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1 Introduction

Ever since economists became engaged in the data business, they have grappled with
how to construct the proper counterfactual. The concept of identifying a treatment ef-
fect is simple enough conceptually, but in practice a major problem is one of a missing
counterfactual - person i is not observed in more than one state simultaneously. Within
economics, measurement approaches can be divided into two main categories: estimation
of models that make use of naturally-occurring data and approaches wherein the analyst
herself governs the data generation process. A handful of popular empirical approaches
are typically used when the analyst is dealing with naturally-occurring data, but the lit-
erature is replete with criticisms of their identifying assumptions, many times based on
restrictiveness or implausibility (see Blundell and Costas-Dias, 2002, for a useful review).
In those cases where the analyst generates her own data, such as within the area of

experimental economics, identi�cation assumptions are much less severe. To obtain the
e¤ect of treatment in the particular domain of study the only major assumption necessary
is appropriate randomization (with appropriate sample sizes). In this manner, when
running an experiment the analyst is using randomization as an instrumental variable
(see List, 2006). But, with the chore of data generation comes other, less discussed,
obligations of the researcher. In this study, we consider one such feature more carefully:
the optimal number and arrangement of subjects into experimental cells.
A casual perusal of the literature presents a striking consistency concerning sample

sizes and their arrangement: most studies uniformly distribute at least 30 subjects into
each cell. This approach holds whether the analyst is making use of a purely dichotomous
treatment (i.e., pill or no pill) as well as when the analyst is exploring levels of treatment
(i.e., various dosage levels). Discussion of whether such a sample arrangement is e¢ cient
is more mature in other literatures, but has not been properly vetted in the experimental
economics community. Our paper attempts to �ll this gap. In doing so, we do not claim
originality in any of the derivations, rather this study should be viewed as a compilation
of insights from other literatures that might help experimenters in economics and related
�elds design more e¢ cient experiments.
Our study begins with a discussion of popular randomization techniques. We discuss

the virtues of complete randomization, block designs, and factorial designs.1 After these
randomization preliminaries, we move to a discussion of the power of the experimental
design. We provide simple formulas with which to compute required sample sizes under
three major classes of assumptions: (1) a dichotomous treatment with potentially het-
erogeneous treatment e¤ects (for continuous and binomial outcomes) (2) a dichotomous
treatment in a cluster design, and (3) a continuous treatment with homogeneous treat-
ment e¤ects. We elaborate on these simple formulas in cases where the cost of sampling
subjects di¤ers across treatment and control and where there is a �xed cost of sampling
from a new cluster.
Several simple rules of thumb fall out of the discussion. The overarching idea revolves

around �rst implementing an experimental design that maximizes the variance of the
treatment variable, and second adjusting the samples to account for variance heterogene-

1Fisher (1935) and Cox and Cochrane (1950) provide seminal discussions of experimental design.
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ity, if necessary. In the case of a simple comparison between a single treatment and a
control group, one �rst insight is that with a continuous outcome measure, under the
null hypothesis of no treatment e¤ect, one should only allocate subjects equally across
treatment and control if the sample variances of the outcome means are expected to be
equal in the treatment and control groups (i.e., in those cases when there are homoge-
neous treatment e¤ects). The optimal sample arrangement becomes more lopsided as
the sample variances of outcomes across treatment and control become more disparate;
or likewise, the treatment e¤ect becomes more heterogeneous. A simple rule of thumb
to maximize power given a �xed experimental budget naturally follows: the ratio of the
sample sizes is equal to the ratio of the standard deviations of outcomes.
In cases when the outcome variable is dichotomous, under the null hypothesis of no

treatment e¤ect (i.e. p1 = p0, where the subscripts index treatment and control respec-
tively), one should always allocate subjects equally across treatments. This follows from
the close connection between mean and variance. Yet, if the null is of the form p1 = kp0,
where k > 0, then the sample size arrangement is dictated by k in the same manner as in
the continuous case. If the cost of sampling subjects di¤ers across treatment and control
groups, then the ratio of the sample sizes is inversely proportional to the square root of
the relative costs. Interestingly, di¤erences in sampling costs have exactly the same e¤ect
on relative sample sizes of treatment and control groups as di¤erences in variances.
In those instances where the unit of randomization is di¤erent from the unit of ob-

servation special considerations must be paid to correlated outcomes. Speci�cally, the
number of observations required is multiplied by 1+ (m� 1)�, where � is the intracluster
correlation coe¢ cient and m is the size of each cluster. The optimal size of each cluster
increases with the ratio of the within to between cluster standard deviation, and decreases
with the square root of the ratio of the cost of sampling a subject to the �xed cost of
sampling from a new cluster. Since the optimal sample size is independent of the avail-
able budget, the experimenter should �rst determine how many subjects to sample in
each cluster and then sample from as many clusters as the budget permits (or until the
optimal total sample size is achieved).
A �nal class of results pertains to designs that include several levels of treatment, or

more generally when the treatment variable itself is continuous, but we assume homoge-
neous treatment e¤ects. The primary goal of the experimental design in this case is to
simply maximize the variance of the treatment variable. For example, if the analyst is
interested in estimating the e¤ect of treatment and has strong priors that the treatment
has a linear e¤ect, then the sample should be equally divided on the endpoints of the
feasible treatment range, with no intermediate points sampled. Maximizing the variance
of the treatment variable under an assumed quadratic, cubic, quartic, etc., relationship
produces unambiguous allocation rules as well: in the quadratic case, for instance, the
analyst should place half of the sample equally distributed on the endpoints and the
other half on the midpoint. More generally, optimal design requires that the number of
treatment cells used should be equal to the highest polynomial order plus one.
The remainder of our study proceeds as follows. Section 2 reviews several basic ran-

domization techniques. We summarize how to calculate optimal sample sizes in Section 3.
Section 4 elaborates on these considerations, and includes formulae for binomial outcomes
and cluster designs. Section 5 discusses sample arrangement when varying treatment lev-
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els are possible. Section 6 concludes.

2 Randomization Techniques

One key feature that di¤erentiates empirical approaches within economics is how they
formulate the proper counterfactual, or estimate the treatment e¤ect of interest. To
provide some formalization, we consider the outcome Yi of subject i under treatment and
control, T = 0 and T = 1, respectively. We assume that it can be modeled as a function
of observable variables Xi, an unobserved person-speci�c e¤ect �i, an average treatment
e¤ect �� ;a person-speci�c treatment e¤ect � i, where E(� i) = 0; and "i, which is assumed
i.i.d.

YiT = �i +Xi� + ��T + � iT + "i (1)

The average treatment e¤ect can then be de�ned as:

�� = E(Yi1 � Yi0) = E(Yi1)� E(Yi0)
The identi�cation problem is that we can only observe E(Yi1jT = 1) and E(Yi0jT = 0),
where T = 1 or T = 0 for a given i. Because it is impossible to observe unit i in both
states (treatment and no treatment), it is necessary to construct a proper counterfactual
(i.e., we cannot observe E(Yi1jT = 0) and E(Yi0jT = 1)). If the propensity to receive
treatment is correlated with any of the unobserved variables, then the estimate of the
average treatment e¤ect is biased since

�̂ = E(Yi1jT = 1)� E(Yi0jT = 0) 6= E(Yi1)� E(Yi0)
The approach used by experimentalists typically achieves identi�cation via random-

ization. The experimenter randomly assigns units to receive exposure or non-exposure
to treatment and then compares the outcomes of units that received treatment to the
outcomes of units that did not receive treatment. Randomization ensures that the as-
signment to treatment is independent of other sources of variation, and that any bias
is balanced across treatment and control groups, thus ensuring that the estimate of the
average treatment e¤ect is unbiased:

�̂ = E(Yi1jT = 1)� E(Yi0jT = 0) = E(Yi1)� E(Yi0) = ��
In this section we discuss how, given that sample sizes in experiments are always

of limited size, the experimenter should assign treatment. There is a large statistical
literature on this issue, thus we aim to present a succinct overview of the main methods
and their advantages and disadvantages. It should be highlighted that our discussion
will continue to focus on measuring average treatment e¤ects, which has consumed much
of the experimental literature. This is because it is in the spirit of classical experimental
design; yet we should note that this leaves important issues on the sidelines, such as
heterogeneity of treatment e¤ects (see List, 2006, for a general discussion, and Loomes
2005 and Wilcox 2008 for studies that reveal the repercussions of this choice in measuring
expected utility violations). More broadly, we urge caveat lector because in some cases
the principles for choosing optimal designs might di¤er from the principles considered
here. Kanninen (2002) provides a beautiful illustration of this fact when the goal is to
measure the parameters of a binomial logit model.
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2.1 Block and Within Subject Designs

The simplest experimental design is a completely randomized design, where treatments
are probabilistically assigned to subjects independent of any of the subject�s observed
or unobserved characteristics. The advantage of this procedure is that it minimizes the
risk that treatment is correlated with individual characteristics. The disadvantage is that
the variance of outcomes is potentially very large and the sample sizes of treatment and
control groups are randomly generated. Both of these problems reduce the experimenter�s
ability to draw statistical inference from the experiment.
Instead, if the subject pool is heterogeneous in various dimensions the experimenter

may want to reduce the variance of the unobserved component. This can be done subse-
quent to the experiment by including observable variables Xi in a linear regression and
thus constructing an estimate of the average treatment e¤ect with lower variance in �nite
samples. Alternatively, the conditioning can be built into the design of the experiment.
The basic strategy used for incorporating subject heterogeneity into the design of an
experiment is to divide the experimental units into blocks. The idea is to treat heteroge-
neous characteristics of subjects as further treatments. Randomization is within, but not
between blocks, thus ensuring that all treatment e¤ects, including the e¤ect of subject
characteristics, can be identi�ed. Note that blocking, or equivalently including observable
variables in the subsequent regression, will typically decrease the variance of the estimate
of the average treatment e¤ect. Speci�cally, note that

var(�̂) =
�2

N
=

var (")

N � var (T ) (2)

The variance of the estimate of the average treatment e¤ect �2=N is increasing in the
variance of the unobserved component var ("), and decreasing in the number of observa-
tions N and the variance of the treatment propensity var (T ).2 Blocking or conditioning
on X increases e¢ ciency by reducing the variance of the unobserved component. Another
advantage is that blocking allows estimation of an average treatment e¤ect over subsam-
ples of the subject pool. In this case, there is a distinct bene�t from blocking prior to
the experiment since one can ensure that the standard error of the estimate of treatment
e¤ects for each subsample is as small as possible, as discussed below.
A within subject experimental design, in which the same subject experiences more

than one experimental treatment, can be thought of as a special case of the block design
where the experimenter blocks on a single subject. A main advantage of the within
subject design is that it may greatly reduce the variance of the unobserved component,
increasing the precision of the estimated average treatment e¤ect. Speci�cally, assuming
that outcomes are generated by equation (1) then, conditional on X, the di¤erence in
the variance of the estimate of the treatment in a between subjects and a within subject
design is given by:

�2BS � �2WS =
2

N
var (�i)

2More generally, V ar(�̂) = V ar(")

N�V ar(T )�(1�R2
XT )

. But since treatment is assigned at random, X and T

are uncorrelated so that R2XT (the R-squared of a regression of T on X) is equal to zero.
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where �2BS and �
2
WS are, respectively, the conditional between and within subject vari-

ance.3 In addition, fewer subjects have to be recruited for a within subject design and the
degrees of freedom are larger. A disadvantage of the within subject design is that treating
a single subject multiple times may result in complicated interactions between treatments
and thus yield a di¤erent parameter than is estimated in the between experimental design.
These context e¤ects include history and learning e¤ects, and sensitization to perceived
dependencies across trials (see Greenwald, 1976). Some of these more complicated ef-
fects can be controlled for using crossover designs, where the order in which treatments
are applied to a subject is randomized. For example, if the outcome is determined by
equation

Yit = Xit� + ��T + � iT + �T(t�1) + iT(t�1) + "i

then applying treatment T and control C in the order TC and CT allows for identi�cation
of �� . More complicated interactions may be identi�ed under a more elaborate TCT and
CTC crossover design to achieve identi�cation. However, within subject designs poten-
tially su¤er from the problem that treatments may interact in unexpected ways. This
issue in and of itself merits an entire study, but we close the discussion urging scholars to
take caution when interpreting treatment e¤ects measured using within subject designs.

2.2 Factorial Designs

A completely random or random block design has the disadvantage that sample sizes
may vary considerably across blocks. In a factorial design the experimenter chooses a
pre-determined number of subjects to each combination of treatments, which can greatly
increase the e¢ ciency of the design. Randomization in this case is over the order in
which treatments are assigned to experimental units. For example, subjects should not
be assigned to treatment and control groups in the order in which they arrive at the
laboratory, since early and late arrivals may di¤er systematically. Instead, each subject
should be assigned a random number, based upon which assignment to treatment or
control is carried out.
A basic factorial design has the same number of subjects assigned to each combination

of treatments. Further, it is likely to be expensive to run all possible combinations of
treatments: with n treatments this would require 2n trials. However, in the absence
of interaction e¤ects between treatments, only n + 1 trials are necessary to identify all
treatments e¤ects. These n + 1 trials must be linearly independent to guarantee that
all treatment e¤ects can be identi�ed. The advantage of this fractional factorial design
approach is a reduced number of trials. A major disadvantage is that in its simplest form

3The within-subject design, however, does not in general have to result in a lower variance of the
estimate of the treatment e¤ect. If we allow for individual �xed e¤ects and the treatment e¤ects to be
correlated:

YiT = �i +Xi� + ��T + � iT + �� ijT + "i

then
�2BS � �2WS =

2

n
[var (�i)� var (�� ij)]

which is no longer unambiguously positive. See Keren (1993) for a derivation of these results and an
overview of factors that in�uence the choice in between- or within-subjects design.
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such an approach renders it impossible to check for the existence of interaction e¤ects.
Moreover, as we discuss below, the basic factorial design, with equal sample sizes in each
treatment cell, is likely to be ine¢ cient.
As Levitt and List (2009) discuss, one potential problem arising from any random-

ization approach is �randomization bias,� a situation wherein the experimental sample
is not representative of the population of interest due to the randomization itself. This
problem emanates from the �eld of clinical drug trials, where it has been found that
persuading patients to participate in randomized studies is much harder than persuading
them to participate in non-randomized studies (Kramer and Shapiro, 1984). In princi-
ple, randomization bias also might in�uence experiments in economics. In particular,
laboratory experiments as well as artefactual and framed �eld experiments might su¤er
from randomization bias (see Harrison and List, 2004). The one study that we are aware
that explores this issue is the work of Harrison et al. (2009). Using an artefactual �eld
experiment to explore risk preferences, they �nd that (p. 1): "randomization bias is not
a major empirical problem for �eld experiments of the kind we conducted. . . " Certainly
more work is necessary, but our intuition is that randomization bias will not present itself
as a major impediment to measurement in the same manner observed in clinical drug
trials.

3 Optimal Sample Arrangement: Basics

Given a randomization scheme an important issue to consider is the optimal sample size
in each treatment cell. In calculating optimal sample sizes an experimenter must consider
three key elements: (1) the signi�cance level, (2) the power of the subsequent hypothesis
test, and (3) the minimum detectable e¤ect size. The signi�cance level of a hypothesis test
is the probability of falsely rejecting the null hypothesis (also known as the probability
of a Type I error). The power of a statistical test is the probability that it will correctly
lead to the rejection of the null hypothesis (the probability of a Type II error is 1 - power,
and is equal to the probability of falsely not rejecting the null hypothesis).4 The e¤ect
size is the magnitude of the treatment e¤ect that the experimenter wants to detect.
In this section we derive an explicit formula for experiments that have a dichotomous

treatment, where the outcome is continuous and we assume that a t-test will be used
to determine di¤erences in means between treatment and control group.5 The formula
illustrates the trade-o¤s inherent in the choices that experimenters face and we make
these more tangible by providing empirical examples. In subsequent sections we consider
further cases: binomial outcomes, cluster designs, and varying treatment intensities. We
also discuss cases where sampling costs for treatment and control are unequal and where

4Discussions of power tend not to be intuitively appealing to economists. This is because our usual
approach stems from the standard regression model: under a true null what is the probability of observing
the coe¢ cient that we observed? Power calculations are altogether di¤erent, exploring the question of: if
the alternative hypothesis is true, then what is the probability that the estimated coe¢ cient lies outside
the 95% con�dence interval de�ned under the null.

5The sample size calculations depend on the hypothesis test the experimenter will ex post employ to
analyse the data. For power calculations using non-parametric statistical tests see, for example, Rutstrom
and Wilcox (2007).
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the cost of an additional subject in a new cluster is not the same as that of a subject
in a cluster that has already been sampled. In practice, an experimenter can draw upon
statistical software to help calculate sample sizes if di¤erent hypothesis tests are to be
used.6

3.1 Dichotomous Treatment and Continuous Outcome

Using the empirical speci�cation above, a single treatment T results in (conditional)
outcomes Yi0 if T = 0 where Yi0jXi � N(�0; �20) and Yi1 if T = 1 where Yi1jXi � N(�1; �21).
In the model given by equation (1) �21 � �20 = var (� jX). Only if the variance of the
individual speci�c treatment e¤ects equals zero, i.e. the treatment e¤ect is homogeneous,
will the variances across treatment and control groups be equal. Since the experiment
has not yet been conducted, the experimenter must form beliefs about the variances of
outcomes across the treatment and control groups, which may, for example, come from
theory, prior empirical evidence, or a pilot experiment. The experimenter also has to make
a decision about the minimum detectable di¤erence between mean control and treatment
outcomes, �1 � �0 = �, that the experiment is meant to be able to detect. In essence, �
is the minimum average treatment e¤ect, �� ; that the experiment will be able to detect
at a given signi�cance level and power. Finally, we assume that the signi�cance of the
treatment e¤ect will be determined using a t-test.
Calculating optimal sample sizes requires specifying a null hypothesis and a speci�c

alternative hypothesis. Typically, the null hypothesis is that there is no treatment e¤ect,
i.e. that the e¤ect size is zero. The alternative hypothesis is that the e¤ect size takes
on a speci�c value (the minimum detectable e¤ect size). The idea behind the choice of
optimal sample sizes in this scenario is that the sample sizes have to be just large enough
so that the experimenter (1) does not falsely reject the null hypothesis that the population
treatment and control outcomes are equal, i.e. commit a Type I error; and (2) does not
falsely accept the null hypothesis when the actual di¤erence is equal to �, i.e. commit a
Type II error. More formally, if the observations for control and treatment groups are
independently drawn and H0 : �0 = �1 and H1 : �0 6= �1; we need the di¤erence in sample
means �Y1 � �Y0 (which are of course not yet observed) to satisfy the following conditions:

1. A probability � of committing a Type I error in a two-sided test, i.e. a signi�cance
level of �. This is true if

�Y1 � �Y0q
�20
n0
+

�21
n1

= t�=2 ) �Y1 � �Y0 = t�=2

s
�20
n0
+
�21
n1

(3)

where �2T and nT for T = f0; 1g are the conditional variance of the outcome and
the sample size of the control and treatment groups.

6Useful software and documentation includes Spybrook et al (2008a, 2008b), Lenth (2001, 2006-2009),
StataCorp (2007). Note that optimal sample sizes calculated by various software may not match precisely
those that can be derived from the formulae in this paper.
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2. A probability � of committing a Type II error, i.e. a power of 1� �, in a one-sided
test. This is true if�

�Y1 � �Y0
�
� �q

�20
n0
+

�21
n1

= �t� ) �Y1 � �Y0 = � � t�

s
�20
n0
+
�21
n1

(4)

Using (3) to eliminate �Y1 � �Y0 from (4) we obtain

� =
�
t�=2 + t�

�s�20
n0
+
�21
n1

(5)

It can easily be shown that if �20 = �
2
1 = �

2, i.e. var (� i) = 0; then the smallest sample
sizes that solve this equality satisfy n0 = n1 = n and then

n�0 = n
�
1 = n

� = 2
�
t�=2 + t�

�2 ��
�

�2
(6)

If the variance of the outcomes are not equal this becomes

N� =

�
t�=2 + t�

�

�2�
�20
��0
+
�21
��1

�
(7)

��0 =
�0

�0 + �1
; ��1 =

�1
�0 + �1

where N = no + n1, �o + �1 = 1, �0 = n0
no+n1

.
If sample sizes are large enough that the normal distribution is a good approximation

for the t-distribution, then the above equations are a closed form solution for the opti-
mal sample sizes. If sample sizes are small, then n must be solved by using successive
approximations. Optimal sample sizes increase proportionally with the variance of out-
comes, non-linearly with the signi�cance level and the power, and decrease proportionally
with the square of the minimum detectable e¤ect. The relative distribution of subjects
across treatment and control is proportional to the standard deviation of the respective
outcomes. This suggests that if the variance of outcomes under treatment and control
are fairly similar there should not be a large loss in e¢ ciency from assigning equal sample
sizes to each.
Equation 6 makes it quite clear that any simple rule of thumb�such as place 30 subjects

in each experimental treatment cell�has little basis in terms of power unless the researcher
believes that he wants to detect an approximately 0.70 standard deviation change in the
outcome variable. More generally, equation 6 can be used as a simple heuristic to compute
sample sizes necessary to detect various e¤ects. For example, following the standards in
the literature and using a signi�cance level of 0.05, and setting power to 0.80, we have
t�=2 = 1:96 and t� = 0:84 from standard normal tables. Thus, one would need n =
16 (64) observations in each treatment cell to detect a one (one-half) standard deviation
change in the outcome variable.
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3.2 An Empirical Example

A quick perusal of the experimental studies published in the social sciences as well as
conducted in the business community makes it clear that the status quo is to attempt
to include an equal number of subjects in every experimental cell. The summary above
provides a strong reason why we should be careful with this aspect of the design since we
might fail to maximize power if we do not consider optimal sample arrangements. Consider
List (2001) as one illustrative example. List conducted a valuation �eld experiment at a
sportscard show exploring how agents bid in Vickrey second-price auctions for a baseball
card. We focus here on the comparison of two treatments among non-sportscard dealers:
hypothetical versus actual bidding distributions. The underlying idea, therefore, is that in
this case we might have heterogeneous treatment e¤ects in that agents respond di¤erently
to hypothetical auctions.
Indeed, previous work suggests that, in general, valuations in hypothetical settings

have a greater variance than valuations in tasks that are monetarily binding (see, e.g.,
Camerer and Hogarth, 1999). Putting aside the issue of heterogeneous costs to obtain
sample points, the design fails to adequately adjust sample sizes for the greater expected
variance in hypothetical bids. In the paper, the sample sizes for each group are almost
equivalent, while the standard deviation of bids in the hypothetical auction is almost twice
the standard deviation of bids in the actual auction.7 At a ratio of standard deviations
of 2:1 the suboptimal design (with equal sample sizes in both groups) requires an 11%
larger total sample size than the optimal sample design (with the ratio of sample sizes
equal to the ratio of standard deviations) to achieve the same power. Speci�cally, using
equation (7), we calculate that given the total sample N = 175, the optimal sample sizes
for the hypothetical and actual auction are nH = 111 and nA = 64; respectively. Using
a uniform design instead of the optimal one decreases the power of the experiment (at
the observed e¤ect size) from 69% to 66%. Had the variances been even more di¤erent,
the e¢ ciency loss due to non-optimal sample arrangements would have been much larger.
All else equal, for a ratio of standard deviations of 3, 4, and 5 the required total sample
size in the suboptimal (equal sample size) design is 25%, 36%, and 44% larger than in
the optimal design. Similarly, we �nd that (using equation (5)) the minimum detectable
e¤ect size is 12%, 17%, and 20% higher in the suboptimal design. However, with a level
of power of 69%, the optimal design is still underpowered relative to the conventional
standard of 80%.

3.3 Treatments with Unequal Costs

This far we have implicitly assumed that sampling costs for treatment and control groups
are equal. Determining optimal sample sizes is somewhat more complicated upon relax-
ation of this assumption. For example, in many cases treatment might be more expensive
to administer because it is costly to provide the good or service in question. In this case,
the key idea remains the same�we want to maximize the minimum detectable e¤ect size

7The mean bids (standard deviations) are $49.03 ($79.96) and $25.60 ($46.23) in the hypothetical and
actual auctions respectively. The book value of the Cal Ripken Jr. 1982 Topps Traded baseball card was
in the range of $200-$250.
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as given by equation (5), but now we must consider the cost of applying control and treat-
ment, c0 and c1. By maximizing the minimum detectable e¤ect, as given by equation
(5), subject to c0n0 + c1n1 =M we �nd that

n�1
n�0
=
��1
��0
=

r
c0
c1

�1
�0

As before, the optimal sample sizes are proportional to the standard deviations of the
respective outcomes and, in addition, they are inversely proportional to the square root of
the relative sampling cost. Hence, if sampling costs for the control group are smaller than
for the treatment group, as is frequently the case, then the control group should be larger
than the treatment group. Yet, as with unequal variances, since the optimal sample sizes
are proportional to the square root of the cost of sampling this only becomes important
when the di¤erence in costs grows large.

3.4 Parameter Uncertainty

In estimating optimal sample sizes an experimenter needs to decide on a signi�cance level,
power and estimable e¤ect size. The choice of signi�cance level is given by convention at
5%, but deciding on the relevant power is more di¢ cult. Experimenters typically want to
reject the null hypothesis that the treatment e¤ect is zero, where the probability of such
a rejection is given by the power.8 For example, running an experiment with a power of
80% means that 20% of the time the experimenter will ex ante not be able to reject the
null hypothesis of a zero treatment e¤ect despite there being a signi�cant e¤ect in the
population.
Traditionally, economists specify all aspects of an experiment�s design in advance of

actually beginning the experiment (or at least they claim to do so). However, the major
di¢ culty in obtaining reasonable estimates of optimal sample sizes is that information on
the variance of outcomes may be poor. The use of historical data and previous similar
experiments are likely to be important sources of information. Frequently, though, it is
necessary to conduct a pilot experiment to obtain reasonable estimates of the population
parameters. This information is then used in deciding how to design and apply treat-
ments, as well as in deciding the number of subjects to be sampled. The advantage of
this approach is that the results can be analyzed using the typical parametric or non-
parametric signi�cance tests, with the usual p-values. The disadvantage of this approach
is that the experimental design cannot be adapted as new information is revealed. As the
experiment progresses the experimenter may realize that initial estimates of the optimal

8In cases where the experimenter is interested in the non-rejection of the null hypothesis equivalence
testing is useful. Failure to reject a null hypothesis does not provide unequivocal evidence that there
is no treatment e¤ect, since the failure to reject may actually be the result of low statistical power. In
equivalence testing, the researcher decides on a value �; where if the e¤ect size is no larger than that value
it can be considered negligible. Thus, the null hypothesis becomes that a treatment has a large e¤ect, or
H0 : jDj > �, where D is the actual treatment e¤ect. The alternative hypothesis is Hq : jDj < �. The
equivalence test entails two one-sided � level hypothesis tests. Schuirmann (1987) shows that if a 1� 2�
con�dence interval lies entirely between �� and �, then we can reject the null hypothesis in favor of
equivalence at the � level.
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sample size may have been too large or too small (indeed, due to the randomness inherent
in sampling and due to poor initial estimates of key parameters, such as the variance of
the unobserved component �2, this is likely to be the case). So, for example, at the end of
an experiment the relevant p-value may turn out to be 6%. One approach is to say that
the trial was "underpowered" and another trial should be carried out. Alternatively, some
argue that it would be more e¢ cient to simply increase the sample size in the present
trial with the goal of resolving the issue. The problem is that an experimental approach
in this spirit increases the Type I error rate.
One solution is to conduct group-sequential trials combined with interim analysis.

This requires the experimenter to conduct the experiment with groups of subjects of
predetermined size. After each group the data is analyzed, using cuto¤ p and t-values
that have been adjusted depending on the exact procedure used, and then the decision is
made as to whether to continue or not. The two most popular such designs are due to
Pocock (1977) and O�Brien-Fleming(1979) (see Lewis,1993, for an accessible introduction
to the use of interim analysis).These methods may, however, be ine¢ cient (e.g. in terms
of required statistical corrections) and impractical (e.g. it is di¢ cult to verify ex post
that an experiment followed an ex ante procedure). An alternative is to use adaptive
designs that take a more �exible Bayesian approach to experimental design. A number
of such approaches have been explored in the clinical trial literature, including adapting
sample sizes and dosage levels during an ongoing clinical trial (see Berry, 2004, for an
overview). Hahn et al (2009) develop a "propensity score" method that uses estimates
of heterogenous treatment e¤ects from the �rst stage to set the conditional probability
of treatment in the second stage, following the optimal allocation of sample sizes under
unequal variances (equation (6)). Further examples in the economics literature include
El-Gamal, McKelvey and Palfrey (1993) and El-Gamal and Palfrey (1996). These designs
are more di¢ cult to implement, but are especially attractive if the cost of sampling is
prohibitively high.

4 Optimal Sample Arrangements: Further Consider-
ations

4.1 Dichotomous Treatment and Binomial Outcomes

The formulae for the continuous case in a between subject design can be adapted for
other common experimental designs including: within subject designs, cluster designs,
and binary outcomes. As in the continuous case, we assume that we can use the normal
approximation to the given distribution. We then substitute into the equations above
the appropriate variance estimates for the distribution of interest. Note that in the cases
of binary and count data, the variance depends on the mean. Thus, in equation (3),
under which the null hypothesis is true, the treatment and control groups will have equal
means and therefore equal variances and equal optimal sample sizes. In equation (4),
under which the alternative hypothesis is true, the treatment and control groups will
have di¤erent means and therefore di¤erent variances. For binary data, using the normal
approximation to the binomial distribution, the variance is equal to p(1 � p) where p is
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the mean of the outcome variable. For a null hypothesis Ho : p0 = p1 (proportions are
equal under treatment and control) the optimal sample sizes are equal

n�0 = n
�
1 = n

� =
�
t�=2

p
2�p (1� �p) + t�

p
p0 (1� p0) + p1 (1� p1)

�2
��2 (8)

where �p = (p0 + p1) =2.9

Because the variance p(1 � p) will be maximized for p = 0:5, optimal sample sizes
will increase as �p approaches 0:5 (i.e., sample sizes decrease in j�p� 0:5j). Similarly, if the
null hypothesis is of the form p1 = kp0, where k > 0, then the sample size arrangement
is dictated by k in the same manner as in the continuous case using equation (7). The
closer p1 is to 0:5 relative to p0, the larger the proportion of the total sample size that
should be allocated to p1 (and vice versa).

4.2 Cluster Designs

Thus far we have assumed that the unobserved components are independently distributed
among subjects. However, in particular with the recent growth in �eld experiments, the
possibility of correlation in the unobserved component among subjects within a cluster
needs to be considered. Some recent �eld experiments that emulate social experiments
commonly feature cluster randomization, in which clusters of individuals rather than in-
dependent individuals are randomly allocated to intervention groups. A key property of
cluster randomization trials is that the outcome of interest may occur at the individual
level whereas the randomization occurs at the cluster or group level. Thus, the unit of
randomization is di¤erent from the unit of statistical analysis. For example, an interven-
tion aimed at improving individual health might be randomly assigned to villages. In this
case, the lack of independence among individuals in the same village will a¤ect both the
optimal sample sizes and the analysis of the experimental results. As we illustrate in the
example below, the adjustment to sample sizes due to clustering can be substantial.
Consider the case where each subject is also a member of a group j and outcomes for

T = f0; 1g are given by
YijT = �+ ��Tj + �j + "ij

with "ij the individual speci�c i.i.d. error term and �j a group speci�c i.i.d. error term
(we ignore Xi, �i and � i for simplicity). Suppose that sampling is by cluster, where each
cluster is of size m for both treatment and control groups. Under the assumption of equal
variances across treatment and control groups (and thus equal sample sizes), optimal
sample sizes in cluster designs can be calculated via the following equation:

n�0 = n
�
1 = n

� = 2
�
t�=2 + t�

�2 ��
�

�2
(1 + (m� 1)�) (9)

with 2(k�1) degrees of freedom (assuming no other covariates), where k = n
m
is the num-

ber of clusters, �2 is the common variance of the treatment and control groups without

9Note that the above equation (8) follows the null hypothesis of equal means (and thus variances) for
sample sizes and the signi�cance test; and follows the alternative hypothesis of di¤erent means (and thus
variances) for the power test. See Fleiss et al (2003) for further discussion of binary data.
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clustering, and � = var(�j)

var(�j)+var("ij)
is the coe¢ cient of intracluster correlation. This is sim-

ply our previous expression, as given by equation (6) augmented by the �variance in�ation
factor", 1 + (m � 1)� (see Donner and Klar, 2000, for further discussion of this result).
Equation (9) shows that the necessary total sample size in a cluster design increases (near)
proportionally with both the size of each cluster and the intracluster correlation. Also
notice that the degrees of freedom in a cluster design are far smaller, further increasing
the necessary sample size. Hence, in the presence of intracluster correlation, � 6= 0, it is
important, if possible, to randomize over as small clusters as possible so as to maximize
the e¢ ciency of the experiment.
Figure 1 plots the power of two cluster designs for a given intracluster correlation �

and a standardized e¤ect size �=� equal to 0:2. Two scenarios are considered: clusters of
�xed size (m = 20) with the number of clusters k allowed to vary; and, a �xed number of
clusters (k = 20) with cluster size m allowed to vary. As shown in the �gure, the power
of the �xed number of clusters design quickly �attens out so that adding an additional
person to each cluster yields little gain in power. Whereas adding the same number of
subjects to the study in the form of a new cluster (i.e., in the clusters of �xed size design)
yields relatively large power gains. For example, a sample size n� = 1; 000 can be allocated
to 20 clusters with 50 subjects each (under the �xed number of clusters design) or to 50
clusters with 20 subjects each (under the �xed size of cluster design) yielding power levels
of 75% and 45% respectively (� = 0:1). As the �gure also illustrates, the loss of power
due to an in increase in � is substantial.
The decision on the optimal number of clusters k and number of subjects in each

cluster m in a cluster design will depend on the cost of sampling within a cluster and
the �xed cost of starting to sample from a new cluster. Denoting cm as the cost of
each subject and ck as a �xed cost per cluster, then the total cost of collecting the
data is 2 (cmm+ ck) k = M . Maximizing the minimum detectable e¤ect size, found by
rearranging equation (9), subject to this budget constraint yields an expression for the
optimal size of each cluster

m� =

s
(1� �)
�

r
ck
cm

(10)

where (1��)
�

=
var("ij)

var(�j)
. The optimal cluster size is proportional to the square root of the

ratio of the �xed cost per cluster and the cost per subject, and to the ratio of the standard
deviation of the within and between cluster variation. Perhaps surprisingly, the optimal
cluster size is independent of the total budget available for the experiment and thus on a
limited budget the experimenter should �rst work out how many subjects to sample from
each cluster and then sample as many cluster as is a¤ordable. The optimal number of
clusters k� is found by substituting the expression for the optimal cluster size m� from
equation (10) back into equation(9), recalling that n = mk.10

10See, for example, Bloom (2005), Donner and Klar (2000), Martinez et al (2007), Raudenbush (1997)
and Spybrook et al (2008b) for a further discussion of optimal cluster design.The software available in
Spybrook (2008a) and documented in Spybrook et. al. (2008b) is a comprehensive tool for designing
cluster level experiments.
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5 Optimal Sample Arrangement: Varying Treatment
Levels

5.1 Varying Treatment Levels and Continuous Outcomes

This section explores optimal design when the treatment variable is permitted to take on
varying levels. For example, the analyst wants to explore di¤erent price levels or di¤erent
dosage levels under the assumption of no heteroscedasticity (i.e., homogeneous treatment
e¤ects). The reader who is interested in cases of varying treatment levels and variance
heterogeneity should see Kish (1965) and Wilcox (1996).
To begin, let us return to the empirical speci�cation above (equation (2)), but now

consider the simpler case where � i = 0 for all i ; thus treatment and control outcomes
have the same variance. Now outcome Yi is a function of observable variables Xi, a linear
function of the treatment variable Ti and "i, which is assumed i.i.d.

Yi = Xi� + ��Ti + "i

The goal in this case is to derive the most precise estimate of �� by using exogenous
variation in T . To add further structure to the problem, we assume that the outcome
variable is measurable in continuous units (binary data outcomes do not change the nature
of the arguments) and the experimenter can set the treatment variable over the range�
0; T

�
.

Each time we present this type of exercise to our students, querying them about the
optimal sample arrangement, the modal response is one of uniformity: either "split the
sample into integers and equally distribute the sample," or "split the sample into equiv-
alently sized cells" naturally become the crowd favorites. Before considering the correct
response, similar to the case with dichotomous treatment, it is useful to re�ect on the me-
chanics of the regression model in the relationship given above. To maximize precision,
one must �rst consider techniques to minimize the variance of the estimated treatment
e¤ect. Recall that var (�̂) = var(e)

n�var(T ) . This simple relationship provides three ways to
increase precision: (1) decrease the variance of the unobserved component var ("), (2) in-
crease the sample size n, or (3) increase the variance of the treatment e¤ect var (T ). We
are struck by the fact that in most literatures, including our own, discussions surround-
ing changes in sample size, perhaps the costliest approach, dominate the landscape when
considering techniques to increase precision. Yet, there is an exact trade-o¤ inherent in
experimental design that is clear from the regression model. For example, tripling the
variation in T has an identical e¤ect on precision as tripling the sample size.
If the experimenter has strong priors that the e¤ect of treatment is linear, then it is

straightforward to see that the variance of T is maximized by placing half of the sample
in treatment cell T = 0 and half of the sample in treatment cell T = �T . Clearly, this
maximizes the variance of the treatment e¤ect and hence minimizes the standard error
of the estimate of the treatment e¤ect (for derivations of this and the following results
we direct the reader to Atkinson and Donev, 1992, and Mead, 1988). Hence, the optimal
sample design if a linear treatment e¤ect is to be identi�ed is to place half of the sample
at each of the extremes of the range of potential treatment intensities. The overall sample
size can then be calculated using equation (6) where �2=n is given by equation (2).
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If the analyst believes that the intensity of treatment T has a non-linear e¤ect on
the outcome variable, then clearly sampling from two values of T is inappropriate since
non-linear e¤ects cannot be identi�ed. In general, identi�cation requires that the number
of treatment cells used should be equal to the highest polynomial order plus one. For
example, if a quadratic relationship is presumed, then three treatment cells should be
chosen in the feasible range. Further, in this case those treatment cells selected should be
at the extremes and at the midpoint of the range, T =

�
0; �T=2; �T

	
, where the optimal

proportions in each of these treatments cells is
�
1
4
; 1
2
; 1
4

	
. As McClelland (1997) notes,

intuitively the test for a quadratic e¤ect compares the mean of the outcomes at the
extremes to the mean of the outcome at the midpoint; and as before, the variance is
maximized when equal proportions are allocated to the these two means: the midpoint
and the extremes (and the observations at the extremes are also equally divided). If
both a linear and a quadratic e¤ect are included, then the problem becomes considerably
more complicated, with the solution being a weighted average of the linear and quadratic
optimal allocations (see Atkinson and Donev, 1992).11

A related problem is one where the treatment levels are ordinal (categorical) rather
than continuous. In this situation it is key to decide which contrasts are of primary inter-
est. For example, take a situation where there are three treatment scenarios fA;B;Cg.
Imagine the researcher is primarily interested in comparing outcomes under a baseline
scenario A with outcomes under two alternative scenarios fB;Cg, but the outcomes un-
der scenarios B and C will not be compared with each other. In that case the optimal
allocation weights more heavily toward A,

�
1
2
; 1
4
; 1
4

	
, since, intuitively, scenario A is used

in two contrasts. If instead the mean di¤erence in outcomes under B and C is of pri-
mary interest then the optimal allocation is

�
0; 1

2
; 1
2

	
. The interested reader should see

McClelland (1997) for a more detailed discussion.

5.2 An Empirical Example

Similar to the example provided above, in this section we discuss an empirical example
that illustrates our points by assuming a signi�cance level of 5% and a power level of 80%.
We also assume a �xed experimental budget. Our chosen example is in the area of the
economics of charity. Recently a set of lab and �eld experiments have lent insights into the
�demand side�of charitable fundraising. In this spirit, Karlan and List (2007) designed
a natural �eld experiment to measure key parameters of the theory. In their study,
they solicited contributions from more than 50,000 supporters of a liberal organization.
They randomized households into several di¤erent groups to explore whether upfront
monies used as matching funds promotes giving. Among other things they tested whether
larger match ratios induced more giving. In particular, they use three treatment cells
corresponding to match ratios of 3:1 (i.e., $3 match for every $1 donated), 2:1 and 1:1.
Above we argued that if one were merely interested in estimating a linear price e¤ect

11As discussed in McClelland (1997), the optimal allocation for quadratic e¤ects { 14 ,
1
2 ,
1
4} yields a

relative e¢ ciency (in terms of variance) for linear e¤ects of 0:5 compared to the optimal allocation
{ 12 ,0,

1
2}. Equal allocation across the three groups {

1
3 ,
1
3 ,
1
3} yields a relative linear e¢ ciency of 0:67 and

a relative quadratic e¢ ciency of 0:89 A compromise design { 38 ,
1
4 ,
3
8} yields relative e¢ ciencies to 0:75 for

both linear and quadratic e¤ects relative to optimal allocations.
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over this range, and suppressed cost considerations, then the 1:1 and 3:1 cells should have
been the only ones sampled. Given a �xed number of subjects, we use equation (5) to
calculate that the minimum detectable e¤ect of the three treatment cells design (with an
equal distribution of subjects across treatment cells) is about 22% higher than that of the
two treatment cell design.12

Alternatively, for a given power, signi�cance level and minimum detectable e¤ect the
three treatment cell design requires, using equation (6), 50% more observations than the
two treatment cell design. Suppose, instead of a linear e¤ect, the authors were interested
in estimating a quadratic e¤ect and had allocated the sample accordingly (i.e., half the
sample in the 2:1 cell and one-quarter of the sample each in the 1:1 and 3:1 cells). If in
fact the treatment e¤ect turned out to be linear rather than quadratic, this design would
result in a minimum detectable e¤ect that is about 41% higher than that of the optimal
two treatment cell design for linear e¤ects. Of course, in practice the authors had to
consider the cost of sampling, but this example illustrates the gains under the assumption
of cost symmetry.

6 Concluding Remarks

In experimental economics discussion of optimal sample size arrangement is rare. In this
way, �nding a study that makes use of the rules of thumb discussed herein is akin to
a ballroom dancer searching for a partner in a hip-hop dance club. Of course, there
are good reasons that we are hip-hoppers. First, the e¤ect size and variance are both
unknown and di¢ cult to guess without robust data, which could be costly to collect.
Second, the analyst might be involved in multiple hypothesis testing, and employing a
multiple treatment design allows the analyst to avoid the case of one insigni�cant result
by using a series of weak tests, making it highly likely that a statistically signi�cant result
will emerge. Third, the status quo is powerful: one can readily guess the nature of the
referee reports for a paper in which the author chooses to sample only the endpoints of
the feasible treatment region. Even in those cases where the referee agrees that linearity
is appropriate, we suspect that the referee will be more comfortable with some mid-range
sampling. We hope that this study begins to break that mold, and induces experimenters
to design more e¢ cient experiments.
In this respect, under a certain set of assumptions this study pinpoints several rules

of thumb that experimenters might �nd useful:
A. With a continuous outcome measure one should only allocate subjects equally

across treatment and control if the sample variances of the outcome means are expected
to be equal in the treatment and control groups.

B. In those cases where the sample variances are not equal, the ratio of the
sample sizes should be set equal to the ratio of the standard deviations.

C. If the cost of sampling subjects varies across experimental cells, then the ratio
of the sample sizes is inversely proportional to the square root of the relative costs.

D. When the unit of randomization is di¤erent from the unit of analysis, the

12We use the estimated standard error of 0.049 from the empirical example (Karlan and List (2007)
,Table 2A, Panel A, col (4)).
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intracluster correlation coe¢ cient should be considered.
E. When the treatment variable itself is continuous, the optimal design requires

that the number of treatment cells used should be equal to the highest polynomial order
plus one. For instance, if the analyst is interested in estimating the e¤ect of treatment
and has strong priors that the treatment has a linear e¤ect, then the sample should be
equally divided on the endpoints of the feasible treatment range, with no intermediate
points sampled.
Clearly, this study represents only the tip of the iceberg when it comes to discussing

optimal experimental design. For instance, we can imagine that an entire set of papers
could be produced to describe how to design experiments based on power testing and con-
�dence intervals. More generally, we hope that methodological discussion eventually sheds
its perceived inferiority in experimental economics and begins to, at least, ride shotgun
in our drive to a deeper understanding of economic science. Several prominent discus-
sions remain to be heard: generalizability of results across domains (but, see Levitt and
List, 2007, and subsequent studies), use of the strategy method, one-shot versus repeated
observations, elicitation of beliefs, within versus between subject experimental designs,
using experiment to estimate heterogeneous treatment e¤ects; and in the design area
more speci�cally, optimal design with multiple priors and Bayesian and frequentist sam-
ple size determination are but just a few areas not yet properly vetted in the experimental
economics community.
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