sequential methods still require specification of a total 
(i.e., maximum) sample size. The sample size derived 
from our suggested approach can provide this total 
sample size for sequential methods.

All of these approaches to sample-size planning are 
generally aimed at declaring an effect to be statistically 
significant. Other approaches, in contrast, plan sample 
sizes for alternative purposes. Simonsohn (2015) recently 
proposed using the sample size that would result in .80 
power to detect an effect of the size that the original 
study would have had .33 power to detect, an approach 
geared toward situations in which the researcher aims 
to show that the original study was not adequately 
powered to detect the effect that was reported. An 
alternative approach when the goal is to show the 
absence of an effect would entail sample-size planning 
for equivalence (see Anderson & Maxwell, 2016; Chow, 
Shao, & Wang, 2003; and Lakens, in press, for more on 
equivalence-testing approaches). Finally, another 
option is to forgo the concept of power, which is based 
on statistical significance, and instead plan sample sizes 
for a certain degree of precision (accuracy in parameter 
estimation, or AIPE). AIPE approaches allow the 
researcher to specify the desired width (or half-width) 

of a confidence interval that brackets the population 
effect size of interest (e.g., Kelley & Maxwell, 2003; 
Kelley & Rausch, 2006; Maxwell et al., 2008). We note 
that methods for achieving accurate estimates can often 
yield required sample sizes that are very different from 
those obtained using methods designed to achieve 
intended power. AIPE is an effective approach when 
the goal is to achieve a certain degree of accuracy, to 
avoid “embarrassingly wide confidence intervals” 
(Cohen, 1994, p. 1002), but may be less useful when 
the goal is to show the existence and direction of an 
effect, as we have assumed here.22

Conclusion

Current commonly used strategies for sample-size plan-
ning have resulted in individual studies that have much 
lower power than intended, and this has resulted in a 
psychological literature that is, on average, quite under-
powered. Multiple problems have ensued: a high rate 
of replication failures (e.g., Asendorpf et  al., 2013), 
inconsistencies in the literature (e.g., Maxwell, 2004), 
inflated and inaccurate effect-size estimates (e.g., Kelley 
& Rausch, 2006; Maxwell et al., 2008; Maxwell et al., 
2015), and the use of QRPs to obtain significant results 
despite low power (e.g., John et al., 2012).

Although our proposed method does not specifically 
correct for p-hacking, it does represent a methodologi-
cally sound alternative that can reduce the motivation 
for p-hacking and other QRPs by providing researchers 
with higher odds of detecting the effect of interest via 
a more appropriate sample size. The field often seems 
to be trapped in a vicious cycle: Researchers run under-
powered studies, and, in turn, some may engage in 
QRPs in order to publish, despite low power, in a sys-
tem that heavily values statistical significance (e.g., John 
et al., 2012). This results in upwardly biased effect sizes, 
which in turn lead other researchers to underestimate 
the sample sizes needed for future studies. Finally, 
these underestimates lead to more underpowered stud-
ies and, correspondingly, more QRPs. Our proposed 
method can help to break this cycle by providing a way 
to determine a sample size that will yield appropriate 
power, and thus an honest pathway to publication.

The logical strategy of basing power analysis on the 
effect size observed in a prior study does not often 
result in an accurate estimate of the true effect size, 
because of publication bias, uncertainty, or both. We 
have provided an approach to sample-size planning 
that allows users to adjust for both of these sources of 
error, and we have shown that using this method pro-
vides power that is much closer to the intended level 
for several experimental designs. Our suggested method 
has gone largely unnoticed, but our evaluation suggests 
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that it is a hidden gem in the methods literature. We 
have provided an R package and Web apps that 
researchers can use immediately to implement the 
method we recommend. We hope that more accurate 
estimates of effect size will result in new psychological 
studies that are more adequately powered and will lead 
to a replicable literature that inspires more confidence 
and is less in crisis.
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Notes

1. A given study may include multiple statistical tests. Throughout 
this article, when we refer to the power or statistical significance 
of a study, we are referring to the power to detect the focal 
effect, or effect of interest, and the statistical significance of the 
specific test for that effect.
2. Minimally important implies that the effect size to be tested 
is chosen on theoretical or practical grounds, rather than esti-
mated. The researcher is essentially saying that he or she is not 
interested in the effect unless it is above a minimum threshold. 
We discuss this approach further in the Alternative Approaches 
to Sample-Size Planning section.
3. These data can be downloaded at http://www.ejwagenmakers 
.com/papers.html, by clicking on the data link in the reference 
entry for Wetzels et al. (2011).
4. One of our reviewed articles fell into two categories. The 
authors reported basing their sample size on the sample size 
of a prior study, but also noted that the chosen sample size 
provided .80 power to detect an effect of the size obtained in a 
prior study. We included this article in both categories.

  5. Although we use the term publication bias throughout this 
article, readers should be aware that effect sizes in some unpub-
lished pilot studies might show a similar type of upward bias. 
Just as a journal editor may be more likely to publish an article 
if it reports a p value less than .05 (which results in bias in the 
subset of studies that are selected for publication), a researcher 
may be more inclined to conduct a future study if a pilot study’s 
results are encouraging (e.g., a p value reaches or approaches 
statistical significance), rather than to simply discard the results. 
This latter phenomenon could result in upwardly biased effect 
sizes in the subset of pilot studies that form the basis for future 
studies.
  6. In the case of the independent-samples t test, the popula-
tion effect size, δ, is defined as 

µ2 – µ1

σ , where µ1 and µ2 are 
the two population group means, and σ is the pooled popula-
tion standard deviation. With sample data, δ is estimated by d  

as 
Y
–

2 – Y
–

1

s , where Y
–

1 and Y
–

2 are the two sample group means, 
and s is the pooled sample standard deviation.
  7. R code to reproduce all the figures in this article is available 
in the Supplemental Material.
  8. Publication bias may not apply if the journal in question 
publishes all findings, regardless of statistical significance.
  9. Leon et al. (2011) asserted that pilot studies, even if unpub-
lished, may better serve as a check on the experimental proto-
col than as the basis for estimating the magnitude of the effect. 
The sample size may be so small that the underlying confidence 
interval is quite wide.
10. The distributions shown in Figures 1 and 2 are based on the 
assumption that journals never publish reports of experiments 
that yielded p values above .05 for the effect of interest, but our 
general point holds with less extreme publication bias (e.g., if 
some studies with p values of .10 are accepted for publication).
11. We conceptualize power in terms of the F distribution 
because it is more general, has simpler formulas, and has a 
more developed literature than the t distribution. However t is 
a special case of F, so our approach can be conceptualized in 
terms of the t distribution when a t test is appropriate. Readers 
interested in a more general overview of power can consult 
Cohen (1988) and Kraemer and Blasey (2016).
12. The following applies for testing a fixed effect, but different 
methods are applicable for testing a random effect. Similarly, 
different methods are relevant for multilevel models or nonnor-
mal dependent variables.
13. If the t distribution is used, n must be quadrupled to double 
λ, as sample size falls under a square root.
14. For a fixed n, the distribution of the noncentrality parameter 
mirrors that of the effect size. Thus, adjusting the noncentral-
ity parameter for uncertainty and bias is akin to adjusting the 
effect size.
15. Taylor and Muller did not report results for or recommend 
this percentile. However, we chose to test this percentile as it is 
aimed at 80% assurance and is somewhat less conservative than 
the 5th-percentile estimator.
16. When λ̂A was zero, we used the following approach. For 
Taylor and Muller’s 50th percentile, we increased αP from 
.05 to .10. For Taylor and Muller’s 20th percentile, we first 
decreased assurance to 50%. If λ̂A was still 0, we then increased 
αP from .05 to .10. For Taylor and Muller’s 5th percentile, we 
first decreased assurance to 80%, and if λ̂A was still 0, we then 

http://www.ejwagenmakers
.com/papers.html
http://www.ejwagenmakers
.com/papers.html
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decreased assurance to 50%. If the estimate was still zero, we 
increased αP from .05 to .10. This simplified, practical solution 
resulted in no zero estimates.
17. The research interests of the hypothetical researchers 
were inspired from Psychological Science articles (Ackerman, 
Maner, & Carpenter, 2016; Baror & Bar, 2016; and Reinhart, 
McClenahan, & Woodman, 2016).
18. This d value is simply a hypothetical sample value a 
researcher might see in the literature. However, we selected this 
value because our simulations showed that the median d result-
ing from all published studies with 25 participants per group 
was 0.68 when the population δ was 0.2. Thus, 0.68 is a realistic 
value for a reported sample d in this situation, for a publication 
in a journal that functionally requires statistical significance as a 
prerequisite for publication.
19. As in the previous example, the reported sample f 2 is typi-
cal for the true but unknown population f 2; 0.09 is the median 
published f 2 resulting from a study with 25 participants per 
group and a population f 2 of 0.0625.
20. Cohen’s dz is a within-subjects version of the traditional 
Cohen’s d. This dz value is not directly from our simulations, as 
they all assumed an n of 25. This is instead the median dz result-
ing from all published dependent-samples t tests in a simulation 
with 100 participants and a δ of 0.5.
21. Cook and DeMets (2008) pointed out that with sequential 
methods, power is reduced relative to fixed-sample tests with 
the same total sample size. They described how to determine the 
increase in total sample size that will maintain power comparable 
to that of a fixed-sample test with the desired level of power.
22. One might also consider sequential methods for estima-
tion, as opposed to sequential methods for finding statistical 
significance. These methods can be used either to obtain a 
compromise between accuracy of the estimate and study cost 
(Chattopadhyay & Kelley, 2017) or to obtain a narrow confi-
dence interval around the sample effect size (sequential AIPE; 
Kelley, Darku, & Chattopadhyay, 2017).
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