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Analysis and Interpretation of Findings
Using Multiple Regression Techniques

Multiple regression and correlation (MRC) methods form a flexible family of statistical
techniques that can address a wide variety of different types of research questions of
interest to rehabilitation professionals. In this article, we review basic concepts and
terms, with an emphasis on interpretation of findings relevant to research questions of
interest to rehabilitation researchers. To assist readers in using MRC effectively, we re-
view common analytical models (e.g., mediator and moderator tests) and recent think-
ing on topics such as interpretation of effect sizes and power analysis.
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In the nearly 40 years since the publication of Jacob
Cohen’s (1968) seminal article heralding multiple re-
gression as a “general data-analytic system,” multiple

regression and correlation (MRC) techniques have be-
come increasingly popular in both basic and applied
research journals. This is also true of the journal Rehabili-
tation Counseling Bulletin: In our survey of five complete
volumes (2000 through 2004), we found 29 articles in
which some form of MRC analysis (e.g., simultaneous
multiple regression, hierarchical regression, stepwise re-
gression, logistic regression, or simple correlation) was
used to test the research hypothesis. This represents 34%
of the 83 articles published in these five volumes that
reported some form of statistical analysis. A similar fre-
quency was observed in a survey of recent issues of Reha-
bilitation Psychology. Clearly, researchers in rehabilitation
counseling and rehabilitation psychology regard MRC
techniques as an important research tool.

The purpose of this article is to review best practices
for researchers using MRC. We assume that readers have
some familiarity with MRC techniques. So, although we
review basic terminology and procedures, we refer those
interested in a more detailed treatment of fundamentals

to other sources (e.g., Cohen, Cohen, West, & Aiken,
2003; Wampold & Freund, 1987). We focus on applica-
tion of MRC techniques for testing hypotheses relevant to
rehabilitation psychology and on conceptual and inter-
pretational issues that have the potential to confound re-
searchers making use of these techniques.

REGRESSION MODELS

A major reason that MRC techniques are so attractive to
researchers is their flexibility: MRC may be used to test
hypotheses of linear or curvilinear associations among
variables, to examine associations among pairs of variables
controlling for potential confounds, and to test complex
associations among multiple variables (such as mediator
and moderator hypotheses). Predictor variables in multi-
ple regression analyses may be correlated with one an-
other, and they may be continuous, categorical, or a
combination of the two. In fact, ANOVA and ANCOVA
can be regarded as special cases of MRC in which cate-
gorical predictor variables are of primary interest, although
continuous covariates may also be included (Cohen,
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1968). Although bivariate (i.e., single-predictor) regres-
sion and correlation are frequently useful for assessing as-
sociations among pairs of variables, the analytical power
of regression analyses is greatly enhanced when multiple
predictor variables are studied. In this section, we describe
three common models for multiple regression analyses.
These models are distinguished by how predictors are
entered into the regression equation: simultaneously, hier-
archically (in an order predetermined by the investiga-
tor), or empirically (with the order of entry determined by
which variables contribute most or least to prediction at a
given step in the regression equation).

Simultaneous Regression

The basic application of multiple regression involves si-
multaneous use of a set of predictor variables to make the
most accurate prediction possible of scores on the crite-
rion variable (DV). This analysis provides information
about variance in the DV accounted for by the predictors
as a set and also the unique association of each predictor
with the DV when all of the other predictors in the re-
gression analysis are statistically controlled.

Example 1: Two Predictors of Worker Satis-
factoriness. Millington, Leierer, and Abadie (2000) ex-
amined role-play employers’ attitudes toward written
descriptions of job applicants on the Employment Expec-
tations Questionnaire (revised; EEQ-B) as predictors of
these same employers’ expectations about applicant job
performance. For simplicity, we initially consider the first 
two EEQ-B dimensions as predictor variables (X1 = Job
Knowledge and Skill; X2 = Socialization and Emotional

Coping Skills), with the employers’ predictions of the ap-
plicants’ job satisfactoriness (Y) as the dependent vari-
able. In this example, X1 and X2 are factor scores with a
theoretical range of −5.0 to 5.0; in the present sample, 
M = 1.74 and −0.35; SD = 1.64 and 1.92, respectively.
The Worker Satisfactoriness Scale (WSS) in this study
had a range of 0 to 100, in 10-point intervals (0, 10, 20,
etc.), with M = 49.85 and SD = 19.55 in the present
sample.

To address the question of how well these two EEQ-B
dimensions predict WSS scores, we can use a statistical
application, such as SPSS, to regress the criterion variable
(Y) onto the two predictor variables (X1 and X2). Using a
least squares algorithm, which minimizes the sum of the
squared errors of prediction (called residuals) across all
cases in the sample, the software application outputs the
optimal regression equation for predicting Y scores from
scores on X1 and X2 for this sample. This equation takes
the form

Ŷ = B1X1 + B2X2 + B0

and can be used to compute a predicted score Ŷ on the cri-
terion variable for any person from the population whose
scores on X1 and X2 are known. The regression coefficients
B1 and B2 are the multipliers for X1 and X2, respectively,
to be used in computing the predicted score. The third re-
gression coefficient (B0) is called the constant or the inter-
cept; it denotes the predicted value of Y for a person with
scores X1 = X2 = 0.

When X1 and X2 are theorized to be causally prior to
Y (as here), coefficients B1 and B2 are interpreted in terms
of the causal impact of the predictor on the criterion (see
Note 1), or the predicted change in Y for a one-unit
change in X1 or X2. When multiple predictors are included,
B1 and B2 are partial regression coefficients, each indicat-
ing the causal effect of one predictor on Y, with the other
predictor partialed out (i.e., statistically controlled). The
interpretation of partial regression coefficients is discussed
below, in the section on Effect Sizes in Multiple Regression.

In our example (see Table 1), we obtained the re-
gression equation

Ŷ = (3.98)X1 + (2.86)X2 + 43.91

This tells us that a 1-point increase in perceived Job
Knowledge (X1) is expected to produce an increase of 3.98
points in employee satisfactoriness (Y) when perceived
Socialization (X2) is statistically controlled (i.e., held
constant). By comparison, when Job Knowledge is held
constant, a 1-point increase in Socialization (X2) yields a
predicted 2.86-point increase in satisfactoriness. The in-
tercept in this equation (B0 = 43.91) is the predicted 
Y score for a person scoring 0 on both X1 and X2.

TABLE 1. Predicting Worker Satisfactoriness 
From EEQ-B Subscales: Two-Predictor 
and Five-Predictor Models

Variable B SE B β

Two-predictor model
Constant 43.91 1.57
Job Knowledge 3.98 0.66 .33*
Socialization 2.86 0.56 .28*

Five-predictor model
Constant 39.96 1.75
Job Knowledge 1.43 0.87 .12
Socialization 2.21 0.56 .22*
Trainability −0.27 0.71 −.02
Dependability 2.73 0.73 .24*
Motivation 1.79 0.80 .16*

Note. EEQ-B = Employment Expectations Questionnaire (revised;
Millington, Leierer, & Abadie, 2000). For the two-predictor model, 
R2 = .29, F(2, 316) = 63.11, p < .001; for the five-predictor model, 
R2 = .34, F(5, 313) = 32.24, * p < .001.
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SPSS also outputs a standard error, t statistic, and 
p value for each regression coefficient. If the p value is less
than the designated alpha level for the study (e.g., p <
.05), the regression coefficient differs significantly from
zero, indicating a significant association between the des-
ignated predictor and the criterion variable, controlling
for the remaining predictors. In this rather large sample
(N = 319), both X1 and X2 are significant predictors of Y
(both p < .001).

A final item of interest (especially when the goal of
the study is to predict as much variance as possible in the
criterion) is the multiple correlation (R = .53), represent-
ing the correlation between the predicted scores Ŷ and the
actual scores (Y) on the criterion variable; its square, R2 =
.29, F(2, 316) = 63.11, p < .001, is interpreted as the pro-
portion of variance in Y that is accounted for by the pre-
dictor variables as a set. The significance test for R2 is an
F test (which is identically also a significance test for R);
when the associated p value is less than the designated
critical value (e.g., p < .05), the multiple correlation coef-
ficient differs significantly from zero, indicating a signifi-
cant association between the predictors as a set and Y.

Example 2: Five Predictors of Worker Satis-
factoriness. In point of fact, the EEQ-B has five sub-
scales denoting aspects of employability. (In addition to
X1 and X2, described above, these are X3 = Trainability/
Flexibility; X4 = Dependability; and X5 = Motivation.)
Table 1 (bottom section) shows how the regression of 
Y onto all five predictors compares with the simpler two-
predictor model just discussed.

First, from the note to Table 1, we see that the three
additional predictors increase the proportion of Y vari-
ance explained: R2 = .29 for the two-predictor model, as
compared with .34 for the five-predictor model. Second,
notice that in the five-predictor model (unlike the sim-
pler model), not all of the X variables contribute uniquely
to prediction of scores on the WSS. In the five-predictor
model, only Socialization, Dependability, and Motivation
emerge as significant predictors of satisfactoriness.

This finding illustrates an important consideration in
interpreting results of MRC analyses, namely that the as-
sociation between a predictor and a given DV depends on
the other predictors included in the regression equation.
The Job Knowledge subscale (X1) is a significant univari-
ate predictor of Worker Satisfactoriness ratings (rY1 = .48,
p < .05), and it is also significant in the two-predictor
model, controlling for X2 (βY1.2 = .33, p < .05). In the
five-predictor model, however, X1 does not contribute sig-
nificantly to predicting Y when the other four EEQ-B sub-
scales are statistically controlled (βY1.2345 = .12, p > .05).
This reduction in the standardized regression coefficient β
(which corresponds to similar decreases in the unstan-
dardized coefficient B) as additional predictor scales are
added to the model reflects the intercorrelations among

EEQ-B subscales, or, to put it another way, the redundancy
of the information provided by X1 ratings with that pro-
vided by ratings on the other four subscales. When all five
EEQ-B dimensions are included, the unique (nonredun-
dant) information provided by X1 does not contribute sig-
nificantly to our ability to predict WSS scores.

Summary. Simultaneous regression yields informa-
tion about the joint association of a set of predictor vari-
ables with Y (multiple R2 and associated significance test)
and about the unique association of each predictor Xi with
Y, when all other predictor variables are statistically con-
trolled (Bi or βi and the associated significance test). Be-
cause correlations among predictor variables are the rule
in nonexperimental research, the interpretation of the
regression coefficient (B or β) is relative to the other
predictors included in the regression equation; variables
that are significant predictors of the DV in one analysis
may become nonsignificant in subsequent analyses if ad-
ditional, overlapping predictor variables are added.

Hierarchical Regression

In hierarchical regression analysis (HRA), predictor vari-
ables are entered sequentially in two or more sets, with
the groupings and order of entry predetermined by the
investigator. Nielsen (2003) used HRA to determine
whether social support added significantly to the predic-
tion of posttraumatic stress disorder (PTSD) among 168
adults with spinal cord injury, over and above the vari-
ance predicted by demographic and injury-related vari-
ables (gender, age, education, marital status, time since
injury, loss of consciousness as a result of injury, and neu-
rological level).

Nielsen (2003) entered the demographic and injury-
related variables to be statistically controlled as the first
block in the HRA. The results for this first block are iden-
tical to those for a simultaneous regression of PTSD scores
onto these seven predictor variables. As a set, these vari-
ables were significantly related to PTSD symptoms: R2 =
.10, F(7, 160) = 2.6, p < .05. Regression coefficients for
two of the predictors in this set differed significantly from
zero: marital status (married persons were less likely to re-
port PTSD symptoms) and neurological level (higher
neurological functioning predicted fewer PTSD symp-
toms).

Nielsen (2003) incorporated two social support
scales, one measuring total quantity of support and one as-
sessing satisfaction with support. She entered these two
variables as a second block in the HRA. At this second
step, the new predictors are added, and all of the original
predictors remain in the predictor set. Thus, PTSD scores
are simultaneously regressed onto demographic variables,
injury-related variables, and the two social support scores;
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however, R2 for these nine variables as a set is not the
focus of interpretation. Instead, Nielsen examined the
change in R2 (∆R2) from Block 1 to Block 2. In this case,
the additional variance explained when the Block 2 vari-
ables were added to the predictor set was both substantial
and statistically significant: ∆R2 = .19, F(2, 158) = 21.0, 
p < .001. This significant increment to the variance ac-
counted for by the prediction model affirms that the social
support measures, as a set, contribute significantly to the
prediction of PTSD scores, over and above the demo-
graphic and injury-related predictor variables.

In addition, it is appropriate to examine the regres-
sion coefficients for the two social support scales to see
their relative contributions to predicting PTSD. Nielsen
found that the total support score was a significant unique
predictor, but overall satisfaction was not significantly re-
lated to PTSD, controlling for the other eight predictors
in the equation at Block 2.

Summary. In the social sciences, variables of inter-
est are not always capable of experimental manipulation,
for either ethical or practical reasons. As noted in the pre-
vious section, a central problem for disentangling causal
relations among measured (as opposed to experimentally
manipulated) variables is the issue of correlated predictors.
When predictor variables are not statistically indepen-
dent of one another, they will account for overlapping
(common) variance as well as unique variance in the cri-
terion variable. HRA allows the investigator to enter in-
dividual predictors or sets of predictors in a specified order
(in accordance with causal or conceptual priority). In
HRA, the initial predictor set gets credit for all of the cri-
terion variance it can account for; the second predictor
set gets credit for only the additional criterion variance it
uniquely accounts for (beyond that accounted for in
Block 1: i.e., ∆R2). If there is a third predictor set, it gets
credit for unique variance accounted for over and above
that predicted by Blocks 1 and 2 combined, and so on.
Thus, investigators can use HRA to examine the criterion
variance uniquely accounted for by a predictor variable
(or set) of theoretical interest (such as social support, for
Nielsen, 2003), after controlling for potential confound-
ing variables that have a causally prior association with
the criterion variable. Other applications of HRA (some
of which we discuss in more detail below) include analy-
sis of nominal (i.e., categorical) variables using MRC,
testing moderator relations (i.e., statistical interactions
among two or more predictors), and assessment of incre-
mental predictive validity from the addition of a new pre-
dictor variable to an existing predictor set.

EMPIRICAL (STEPWISE) REGRESSION

Another option for establishing an order of entry for vari-
ables in a hierarchical analysis is to use empirical rather

than theoretical criteria. In a stepwise regression analysis,
the bivariate association of each predictor variable with
the criterion variable is examined, and the variable 
with the greatest predictive power is entered first. Then
the remaining predictors are assessed for their incremen-
tal predictive validity, and the one that explains the most
additional criterion variance (i.e., the one that results in
the largest ∆R2) is added second. This procedure is re-
peated until no further predictors would result in a signif-
icant ∆R2, at which point the final predictor set (which
normally contains only a subset of the possible predictor
variables) is regarded as definitive. Most statistical soft-
ware packages include several variants on this procedure
(e.g., step-up, step-down), which automate the process of
selecting variables for inclusion in the regression equa-
tion.

Empirical regression methods may be appealing be-
cause they relieve the researcher of having to make
theory-based decisions about the order of entry of predic-
tor variables (Cohen et al., 2003). Indeed, although only
one study published in Rehabilitation Counseling Bulletin in
the 5-year period we surveyed used stepwise regression
analyses, this technique was much more common in Re-
habilitation Psychology: In our survey of four consecutive is-
sues (1 year) of this journal, we found that 5 of the 16
articles using MRC used empirical regression methods.

The consensus in the methodological community is
that stepwise regression should be used very rarely (see
Cohen et al., 2003, p. 162) or not at all (Thompson,
1995) in psychological research. The main critique of
stepwise methods is that they yield a so-called optimal
predictor set that is very unlikely to generalize to future
samples. We recommend that rehabilitation researchers
familiarize themselves with the weaknesses of stepwise
methods and avoid using these procedures, substituting
either simultaneous regression or HRA.

EFFECT SIZE IN MRC

Following a decade of increasingly strident criticism of
psychology’s reliance on p values as summaries of study
findings (see Kline, 2004, pp. 6–17, for a brief historical
overview), the American Psychological Association con-
vened a Task Force on Statistical Inference and charged it
with making recommendations about research design and
interpretation for the new century. Among many helpful
recommendations in the report of this task force (Wilkin-
son & the Task Force on Statistical Inference, 1999) is the
exhortation to “always present effect sizes for primary out-
comes” (p. 599).

An effect size quantifies the magnitude of association
between two (or more) variables. Effect sizes tell readers
more than simply that “X is significantly related to Y”;
they indicate both the strength and the direction of the
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relationship. Users of MRC are fortunate to have avail-
able a variety of effect size indices among which to
choose. In this section, we highlight the most commonly
presented effect size indices and discuss how each is inter-
preted.

Effect Sizes in Bivariate Regression
By definition, bivariate regression analysis involves one
predictor variable and one criterion variable. There are
two possible effect sizes that can be reported from such an
analysis: unstandardized and standardized.

Unstandardized Regression Coefficient. The
brief summary of MRC given previously focused on what
is properly called the unstandardized regression coefficient,
or B1. When Y is regressed onto a single predictor variable
(X1), B1 tells the predicted change in Y (or, equivalently,
the change in Y for a one-unit change in X1. Geometri-
cally, it represents the slope of the Y-on-X1 regression line,
when X1 and Y are scaled in their original (raw score)
units. In causal terms, we can think of B1 as reflecting the
causal impact (or effect) on Y of a one-unit increase in X1.

Consider the Millington et al. (2000) study described
in Examples 1 and 2 in the Regression Models section. If
Worker Satisfactoriness (Y) is regressed onto Job Knowl-
edge (X1) as the sole predictor variable, we obtain a
regression coefficient of BY1 = 5.69. This represents a pre-
dicted increase of 5.69 satisfactoriness points for every 1
point gained in ratings of Job Knowledge. So, if a training
program were created to enhance job-specific knowledge
and skills, and that program led to average gains of 
2 points in X1 scores, we would expect an indirect effect
on WSS ratings of 2(5.69), or about 11 points.

Standardized Effect Sizes. Note that in this ex-
ample, if readers are unfamiliar with either or both mea-
sures (EEQ-B or WSS), the unstandardized regression
coefficient BY1 may not be very meaningful. It is difficult
at a glance to tell whether a 5.69-unit increase on Y for
each unit increase on X1 is a large or important effect.
When the units of measurement on one or both variables
are not readily interpretable, Wilkinson and the Task
Force on Statistical Inference (1999) recommend report-
ing standardized coefficients. A standardized regression coef-
ficient is the regression coefficient that would be obtained
if we first transformed Y and X1 into their respective 
z scores (zY and z1; see Note 2) and then regressed zY onto
z1. We can convert the unstandardized regression coeffi-
cient BY1 into the equivalent standardized regression coef-
ficient (denoted as βY1) by multiplying it by the ratio
sd1/sdY. Thus,

Standardized regression coefficients are scaled identically
to the Pearson r (i.e., –1 ≤ βY1 ≤ 1), with large positive (or
large negative) coefficients indicative of a strong relation
between X1 and Y. In fact, for bivariate regression, βY1 is
identical to the Pearson product-moment correlation
(rY1), and each can be interpreted as the predicted change
in Y, in standard deviation (SD) units, for a 1-SD change
in X1. That is, if two people differ by 1 SD (1.64 points)
in their Job Knowledge scores, we expect a difference of
about 0.48 SDs (or about 9.4 points) in their satisfactori-
ness ratings. Because the coefficient is positive, we expect
that the person scoring higher on the EEQ-B will be rated
higher on the WSS.

A second use of the Pearson r as an aid to interpret-
ing magnitude of association is to square the correlation
coefficient and interpret it as an index of variance ac-
counted for. In this example, r2 = (.48)2 = .23. Thus, job
knowledge ratings account for 23% of the variance in
WSS scores.

When the units of measurement are meaningful on a
practical level (e.g., number of cigarettes smoked per day),
it is usually preferable to report an unstandardized measure
(regression coefficient or mean difference) rather than a
standardized measure (r or d; Wilkinson & the Task Force
on Statistical Inference, 1999). When reporting an effect
size, it is also helpful to add brief comments (e.g., com-
parisons with effect sizes obtained in related investi-
gations) to assist readers in gauging the practical and
theoretical importance of this association.

Effect Sizes in Multiple Regression
Multiple regression is often used to examine the (presumed
causal) effects of correlated predictors on a DV. When two
or more predictors are examined simultaneously, the co-
efficients in the regression equation are termed partial
regression coefficients, to reflect the fact that in deter-
mining the predicted effect of each variable on the DV,
the effect of each of the other predictor variables is held
constant, or partialed out.

Meaning of Partial Coefficients. To illustrate,
consider Example 1 in the Regression Models section, in
which we simultaneously regressed WSS scores onto X1
and a second EEQ-B subscale (X2 = Socialization and
Emotional Coping Skills). In this example, we are inter-
ested in the joint effects of Job Knowledge (X1) and So-
cialization (X2) on Worker Satisfactoriness (Y). Because
X1 and X2 are correlated (r12 = .50), the squared bivariate
correlation of each of these predictors with satisfactori-
ness (i.e., r2

Y1or r2
Y2) reflects a combination of unique

variance shared with Y and common variance shared with
both the other predictor and Y. To assess the unique
contribution of each variable to predicting Y, we used
multiple regression, constructing a least squares regression

βY1 = BY1      = 5.69             = .48
sd1

sdY

1.64
19.55( )
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equation for predicting Y from scores on both X1 and X2
(see Table 1).

Because X1 and X2 are correlated, the partial regres-
sion coefficient in Equation 1 is not equal to the bivariate
regression coefficient described in the preceding section.
This difference is reflected by a change in the notation of
the regression coefficient: The bivariate coefficient is de-
noted as BY1, whereas the partial coefficient is denoted as
BY1⋅2 (i.e., the regression of Y on X1 from which X2 has
been partialed). In general, it is expected that BY1⋅2will be
smaller in absolute value (i.e., closer to zero) than BY1 (see
Note 3).

The partial regression coefficient BY1⋅2 is the pre-
dicted change in Y for a given change in X1, when X2
scores are statistically controlled (i.e., held constant). In
reality, if a person’s Job Knowledge score (X1) increases,
we expect a corresponding (although somewhat smaller)
increase in Socialization (X2) (because r12 > 0), with both
changes (in X1 and X2) producing corresponding changes
in Y. To examine the unique effect of X1 on Y, indepen-
dent of the common variance shared with X2, we need to
hold the value of X2 constant and see what happens to Y
with a given change in X1. Although this is not possible
in reality, we can accomplish this feat mathematically;
this is what is meant when we say that BY1⋅2 is the (par-
tial) regression coefficient for Y on X1, statistically control-
ling for X2.

The partial regression coefficient BY1⋅2 can also be
thought of as the slope of the partial regression line when Y
is regressed onto X1 for a sample of individuals who share
the same score on X2. This formulation reminds us of an
important assumption underlying this discussion of partial
coefficients: These interpretations hold as long as the
slope of the partial regression of Y on X1 is identical for all
values of X2. This assumption can be tested by examining
the significance of the X1-by-X2 interaction. When there
is no significant interaction between X1 and X2 in pre-
dicting Y, the partial regression of Y on X1 is independent
of X2, or, equivalently, the slope of the partial regression
line when Y is regressed onto X1 does not depend on the
value of X2. When the X1-by-X2 interaction is significant,
however, the effect of X1 on Y differs at different levels of
X2, which is to say that different Y-on-X1 partial regres-
sion lines (i.e., regression lines for different constant val-
ues of X2) have different slopes (see Note 4).

Unstandardized Partial Coefficients. As just
noted, the unstandardized partial regression coefficient
BY1⋅2 reflects the predicted change in Y for a one-unit
change in X1 when X2 is held constant. This quantifies
the unique (presumed causal) effect of X1 on Y, from
which its joint effect with X2 has been partialed. From
Table 1, the partial regression coefficient BY1⋅2= 3.98,
about 30% smaller than the corresponding bivariate coef-
ficient (BY1 = 5.69) given earlier. Thus, almost one third

of the bivariate association between X1 and Y is attribut-
able to the overlap between X1 and X2. The interpretation
of this discrepancy between bivariate and partial coeffi-
cients (and the interpretation of partial coefficients more
generally) depends on the hypothesized causal model for
associations among these variables (see Cohen et al.,
2003, pp. 75–79).

Standardized Partial Coefficients. As in the
case of bivariate regression, when the units of predictor or
criterion variables are not intuitively meaningful, it is usu-
ally preferable to report standardized effect sizes. Two
standardized effect size measures, β and sr2, are commonly
used to reflect the unique contribution of a single predic-
tor variable in standardized units; a third measure, R2, re-
flects the variance accounted for by a set of predictors in
MRC.

Standardized partial regression coefficient (β). As in
the bivariate case, βY12 can be computed from BY12 by
multiplying the latter by the ratio sd1/sdY. Thus,

Thus, when Socialization scores are statistically controlled,
a 1-SD (i.e., 1.64-point) increase in Job Knowledge is pre-
dicted to result in a corresponding increase in Y of 0.33
SD units (or about 6.5 points). Note that when the SDs of
the predictor variables differ, their unstandardized regres-
sion coefficients are not comparable. The two beta
weights, however, are both standardized and directly re-
flect the relative strength of association. For this example,
βY2⋅1 = .28, which is somewhat smaller than βY1⋅2 = .33.
This implies that socialization ratings have a slightly
smaller unique association with predicted satisfactoriness
than job knowledge ratings; however, a statistical signifi-
cance test (e.g., Azen & Budescu, 2003) should be con-
ducted before strong inferences are made about the
relative importance of predictors in MRC.

Squared semipartial correlation (sr2). When MRC is
used for predictive purposes, rather than for analysis of
presumed causal associations, investigators may wish to
report on the proportion of variance in Y uniquely ac-
counted for by one predictor variable. The semipartial
correlation (which some statistical packages refer to by
the older name part correlation), when squared, is the rele-
vant effect size. Because these are standardized effect sizes,
comparison of the squared semipartials gives an indication
of the relative unique contributions of different predictors
(although again, strong conclusions about differences in
predictive validity should be based on significance tests
rather than on numerical differences alone). For Example
1, sr1

2 = .08 and sr2
2 = .06, again reflecting the slightly

larger unique contribution of Job Knowledge, relative to
Socialization, in predicting Worker Satisfactoriness.

βY1.2 = BY3.2       = 3.98 .           = .33
sd1

sdY

1.64
19.55
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It is helpful to recall that significance tests for B, β,
and sr2 are identical—if one is statistically significant, the
others will be as well. The choice of which effect size to
report is based on the nature of the research question (i.e.,
causal analysis vs. predictive validity) and on whether the
units of measurement are inherently meaningful.

Squared Multiple Correlation (R2). A final ef-
fect size commonly reported in multiple regression analy-
ses reflects the proportion of variance in Y accounted for
by all of the predictors together, as a set. The multiple cor-
relation coefficient (R) is the correlation between the pre-
dicted Ŷ scores (computed for each participant in the
study using Equation 1) and the actual measured Y scores.
For our example study, R2 = .29, which indicates that job
knowledge and socialization jointly account for 29% of
the variance in Worker Satisfactoriness ratings.

SPECIALIZED APPLICATIONS

OF MRC

The shift from a simultaneous approach to multiple re-
gression (in which the dependent variable is regressed
onto all predictors simultaneously) to a hierarchical ap-
proach (in which sets of predictors are entered sequen-
tially in an order predetermined by the investigator)
greatly enhances the flexibility of MRC analyses to ad-
dress a variety of research hypotheses of interest to re-
searchers in the social sciences. We have already noted
one important application of HRA, in which the first pre-
dictor set serves as a statistical control of potential con-
founding variables, and the predictors of theoretical
import are entered as a second block. The ∆R2 for Block 2
represents the unique (and hence unconfounded) associa-
tion of this second predictor set with the criterion vari-
able. In the next sections, we consider applications of
MRC to research questions involving categorical rather
than continuous measures, to mediator hypotheses, to
analysis of change, and to moderator hypotheses (i.e., sta-
tistical interactions).

CATEGORICAL VARIABLES

AND MRC

Categorical Variables as Predictors

Coding Dichotomous Variables. Regression
and correlation methods were developed to quantify rela-
tions among continuous variables. However, categorical
(nominal) variables may also be analyzed using MRC.
This process is straightforward for dichotomous variables
(i.e., nominal variables with exactly two categories). For
example, Nielsen (2003) included gender and marital sta-

tus among her control variables. Each of these was a
dichotomous variable, which could be included in the
analysis by assigning a numerical code to each of the cat-
egories (e.g., 0 = male; 1 = female). Although any two dif-
ferent numerical values will work, the zero–one coding
(called dummy coding) is a good approach, as it makes the
regression coefficient for this coded variable easy to inter-
pret. Specifically, if gender (coded 0 or 1, as above) is the
only predictor (X1), then the intercept (B0) represents the
predicted Y score for males (best estimate of the criterion
when X1 = 0). By extension, B1 represents the difference
between means for females and males (i.e., B1 = Mf − Mm).
This follows from the definition of the regression coeffi-
cient: the predicted change in Y for a one-unit change in
X1 (i.e., the change in means from the group coded as 0 to
the group coded as 1).

Interpretation of the (partial) regression coefficient
for gender when multiple predictors are included in the
regression analysis follows this same principle, except that
in this case B0 and B1 will be functions of adjusted means
(controlling for the other predictor variables in the equa-
tion; see Cohen et al., 2003, pp. 342–350). Because
regression coefficients for dichotomous variables are in-
terpretable only if the numerical codes for the categories
are known, it is crucial that investigators state how these
variables were coded, either in the methods section or in
the results section (and also in the table note, when re-
gression results are tabulated).

Coding Polychotomous Variables. When a
nominal variable has more than two categories (groups),
the information from that variable cannot be completely
represented by a single code variable. In general, if a nom-
inal variable encompasses g groups, a set of (g − 1) code
variables will be needed to represent membership in these
groups as a predictor in MRC. These code variables can
then be entered as a set in HRA to assess the association
between the categorical predictor variable and the con-
tinuous dependent variable. More details on creating
dummy coded variables, on other coding schemes, and on
interpreting regression output involving sets of variables
coded to represent nominal scales can be found in most
graduate level textbooks on MRC (e.g., Cohen et al.,
2003, chap. 8; Pedhazur, 1982, chap. 9). Using these cod-
ing strategies, and entering coded variables as sets in
HRA, allows researchers to combine categorical and con-
tinuous predictors within the MRC framework.

Categorical Variable as Criterion
Rehabilitation researchers are often interested in outcome
variables that are dichotomous rather than continuous.
For example, Taylor et al. (2003) followed children for 
4 years following a traumatic brain injury (TBI) to iden-
tify predictors of long-term education outcomes. The de-
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pendent variable for this study was placement in special
education (vs. no special education). When the depen-
dent variable is naturally categorical, as here, traditional
MRC techniques cannot be used. However, a related an-
alytic technique called logistic regression is designed for
categorical and continuous predictors of categorical crite-
rion variables. Logistic regression can be conducted with
either simultaneous or sequential (hierarchical) entry of
predictors, and it provides estimates of both the unique
contribution of individual predictors and the joint contri-
bution of sets of predictors to the prediction of outcome
status (Cohen et al., 2003, chap. 13). Thus, categorical
dependent variables, like categorical predictor variables,
can be accommodated within the broad family of MRC
techniques.

TESTS OF MEDIATOR AND MODERATOR

HYPOTHESES IN MRC

When previous research has demonstrated an association
between a predictor variable (designated as the indepen-
dent variable, or IV, to reflect its presumed causal priority)
and a dependent variable (DV), investigators may wish to
examine proposed mediators or moderators of this associ-
ation. Although the terms mediator and moderator are
sometimes used interchangeably, they have distinct mean-
ings in the context of hypothesis formulation and data
analysis (Baron & Kenny, 1986). A mediator is an inter-
vening variable that is caused by the IV, and that in turn
causes the DV, so that at least part of the causal effect of
the IV on the DV is explained by its indirect effect via the
mediator. A moderator is a third variable that affects 
the strength or the direction of the association between
the IV and the DV.

Baron and Kenny (1986) provided an informative
discussion of these terms, with details about how to test
each of these types of hypotheses using MRC. Another
very helpful resource for testing moderator hypotheses
using MRC is Aiken and West (1991, especially chap. 2).
More recently, Frazier, Tix, and Barron (2004) published a
useful, step-by-step guide to testing mediator and modera-
tor hypotheses and reporting findings. The astute reader
will note that all of these sources recommend MRC as the
optimal analysis for testing mediator and moderator hy-
potheses involving naturally continuous variables. In par-
ticular, researchers should avoid the common practice of
dichotomizing continuous predictor variables (using a
“median split,” for example) so that ANOVA may be used
to test moderator hypotheses (statistical interactions). As
demonstrated by MacCallum, Zhang, Preacher, and
Rucker (2002), dichotomization of continuous variables
for any type of analysis (not just moderator analyses) com-
promises statistical power and can yield misleading results.
Any of the references just cited can assist readers in ana-

lyzing and interpreting interactions between continuous
predictors using MRC.

ANALYSIS OF CHANGE IN MRC

When data are collected at two or more time points, in-
vestigators may test hypotheses involving prediction of
change in the dependent variable over time. Such analy-
ses always (either explicitly or implicitly) involve compu-
tation of change scores reflecting the change in status for
each individual on the dependent variable between the
two time points of interest. Appropriate analysis of hy-
potheses involving change is the subject of a rich litera-
ture (see the classic paper by Cronbach & Furby, 1970, 
for a thorough introduction); here we mention only one
small controversy, which relates to the use of MRC.

The most natural, and perhaps the most common
method of testing hypotheses of change between two time
points uses difference scores, which are derived by subtract-
ing each person’s score at Time 1 from his or her score at
the later Time 2, as an index of change. Difference scores
are an intuitive means to quantify change over time, and
are used implicitly in such common analyses as the t test
for dependent samples and the group × time (repeated
measures) ANOVA for assessing treatment effects (Huck
& MacLean, 1975). Difference scores have been criticized
as an index of change, however, because they are neces-
sarily (negatively) correlated with Time 1 scores (Cohen
et al., 2003, pp. 59–60). When investigators wish to cre-
ate change scores that are statistically independent of ini-
tial status, they should use residualized change scores (also
called partialed change scores; Cohen et al., 2003, pp. 570–
571), regressing Time 2 scores (DV) onto Time 1 scores
(predictor) and saving the residuals as an index of change.
By definition, these residuals are independent of (i.e., un-
correlated with) Time 1 status. Residualized change scores
are implicitly analyzed when ANCOVA is used to test 
for group differences with initial scores on the DV as a
covariate (Kenny, 1979, chap. 11). Likewise, in any re-
gression analysis with Time 2 scores as the dependent
variable, where Time 1 scores on this DV are entered as
one of the predictor variables, the partial regression coef-
ficients for the remaining predictor variables reflect their
association with change on the DV (i.e., with participants’
residualized change scores on this variable, described
above).

MISCELLANEOUS TOPICS

Power Analysis in MRC

An important question for the design of research studies
using MRC concerns the sample size necessary to have ad-
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equate statistical power. Methodologists commonly rec-
ommend that researchers aim for power of at least .80,
which corresponds to a Type II error rate of 20%. Proce-
dures for estimating statistical power differ for two types 
of hypothesis testing common to studies using MRC: 
(a) tests that determine whether the multiple correlation
(R) between a set of predictors and the criterion variable
is different from zero and (b) tests to determine whether
the association of a single predictor variable (or a set of
variables, when HRA is used) with the DV is nonzero,
when other predictors are also in the regression equation
(and therefore are statistically controlled)—that is, tests
of the significance of B, β, or sr2. A challenge for power
analysis for each of these analyses, but especially for the
second type of research question, is the determination of
the expected effect size. Because of space limitations (and
because excellent resources on power analysis are readily
available), we provide only a brief introduction to power
analysis in MRC.

Although several rules of thumb have been proposed
for determining sample size in MRC (e.g., N = 10k, where
k is the number of predictor variables), none of these is
above reproach, and most bear little or no relation to the
actual (complex) relation between power and sample size
(Maxwell, 2000). An important reason for this failure is
that these rules of thumb completely ignore the most im-
portant determinant of power other than sample size,
which is the effect size. The best approach is to conduct a
power analysis using a predicted effect size to determine
the sample size (N) necessary to attain a specified power
level (Cohen, 1988). See Cohen et al. (2003) for concise
instructions on conducting a power analysis for testing the
hypothesis that R2 = 0 (p. 92) or for instructions on test-
ing that incremental variance explained by a new set of
variables (denoted as Set B; variance explained uniquely
by this set of predictors is denoted sR2

B) is zero (pp. 176–
177). The latter test works for sets containing a single
variable (i.e., kB = 1) or multiple variables (i.e., kB > 1).
When kB = 1, the significance test for sR2

B is identical to
that for B or β (even if all predictors are entered simulta-
neously rather than using HRA).

In summary, rules of thumb for determining sample
size based only on the number of predictor variables are
misleading, and they bear little relation to actual statisti-
cal power. Power calculations should be based on the ex-
pected effect size (either R2 or sR2

B).

FACTORS AFFECTING EFFECT

SIZE ESTIMATES

We noted that a convenience of MRC is the plethora of
effect size measures available from regression analyses.
This boon is mitigated somewhat by the caveat that, for a
variety of reasons, observed correlation and regression co-

efficients typically distort the true magnitude of asso-
ciation between constructs in the population under study.
Fortunately, the direction of bias in the effect size esti-
mates is predictable and can (and should) be taken into
account in interpreting study findings.

Measurement Error and Attenuation
A factor that universally affects research using measured
(rather than experimentally manipulated) variables is mea-
surement error. Scores on psychological assessments are
always less than perfectly reliable, so that variance in scores
reflects a composite of error variance and true score vari-
ance. Because the error components of two sets of scores
are, by definition, uncorrelated, correlations between mea-
sured variables are always attenuated (i.e., reduced) rela-
tive to the correlations between their respective true
scores. As score reliability decreases, the degree of attenu-
ation of the bivariate correlation increases (Schmidt &
Hunter, 1999). In other words, the poorer the reliability
of its measures, the greater the degree to which a study’s

observed correlation is expected to underestimate the 
true (population) correlation between the constructs of
interest.

Distribution, Range Restriction, 
and Dichotomization
Other factors can attenuate effect sizes in correlational re-
search (see Cohen et al., 2003, pp. 51–62). When scores
on one variable are significantly skewed, correlations with
other measures will be attenuated. When the range of
scores in the sample is restricted relative to the range in
the population, correlations with scores on another vari-
able will be attenuated. When researchers convert con-
tinuous measures to dichotomous measures (usually so that
they can use ANOVA rather than MRC), they discard
valid variance and further attenuate correlations between
this variable and others in their study. In bivariate analy-
ses, all of these factors act to attenuate the observed effect
size, producing observed effect sizes (r or B) that under-
estimate the corresponding population effect size.

Summary
Researchers studying measured (rather than experimen-
tally manipulated) variables should be aware that ob-
served effect sizes are generally attenuated relative to the
corresponding population effect size and that the degree
of attenuation can be minimized by (a) using reliable
measures of the constructs of interest; (b) transforming
highly skewed variables prior to analysis; (c) sampling
broadly to reduce the risk of range restriction; and (d) us-
ing MRC methods to analyze continuous variables (rather
than dichotomizing these scores to analyze them using
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ANOVA). When multiple predictor variables are ana-
lyzed, the effects of measurement error, deviations from
normality, and range restriction on partial coefficients are
more complex. For example, low reliability in a variable
that is statistically controlled in a given analysis can have
the effect of inflating, rather than attenuating, the partial
regression coefficient between another predictor and the
criterion (Cohen et al., 2003, pp. 122–124). Also, the sta-
tistical power of moderator analyses is particularly strongly
reduced by unreliability of measurement, because the reli-
ability of the product term (which carries the interaction
variance) is primarily a function of the product of the re-
liabilities of the IV and the moderator variable (Aiken &
West, 1991, pp. 144–145), especially when the IV and
moderator are only weakly correlated with one another.

CONCLUSION

MRC techniques give researchers the flexibility to address
a wide variety of research questions of interest to rehabil-
itation professionals. Good data analysis begins with care-
ful conceptualization (selecting constructs of interest and
creating theory-derived hypotheses about the relations
among them) and thoughtful choice of measures. Power
analysis, relying on estimates from past research or esti-
mates about the likely magnitude of hypothesis-relevant
effect sizes, is an essential component of good research de-
sign. It is critical that the analysis chosen conform to the
hypothesis to be tested, and that observed effect sizes, as
well as significance tests, be presented and interpreted as
substantive findings concerning the magnitude of hypothe-
sized associations.

NOTES

1. Although we follow the linguistic conventions that
treat the predictor variable as the putative cause of the
criterion variable, it is important to remember that re-
gression is a correlational analysis and does not by itself
provide empirical evidence of a cause-and-effect rela-
tion between two variables.

2. The z score is a deviation score that is expressed in SD
units:

where zi is the z score for person i, Xi is the raw score for
that person, MX is the mean of all the X scores in the
sample, and SDX is their standard deviation. If zi = 1.0,
this means person i scored 1 SD above the sample
mean.

3. The exception to this general rule, in which the partial
coefficient BY1⋅2 is larger in absolute value than the cor-

responding bivariate coefficient BY1 (or, equivalently,
the standardized partial coefficient βY1⋅2 is larger than
the bivariate correlation rY1), is known as suppression.
Although bona fide cases of suppression appear to be
fairly rare in the social science literature, they do exist,
and this pattern of relations can have theoretical sig-
nificance. For a detailed discussion of suppression, with
substantive examples, see Tzelgov and Henik (1991).

4. By symmetry, everything said in the last three para-
graphs about BY1⋅2 also applies to BY2⋅1, if X1 and X2 are
interchanged.
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