
Calculating and Reporting Effect Sizes 1 

RUNNING HEAD: Calculating and Reporting Effect Sizes 

 

 

 

Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A 

Practical Primer for t-tests and ANOVAs 

 

Daniël Lakens 

Eindhoven University of Technology 

 

Word Count: 8722 

 

 

 

 

Author Note: I would like to thank Edgar Erdfelder for his explanation of the differences 

between Cohen’s f in G*Power and SPSS, George Cumming for sharing his thoughts on 

standardizers, Job van Wolferen for the suggestion to create a tree diagram in the spreadsheet, 

and Iris Schneider and Ellen Evers for comments on a previous draft of this article.  

 

 

 

Correspondence can be addressed to Daniël Lakens, Human Technology Interaction Group, 

IPO 1.24, PO Box 513, 5600MB Eindhoven, The Netherlands. E-mail: D.Lakens@tue.nl. 



Calculating and Reporting Effect Sizes 2 

Abstract 

Effect sizes are the most important outcome of empirical studies. Most articles on effect sizes 

highlight their importance to communicate the practical significance of results. For scientists 

themselves, effect sizes are most useful because they facilitate cumulative science. Effect 

sizes can be used to determine the sample size for follow-up studies, or examining effects 

across studies. This article aims to provide a practical primer on how to calculate and report 

effect sizes for t-tests and ANOVA’s such that effect sizes can be used in a-priori power 

analyses and meta-analyses. Whereas many articles about effect sizes focus on between-

subjects designs and address within-subjects designs only briefly, I provide a detailed 

overview of the similarities and differences between within- and between-subjects designs. I 

suggest that some research questions in experimental psychology examine inherently intra-

individual effects, which makes effect sizes that incorporate the correlation between measures 

the best summary of the results. Finally, a supplementary spreadsheet is provided to make it 

as easy as possible for researchers to incorporate effect size calculations into their workflow. 
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Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A 

Practical Primer for t-tests and ANOVAs 

Effect sizes are the most important outcome of empirical studies. Researchers want to 

know whether an intervention or experimental manipulation has an effect greater than zero, 

or (when it is obvious an effect exists) how big the effect is. Researchers are often reminded 

to report effect sizes, because they are useful for three reasons. First, they allow researchers 

to present the magnitude of the reported effects in a standardized metric which can be 

understood regardless of the scale that was used to measure the dependent variable. Such 

standardized effect sizes allow researchers to communicate the practical significance of their 

results (what are the practical consequences of the findings for daily life), instead of only 

reporting the statistical significance (how likely is the pattern of results observed in an 

experiment, given the assumption that there is no effect in the population). Second, effect 

sizes allow researchers to draw meta-analytic conclusions by comparing standardized effect 

sizes across studies. Third, effect sizes from previous studies can be used when planning a 

new study. An a-priori power analysis can provide an indication of the average sample size a 

study needs to observe a statistically significant result with a desired likelihood. 

The aim of this article is to explain how to calculate and report effect sizes for 

differences between means in between and within-subjects designs in a way that the reported 

results facilitate cumulative science. There are some reasons to assume that many researchers 

can improve their understanding of effect sizes. For example, researchers predominantly 

report the effect size partial eta squared (𝜂𝑝2), which is provided by statistical software 

packages such as SPSS. The fact that 𝜂𝑝2 is often reported for One-Way ANOVAs (where 

partial eta squared equals eta squared), indicates that researchers are either very passionate 

about unnecessary subscript letters, or rely too much on the effect sizes as they are provided 

by statistical software packages. 
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This practical primer should be seen as a complementary resource for psychologists 

who want to learn more about effect sizes (for excellent books that discuss this topic in more 

detail, see Aberson, 2010; Cohen, 1988; Cumming, 2012; Ellis, 2010; Grissom & Kim, 2005; 

Maxwell & Delaney, 2004; Murphy, Myors, & Wolach, 2012; Thompson, 2006). A 

supplementary spreadsheet is provided to facilitate effect size calculations. Reporting 

standardized effect sizes for mean differences requires that researchers make a choice about 

the standardizer of the mean difference, or a choice about how to calculate the proportion of 

variance explained by an effect. In this article, these choices will be highlighted for Cohen’s 

d and eta squared (𝜂2), two of the most widely used effect sizes in psychological research, 

with a special focus on the difference between within and between-subjects designs. I point 

out some caveats for researchers who want to perform power-analyses for within-subjects 

designs, and provide recommendations regarding the effect sizes that should be reported. 

Knowledge about the expected size of an effect is important information when 

planning a study. Researchers typically rely on null hypothesis significance tests to draw 

conclusions about observed differences between groups of observations. The probability of 

correctly rejecting the null hypothesis is known as the power of a statistical test (Cohen, 

1988). Statistical power depends on the sample size of the study (through its influence on the 

reliability of the sample values, and specifically the extent to which sample values can be 

expected to be an approximation of the population values), the size of the effect, and the 

significance criterion (typically α = .05). If three are known (or estimated), the fourth 

parameter can be calculated. In an a-priori power analysis, researchers calculate the sample 

size needed to observe an effect of a specific size, with a pre-determined significance 

criterion, and a desired statistical power.  

A generally accepted minimum level of power is .80 (Cohen, 1988). This minimum is 

based on the idea that with a significance criterion of .05 the balance of a Type 2 error (1 – 
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power) to a Type 1 error is .20/.05, so concluding there is an effect when there is no effect in 

the population is considered four times as serious as concluding there is no effect when there 

is an effect in the population. Some researchers have argued that Type 2 errors can potentially 

have much more serious consequences than Type 1 errors, however (Fiedler, Kutzner, & 

Kreuger, 2012). Thus, although a power of .80 is the recommended minimum, higher power 

(e.g., .95) is more desirable, as long as it is practically feasible. Effect size estimates have 

their own confidence intervals (for calculations for Cohen’s d, see Cumming, 2012, for F-

tests, see Smithson, 2001), which are often very large in experimental psychology. Therefore, 

researchers should realize that the confidence interval around a sample size estimate derived 

from a power analysis is often also very large, and might not provide a very accurate basis to 

determine the sample size of a future study. Meta-analyses can provide more accurate effect 

size estimates for power analyses, and correctly reporting effect size estimates can facilitate 

future meta-analyses (although due to publication bias, meta-analyses might still overestimate 

the true effect size, see Bakker, Van Dijk, & Wicherts, 2012; Brand, Bradley & Stoica, 2008). 

Statistical Significance and Generalizability of Effect Size Estimates 

Consider two sets of observations with M1 = 7.7, SD1 = 0.95, and M2 =8.7, SD2 = 

0.82. Depending on whether the data were collected in a between or within-subjects design, 

the effect size partial eta squared (𝜂𝑝2) for the difference between these two observations (for 

details, see the illustrative example below) is either .26 or .71, respectively. Given that the 

mean difference is the same (i.e., 1) regardless of the design, which of these two effect sizes 

is the ‘true’ effect size? There are two diverging answers to this question. One viewpoint 

focusses on the generalizability of the effect size estimate across designs, while the other 

viewpoint focusses on the statistical significance of the difference between the means. I will 

briefly discuss these two viewpoints.  



Calculating and Reporting Effect Sizes 6 

As Maxwell & Delaney (2004, p. 548) remark: ‘a major goal of developing effect size 

measures is to provide a standard metric that meta-analysts and others can interpret across 

studies that vary in their dependent variables as well as types of designs.’ This first 

viewpoint, which I will refer to as the generalizable effect size estimate viewpoint, assumes 

that it does not matter whether you use a within-subjects design or a between-subjects design. 

Although you can exclude individual variation in the statistical test if you use a pre- and post-

measure, and the statistical power of a test will often substantially increase, the effect size 

(e.g., 𝜂𝑝2) should not differ depending on the design that was used. Therefore, many 

researchers regard effect sizes in within-subjects designs as an overestimation of the ‘true’ 

effect size (e.g., Dunlap, Cortina, Vaslow, & Burke, 1996; Olejnik & Algina, 2003; Maxwell 

& Delaney, 2004). 

A second perspective, which I will refer to as the statistical significance viewpoint, 

focusses on the statistical test of a predicted effect, and regards individual differences as 

irrelevant for the hypothesis that is examined. The goal is to provide statistical support for the 

hypothesis, and being able to differentiate between variance that is due to individual 

differences and variance that is due to the manipulation increases the power of the study. 

Researchers advocating the statistical significance viewpoint regard the different effect sizes 

(e.g., 𝜂𝑝2) in a within- compared to between-subjects design as a benefit of a more powerful 

design. The focus on the outcome of the statistical test in this perspective can be illustrated by 

the use of confidence intervals. As first discussed by Loftus and Masson (1994), the use of 

traditional formulas for confidence intervals (developed for between-subjects designs) can 

result in a marked discrepancy between the statistical summary of the results and the error 

bars used to visualize the differences between observations. To resolve this inconsistency, 

Loftus and Masson (1994, p. 481) suggest that: “Given the irrelevance of intersubject 
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variance in a within-subjects design, it can legitimately be ignored for purposes of statistical 

analysis.”  

To summarize, researchers either focus on generalizable effect size estimates, and try 

to develop effect size measures that are independent from the research design, or researchers 

focus on the statistical significance, and prefer effect sizes (and confidence intervals) to 

reflect the conclusions drawn by the statistical test. Although these two viewpoints are not 

mutually exclusive, they do determine some of the practical choices researchers make when 

reporting their results. Regardless of whether researchers focus on statistical significance or 

generalizability of measurements, cumulative science will benefit if researchers determine 

their sample size a-priori, and report effect sizes when they share their results. In the 

following sections, I will discuss how effect sizes to describe the differences between means 

are calculated, with a special focus on the similarities and differences in within and between-

subjects designs, followed by an illustrative example. 

Differences and Similarities Between Effect Sizes 

As Poincare (1952, p. 34) has said: “mathematics is the art of giving the same name to 

different things.” Unfortunately, in the domain of effect size calculations statisticians have 

failed Poincare. Effect sizes have either different names although they are basically the same 

entity (such as referring to 𝑟2 as 𝜂2), or they have received the same name, despite being 

calculated in different ways (such as referring to an effect size as Cohen’s d, regardless of the 

way it is calculated). Effect sizes can be grouped in two families (Rosenthal, 1994): The d 

family (consisting of standardized mean differences) and the r family (measures of strength 

of association). Conceptually, the d family effect sizes are based on the difference between 

observations, divided by the standard deviation of these observations. The r family effect 

sizes describe the proportion of variance that is explained by group membership (e.g., a 

correlation (r) of .5 indicates 25% (𝑟2) of the variance is explained by the difference between 
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groups). These effect sizes are calculated from the sum of squares (the difference between 

individual observations and the mean for the group, squared, and summed) for the effect 

divided by the sums of squares for other factors in the design. 

A further differentiation between effect sizes is whether they correct for bias or not 

(e.g., Thompson, 2007). Population effect sizes are almost always estimated on the basis of 

samples, and all population effect size estimates based on sample averages overestimate the 

true population effect (for a more detailed explanation, see Thompson, 2006). Therefore, 

corrections for bias are used (even though these corrections do not always lead to a 

completely unbiased effect size estimate). In the d family of effect sizes, the correction for 

Cohen’s d is known as Hedges’ g, and in the r family of effect sizes, the correction for eta 

squared (𝜂2) is known as omega squared (𝜔2). These effects sizes will be discussed in more 

detail in the following paragraphs. 

Cohen’s d in Between-subjects Designs. 

Cohen’s d is used to describe the standardized mean difference of an effect. This 

value can be used to compare effects across studies, even when the dependent variables are 

measured in different ways, for example when one study uses 7-point scales to measure 

dependent variables, while the other study uses 9-point scales, or even when completely 

different measures are used, such as when one study uses self-report measures, and another 

study used physiological measurements. It ranges from 0 to infinity. Cohen (1988) uses 

subscripts to distinguish between different versions of Cohen’s d, a practice I will follow 

because it prevents confusion (without any subscript, Cohen’s d denotes the entire family of 

effect sizes). Cohen refers to the standardized mean difference between two groups of 

independent observations for the sample as ds which is given by: 

 ds = 𝑋�1−𝑋�2

�(𝑛1−1)𝑆𝐷1
2+(𝑛2−1)𝑆𝐷2

2

𝑛1+ 𝑛2−2

  (1) 
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In this formula, the numerator is the difference between means of the two groups of 

observations. The denominator is the pooled standard deviation. Remember that the standard 

deviation is calculated from the differences between each individual observation and the 

mean for the group. These differences are squared to prevent the positive and negative values 

from cancelling each other out, and summed (also referred to as the sum of squares). This 

value is divided by the number of observations minus one, which is Bessel’s correction for 

bias in the estimation of the population variance, and finally the square root is taken. This 

correction for bias in the sample estimate of the population variance is based on the least 

squares estimator (see McGrath & Meyer, 2006). Note that Cohen’s ds is sometimes referred 

to as Cohen’s g, which can be confusing. Cohen’s ds for between-subjects designs is directly 

related to a t-test, and can be calculated by:  

 ds = t � 1
𝑛1

+ 1
𝑛2

 (2) 

If only the total sample size is known, Cohen’s ds ≈ 2⨯t/√N. Statistical significance is 

typically expressed in terms of the height of t-values for specific sample sizes (but could also 

be expressed in terms of whether the 95% confidence interval around Cohen’s ds includes 0 

or not), whereas Cohen’s ds is typically used in an a-priori power analysis for between-

subjects designs (even though a power analysis could also be based on the t-value and n per 

condition). Formula 2 underlines the direct relation between the effect size and the statistical 

significance. 

The standardized mean difference can also be calculated without Bessel’s correction, 

in which case it provides the maximum likelihood estimate for a sample, as noted by Hedges 

& Olkin (1985). The difference between Cohen’s ds and Cohen’s dpop (for the population) is 

important to keep in mind when converting Cohen’s ds to the point biserial correlation 𝑟𝑝𝑏 

(which will simply be referred to as r in the remainder of this text). Many textbooks provide 
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the formula to convert Cohen’s dpop to r, while the formula to convert Cohen’s ds to r (which 

can only be used for between-subjects designs) is provided by McGrath and Meyer (2006): 

 𝑟 =  𝑑𝑠

�𝑑𝑠2
+𝑁2−2𝑁

𝑛1𝑛2

 (3) 

As mentioned earlier, the formula for Cohen’s ds, which is based on sample averages 

gives a biased estimate of the population effect size (Hedges & Olkin, 1985), especially for 

small samples (n < 20). Therefore, Cohen’s ds is sometimes referred to as the uncorrected 

effect size. The corrected effect size, or Hedges’s g (which is unbiased, see Cumming, 2012), 

is: 

 Hedges’s gs = Cohen’s ds ⨯ �1 – 3
4(𝑛1+𝑛2)−9

� (4) 

I use the same subscript letter in Hedges’s g to distinguish different calculations of 

Cohen’s d. Although the difference between Hedges’s gs and Cohen’s ds is very small, 

especially in sample sizes above 20 (Kline, 2004), it is preferable (and just as easy) to report 

Hedges’s gs. There are also bootstrapping procedures to calculate Cohen’s ds when the data 

are not normally distributed, which can provide a less biased point estimate (Kelly, 2005). As 

long as researchers report the number of participants in each condition for a between-subjects 

comparison and the t-value, Cohen’s d and Hedges’ g can be calculated. Whenever standard 

deviations differ substantially between conditions, Glass’s Δ should be reported (see below). 

Interpreting Cohen’s d. 

How should researchers interpret this effect size? A commonly used interpretation is 

to refer to effect sizes as small (d = .2), medium (d = .5), and large (d = .8) based on 

benchmarks suggested by Cohen (1988). However, these values are arbitrary and should not 

be interpreted rigidly (Thompson, 2007). Small effect sizes can have large consequences, 

such as an intervention that leads to a reliable reduction in suicide rates with an effect size of 

d = 0.1. The only reason to use these benchmarks is because findings are extremely novel, 
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and cannot be compared to related findings in the literature (Cohen, 1988). Cohen’s d in 

between-subject designs can be readily interpreted as a percentage of the standard deviation, 

such that a Cohen’s d of 0.5 means the difference equals half a standard deviation. However, 

the best way to interpret Cohen’s d is to relate it to other effects in the literature, and if 

possible, explain the practical consequences of the effect. Regrettably, there are no clear 

recommendation of how to do so (Fidler, 2002).  

An interesting, though not often used, interpretation of differences between groups 

can be provided by the common language effect size (McGraw & Wong, 1992), also known 

as the probability of superiority (Grissom & Kim, 2005), which is a more intuitively 

understandable statistic than Cohen’s d or r. It can be calculated directly from Cohen’s d, 

converts the effect size into a percentage, and expresses the probability that a randomly 

sampled person from one group will have a higher observed measurement than a randomly 

sampled person from the other group (for between designs) or (for within-designs) the 

probability that an individual has a higher value on one measurement than the other. It is 

based on the distribution of the difference scores, with a mean that is estimated from the 

mean differences between the samples, and a standard deviation that is the square root of the 

sum of the sample variances divided by two. Mathematically, the common language effect 

size is the probability of a Z-score greater than the value that corresponds to a difference 

between groups of 0 in a normal distribution curve. Z can be calculated by: 

 𝑍 =  |𝑋1−𝑋2|

�𝑆𝐷1
2+𝑆𝐷2

2

2

 (5) 

after which the common language effect size is the percentage associated with the upper tail 

probability of this value. The supplementary spreadsheet provides an easy way to calculate 

the common language effect size. 

Cohen’s d in One-Sample or Correlated Samples Comparisons 



Calculating and Reporting Effect Sizes 12 

Conceptually, calculating Cohen’s d for correlated measurements is the same as 

calculating Cohen’s d for independent groups, where the differences between two 

measurements are divided by the standard deviation of both groups of measurements. 

However, in the case of correlated measurements the dependent t-test uses the standard 

deviation of the difference scores. Testing whether observations from two correlated 

measurements are significantly different from each other using a paired samples t-test is 

mathematically identical to testing whether the difference scores of the correlated 

measurements is signicantly different from 0 using a one-sample t-test. Similarly, calculating 

the effect size for the difference between two correlated measurements is similar to the effect 

size that is calculated for a one sample t-test. The standardized mean difference effect size for 

within-subjects designs is referred to as Cohen’s dz, where the Z alludes to the fact that the 

unit of analysis is no longer X or Y, but their difference, Z, and can be calculated with: 

 Cohen’s dz = 
𝑀𝑑𝑖𝑓𝑓

�∑(𝑋𝑑𝑖𝑓𝑓−𝑀𝑑𝑖𝑓𝑓)2

𝑁−1

 (6) 

where the numerator is the difference between the mean (M) of the difference scores and the 

comparison value 𝜇 (e.g., 0), and the denominator is the standard deviation of the difference 

scores (Sdiff). The effect size estimate Cohen’s dz can also be calculated directly from the t-

value and the number of participants using the formula provided by Rosenthal (1991): 

 Cohen’s dz = 𝑡
√𝑛

 (7) 

Given the direct relationship between the t-value of a paired-samples t-test and 

Cohen’s dz, it will not be surprising that software that performs power analyses for within-

subjects designs (e.g., G*Power, Faul, Erdfelder, Buchner, & Lang, 2009) relies on Cohen’s 

dz as input. To allow researchers to perform an a-priori power analysis, it is therefore enough 

to report the t-value and the number of pairs of observations (or the degrees of freedom, n -1). 

Cohen’s dz is only rarely used in meta-analyses, because researchers often want to be able to 
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compare effects across within and between-subject designs. One solution (which is not 

generally recommended) is to use Cohen’s drm, where the subscript is used by Morris and 

DeShon (2002) to indicate this is the equivalent of Cohen’s d for repeated measures. Cohen’s 

drm controls for the correlation between the two sets of measurements, as explained below. 

An alternative formula to calculate the standard deviation of the difference scores 

from the standard deviations of both groups and their correlation is given by Cohen (1988) 

as: 

 Sdiff = �𝑆𝐷12 +  𝑆𝐷22 −  2 ⨯ 𝑟 ⨯ 𝑆𝐷1 ⨯ 𝑆𝐷2 (8) 

where r is the correlation between measures, and S is the standard deviation within each of 

the two sets of observations. As the correlation between measures increases, the standard 

deviation of the difference scores decreases. In experimental psychology, correlations 

between measures are typically a positive non-zero value. This has two consequences. First, 

within-subjects designs typically have more statistical power than between-subjects designs, 

because the standard deviation of the difference scores is smaller than the standard deviations 

of the two groups of observations. Second, under the assumption of equal variances (for 

unequal variances, Glass’s Δ should be calculated, see below), the mean standardized 

difference between the two correlated measurements is standardized by a value which is 

�2(1 − 𝑟) larger than the standard deviation for independent observations (see Cohen, 

1988), and thus: 

 Cohen’s drm = 
𝑀𝑑𝑖𝑓𝑓

�𝑆𝐷12+ 𝑆𝐷22− 2 ⨯𝑟 ⨯𝑆𝐷1⨯𝑆𝐷2
⨯ �2(1 − 𝑟) (9) 

When r = .5 and the standard deviations in both groups of measurements are the same, 

Cohen’s ds from a between-subjects design and Cohen’s drm from a within-subjects design are 

identical, but differences in the standard deviations between the two groups will introduce 
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differences between the two effect sizes, which become more pronounced when r approaches 

0 or 1. 

Another solution to calculate Cohen’s d for within-subjects designs is to simply use 

the average standard deviation of both repeated measures as a standardizer (which ignores 

the correlation between the measures). Cumming (2012) refers to this approach as Cohen’s 

dav, which is simply: 

 Cohen’s dav = 
𝑀𝑑𝑖𝑓𝑓

𝑆𝐷1+𝑆𝐷2
2

 (10) 

When the standard deviations of both groups of observations are equal, Cohen’s dav, 

and Cohen’s drm are identical, and the effect size equals Cohen’s ds for the same means and 

standard deviations in a between subject design. In general, Cohen’s dav will be more similar 

to Cohen’s ds (compared to Cohen’s drm), except when correlations between measures are 

low, and the difference between the standard deviations is large. Cohen’s drm is always more 

conservative, but with high correlations between observations, sometimes unreasonably 

conservative. 

When r is larger than .5, Cohen’s dz will be larger than Cohen’s drm and Cohen’s dav, 

and when r is smaller than .5, Cohen’s dz will be smaller than Cohen’s drm and Cohen’s dav 

(Morris & DeShon, 2002). Dunlap et al (1996) argue against reporting Cohen’s dz based on 

the idea that the correlation between measures does not change the size of the effect, but 

merely makes it more noticeable by reducing the standard error, and therefore refers to 

Cohen’s dz as an overestimation of the effect size. Although Cohen’s dz is rarely reported as 

an effect size, there are some situations when I believe it to be perfectly defensible (see the 

General Discussion). However, I would in general recommend to report effect sizes that 

cannot be calculated from other information in the article, and that are widely used so that 

most readers should understand them. Because Cohen’s dz can be calculated from the t-value 
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and the n, and is not commonly used, my general recommendation is to report Cohen’s drm or 

Cohen’s dav. 

Because Cohen’s drm and Cohen’s dav are based on sample estimates, and these are 

positively biased, we should apply Hedges’ correction. However, unlike Hedges’s gs, 

Hedges’s gav Hedges’s grm are not completely unbiased (Cumming, 2012). After entering the 

required information in the supplementary spreadsheet, it recommends either Hedges’s gav or 

Hedges’s grm based on which of these two values is most similar to Cohen’s ds in a between 

subjects design (in line with the goal to report an effect size estimate that is comparable 

across within and between participant designs). 

In some designs there are good reasons to believe the manipulation did not only 

influence the mean between observations, but also influenced the standard deviation. For 

example, pre- and post-measurements in a study that examines an intervention might differ in 

their standard deviation as a consequence of the intervention. In such designs, Glass, McGaw, 

and Smith (1981) recommends to use either the standard deviation of the pre-measurement as 

a standardizer (often recommended, and used in the supplementary spreadsheet) or the 

standard deviation of the post-measurement. This is referred to as Glass’s Δ (and subscripts 

can be used to indicate whether the pre- or post-measurement standard deviation was used). 

These options highlight the importance of specifying which version of the effect size d is 

calculated, and the use of subscript letters might be an efficient way to communicate the 

choices made. Researchers have to choose which effect size is the best representation of the 

effect they are interested in. Table 1 summarizes when different versions of effect size 

measures in the d family are used. The common language effect size can be reported in 

addition to Cohen’s d to facilitate the interpretation of the effect size. 

Eta-squared in Between and Within-Subjects Comparisons 
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Eta squared η² (part of the r family of effect sizes, and an extension of r² that can be 

used for more than two sets of observations) measures the proportion of the variation in Y 

that is associated with membership of the different groups defined by X, or the sum of 

squares of the effect divided by the total sum of squares: 

 𝜂2= 𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡
𝑆𝑆𝑡𝑜𝑡𝑎𝑙

 (11) 

An 𝜂2 of .13 means that 13% of the total variance can be accounted for by group 

membership. Although 𝜂2 is an efficient way to compare the sizes of effects within a study 

(given that every effect is interpreted in relation to the total variance, all 𝜂2 from a single 

study sum to 100%), eta squared cannot easily be compared between studies, because the 

total variability in a study (SStotal) depends on the design of a study, and increases when 

additional variables are manipulated. Keppel (1991) has recommended partial eta squared 

(𝜂𝑝2) to improve the comparability of effect sizes between studies, which expresses the sum of 

squares of the effect in relation to the sum of squares of the effect and the sum of squares of 

the error associated with the effect. Partial eta squared is calculated as: 

 𝜂𝑝2 = 𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡
𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡+𝑆𝑆𝑒𝑟𝑟𝑜𝑟

 (12) 

For designs with fixed factors (manipulated factors, or factors that exhaust all levels 

of the independent variable, such as alive vs. dead), but not for designs with measured factors 

or covariates, partial eta squared can be computed from the F-value and its degrees of 

freedom (e.g., Cohen, 1965): 

 𝜂𝑝2 = 𝐹⨯𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡
𝐹⨯𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡+𝑑𝑓𝑒𝑟𝑟𝑜𝑟

 (13) 

For example, for an F(1, 38) = 7.21, 𝜂𝑝2 = 7.21 ⨯ 1/(7.21 ⨯ 1 + 38) = 0.16. This 

relationship between 𝜂𝑝2 and F illustrates how 𝜂𝑝2 can be used in power analyses to estimate 

the desired sample size for a future experiment, and software programs such as G*Power 
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require 𝜂𝑝2 as input for this reason. If researchers want to facilitate power analyses, they 

should report 𝜂𝑝2, especially for designs where not all factors are manipulated.  

Users of G*Power should be aware that the default 𝜂𝑝2 for within designs as used by 

G*Power does not correspond with the 𝜂𝑝2 as provided by SPSS. When using 𝜂𝑝2 as provided 

by SPSS to perform power calculations in G*Power, one cannot simply use the default 

settings of the program. Where SPSS provides a 𝜂𝑝2 that already incorporates the correlation 

between paired measures (hence the difference in 𝜂𝑝2 for the same two means and standard 

deviations depending on whether they come from a between or within-subjects designs), 

G*Power defines 𝜂𝑝2 for within-subjects designs in exactly the same way as for between-

subjects designs (and incorporates the correlations between dependent measures during the 

power calculations). A more formal description of these differences, as well as an explanation 

how to convert SPSS 𝜂𝑝2 to G*Power 𝜂𝑝2 is provided in Appendix A. The most recent version 

of G*Power (3.1) allows researchers to indicate that they are directly using an 𝑆𝑃𝑆𝑆 𝜂𝑝2 in 

their calculations by selecting a radio button in an options menu. This option is not the 

default, and it is likely that researchers will calculate a wrong sample estimate if they are not 

aware of the difference between SPSS 𝜂𝑝2 and G*Power 𝜂𝑝2. When 𝜂𝑝2 is used in the remainder 

of this document, the SPSS equivalent that includes the correlation between dependent 

measures is meant.  

Although 𝜂𝑝2 is more useful when the goal is to compare effect sizes across studies, it 

is not perfect, because 𝜂𝑝2 differs when the same two means are compared in a within-subjects 

design or a between-subjects design. In a within-subjects ANOVA, the error sum of squares 

can be calculated around the mean of each measurement, but also around the mean of each 

individual when the measurements are averaged across individuals. This allows researchers to 

distinguish variability due to individual differences from variability due to the effect in a 
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within-subjects design, whereas this differentiation is not possible in a between-subjects 

design. As a consequence, whenever the two groups of observations are positively correlated, 

𝜂𝑝2 will be larger in a within-subjects design than in a between-subjects design. This is also 

the reason a within-subjects ANOVA typically has a higher statistical power than a between-

subjects ANOVA. 

Olejnik & Algina (2003) provide further reasons why 𝜂𝑝2 can only be used to compare 

effects between studies with similar experimental designs. Differences in the inclusion of 

covariates or blocking factors between experimental designs (for example, including the 

gender of participants in the analysis as a between-subjects factor, which will account for 

some of the variance) can influence the size of 𝜂𝑝2. They propose generalized eta squared 

(𝜂𝐺2), which excludes variation from other factors from the effect size calculation (to make the 

effect size comparable with designs in which these factors were not manipulated), but 

includes variance due to individual differences (to make the effect size comparable with 

between-subjects designs where this individual variance cannot be controlled for). When all 

factors are manipulated between participants 𝜂𝐺2  and 𝜂𝑝2 are identical. In other experimental 

designs, 𝜂𝐺2  can be computed from the output of an ANOVA, and the supplementary 

spreadsheet allows researchers to easily calculate 𝜂𝐺2  for the most commonly used 

experimental designs.  

As mentioned before, eta squared is an uncorrected effect size estimate that estimates 

the amount of variance explained based on the sample, and not based on the entire 

population. Omega squared (𝜔2) has been suggested to correct for this bias (Hayes, 1963), 

even though it is at best a less biased estimate (Winkler & Hayes, 1975). As with Hedges’ 

correction for Cohen’s d, providing 𝜔2 instead of 𝜂2 is formally correct. However, the 

difference is typically small, and the bias decreases as the sample size increases. In between-
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subjects designs with fixed factors 𝜔2 and 𝜔𝑝2 can be calculated through the formulas 

provided by Olejnik & Algina (2000):  

 𝜔2 = 𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡⨯(𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡−𝑀𝑆𝑒𝑟𝑟𝑜𝑟)
𝑆𝑆𝑡𝑜𝑡𝑎𝑙+𝑀𝑆𝑒𝑟𝑟𝑜𝑟

 (14) 

 𝜔𝑝2 =  𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡⨯(𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡−𝑀𝑆𝑒𝑟𝑟𝑜𝑟)
𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡⨯𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡+(𝑁− 𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡)⨯𝑀𝑆𝑒𝑟𝑟𝑜𝑟

 (15) 

For within-subjects designs, 𝜔𝑝2 is calculated in the same way as for between-subjects designs 

(see above), but 𝜔2 is calculated by:  

 𝜔2 = 𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡⨯(𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡−𝑀𝑆𝑒𝑟𝑟𝑜𝑟)
𝑆𝑆𝑡𝑜𝑡𝑎𝑙+𝑀𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

 (16) 

Calculating generalized omega squared (𝜔𝐺
2) can become rather complex, depending 

on the design (see the lists of formulas provided by Olejnik and Algina, 2003). Given this 

complexity, and the relatively small difference between the bias and less biased estimate, I 

recommend researchers report 𝜂𝐺2  and/or 𝜂𝑝2, at least until generalized omega-squared is 

automatically provided by statistical software packages. For designs where all factors are 

manipulated between participants, 𝜂𝑝2 and 𝜂𝐺2  are identical, so either effect size can be 

reported. For within-subjects designs and mixed designs where all factors are manipulated, 

𝜂𝑝2 can always be calculated from the F-value and the degrees of freedom using formula 13, 

but 𝜂𝐺2  cannot be calculated from the reported results, and therefore I recommend reporting 

𝜂𝐺2  for these designs (but providing 𝜂𝑝2 in addition to 𝜂𝐺2  would be a courtesy to readers). The 

supplementary spreadsheet provides a relatively easy way to calculate 𝜂𝐺2  for commonly used 

designs. For designs with measured factors or covariates, neither 𝜂𝑝2 nor 𝜂𝐺2  can be calculated 

from the reported results, and thus I recommend reporting both 𝜂𝑝2 as 𝜂𝐺2 , where the first can 

be used in power analyses, and the second can be used in meta-analyses or interpreted against 

the benchmarks provided by Cohen (1988). Table 2 summarizes when different versions of 

effect size measures in the r family are used. 
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Cohen (1988) has provided benchmarks to define small (𝜂2= 0.01), medium (𝜂2= 

0.06), and large (𝜂2= 0.14) effects. As Olejnik and Algina (2003) explain, these benchmarks 

were developed for comparisons between unrestricted populations (e.g., men vs. women), and 

using these benchmarks when interpreting the 𝜂𝑝2 effect size in designs that include covariates 

or repeated measures is not consistent with the considerations upon which the benchmarks 

were based. Although 𝜂𝐺2  can be compared against the benchmarks provided by Cohen 

(1988), this should only be done as a last resort, and it is preferable to relate the effect size to 

other effects in the literature (Thompson, 2007). The common language effect size can be 

calculated for contrasts from the means and standard deviations of the two measurements as 

explained for the dependent and independent t-tests above. This concludes the general 

summary of how to calculate and report effect sizes. To highlight some more practical 

considerations, I will provide an example in which the same two sets of observations are 

analyzed using paired and independent t-tests, as well as One-way and repeated measures 

ANOVAs. 

An Illustrative Example 

In this example, I will address some practical considerations by analyzing the dataset 

in Table 3, which contains two sets of observations. This data will be analyzed in two ways, 

either as a between design or as a within design. We will assume that Movie 1 and Movie 2 

are movie evaluations for two different movies on a scale from 1 (very bad) to 10 (very 

good). First, let’s consider a situation where these movie evaluations are collected from two 

different groups. An independent t-test would provide t(18) = 2.52, p = .022 (note that the 

supplementary spreadsheet also provides the outcome of the statistical test). We can calculate 

Cohen’s ds using: 

 ds = 8.7−7.7

�(10−1)0.822+(10−1)0.952
10+ 10−2

 = 1.13 (17) 
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We can insert this value in G*Power to retrieve the estimated sample size needed to 

find a statistically significant effect in a replication study with α = .05, power = .95, and an 

allocation ratio of participants of 1 between conditions. For a two sided test, a power analysis 

indicates that the estimated sample size would be 44 participants. Finally, remember that a 

Cohen’s ds of 1.13 is a point estimate. The 95% confidence interval around this effect size 

estimate can be calculated using a bootstrapping procedure in ESCI (Cumming & Finch, 

2001)1, which gives 95% CI [0.16, 2.06]. This indicates that although it might be unlikely 

that people like both movies equally well, we hardly have any idea of how large the 

difference is. This level of uncertainty should be taken into account when planning the 

sample size for a study (for alternative approaches to power analysis, see Maxwell, Kelley, 

and Rausch, 2008). 

To report the effect size for a future meta-analysis, we should calculate Hedges’s g = 

1.08, which differs slightly from Cohen’s ds due to the small sample size. To report this 

study, researchers could state in the procedure section that: “Twenty participants evaluated 

either Movie 1 (n = 10) or Movie 2 (n = 10). Participants reported higher evaluations of 

Movie 1 (M = 8.7, SD = 0.82) than Movie 2 (M = 7.7, SD = 0.95), t(18) = 2.52, p = .022, 95% 

CI [0.17, 1.83], Hedges’s gs = 1.08.” Note that we provide all the necessary statistical 

information (means, standard deviations, and number of participants in each between-subjects 

condition). The 95% confidence interval of the difference between the means is provided by 

default by statistical software packages such as SPSS, but also calculated in the 

supplementary spreadsheet. Alternatively, you could communicate the uncertainty in the data 

by providing the 95% confidence interval around the effect size estimate which can be 

calculated with ESCI (Cumming, 2012). To interpret this effect, we can calculate the 

common language effect size, for example by using the supplementary spreadsheet, which 

indicates the effect size is .79. We can therefore add the following interpretation of the effect 
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size: ‘The chance that for a randomly selected pair of individuals the evaluation of Movie 1 is 

higher than the evaluation of Movie 2 is 79%.’  

Now, let’s consider a situation where the movie evaluations in Table 3 are collected 

from the same group of individuals, and each participant has evaluated both movies. Both 

observations are strongly correlated, with r = .726. As a consequence, the standard deviation 

of the difference scores is much smaller than the standard deviations of the evaluations of 

either movie independently. A dependent t-test would provide t(9) = 4.74, p = .001. We can 

calculate Cohen’s dz using formula 6, but here we calculate the denominator (Sdiff) using 

formula 8:  

 Cohen’s dz = 1− 0
√0.822+ 0.952− 2 ⨯0.726 ⨯0.82⨯0.95

 = 1.50 (18) 

This is a markedly higher effect size than Cohen’s ds from the independent t-test. 

Some research questions can only be examined within subjects (see the general discussion), 

but in this example you might want to be able to compare movie ratings across movies, 

irrespective of whether all the people who evaluate the movies saw all different movies. 

Therefore, Hedges’s grm or Hedges’s gav would provide a more relevant effect size to describe 

the effect you are interested in. Hedges’s gav is generally recommended (and as the 

supplementary spreadsheet indicates, also in this specific case), which is 1.08 (note that 

Hedges’s gav rounds to the same value as Hedges’s gs in the independent t-test above). 

We can insert Cohen’s dz in G*Power to perform an a-priori power analysis to find a 

statistically significant effect with α = .05 and a power of .95. For a two sided test the power 

analysis would indicate a sample size estimate of 8 participants. This clearly demonstrates the 

dramatic increase in power that a repeated measures design provides if the observations are 

strongly correlated. This is also reflected in a smaller 95% confidence interval for Cohen’s dz 

[0.42, 1.80] (for calculations, see ESCI, Cumming & Finch, 2001). To report this study, 

researchers could write “Ten participants evaluated both Movie 1 and Movie 2. Participants 
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reported higher evaluations of Movie 1 (M = 8.7, SD = 0.82) than Movie 2 (M = 7.7, SD = 

0.95), t(9) = 4.74, p = .001, 95% CI [0.52, 1.48], Hedges’s gav = 1.08.” The 95% confidence 

interval of the difference is again by default provided by statistical software packages such as 

SPSS, as well as provided by the supplementary spreadsheet. Note that we clearly distinguish 

the way Hedges’s g is calculated in this study from the way it was calculated in the between-

subjects analysis by the subscript. To interpret this result, we can again calculate the common 

language effect size. For correlated samples, Z= 𝑀𝑑𝑖𝑓𝑓/𝑆𝑑𝑖𝑓𝑓 (McGraw & Wong, 1992), and 

the percentage associated with the upper tail probability of this value is .93 (see the 

supplementary spreadsheet). We can therefore add the interpretation ‘Controlling for 

individual differences in movie evaluations, the likelihood that people who watch both 

movies prefer Movie 1 over Movie 2 is 93%.’  

Instead of using t-tests, we could have analyzed the data using an analysis of variance 

(ANOVA). A One-Way ANOVA that mirrors the independent samples t-test will provide 

F(1, 18) = 6.34, p = .022, and statistical software such as SPSS will provide the effect size 𝜂𝑝2 

= .26 (which is identical to 𝜂𝐺2  in a between subjects ANOVA). This effect size is identical to 

the Cohen’s ds of 1.13, as can be seen when we convert Cohen’s ds to r using formula 3: 

 𝑟𝑝𝑏 =  1.13

�1.132+20
2−2⨯20
10⨯10

= 0.51 (19) 

and since in a One-Way ANOVA r2 = 𝜂𝑝2, 0.512 = 0.26. Inserting 𝜂𝑝2 = 0.26 into G*Power to 

perform an a-priori power analysis for two groups, an α = .05, and a power of .95 will yield a 

total sample size of 40. This sample size estimate differs from the sample size of 44 that we 

found for a Cohen’s ds of 1.13. If we would have used Cohen’s dpop (which is 1.19) the two 

power analyses would have provided the same sample size estimate of 40. This example 

highlights a curious state of affairs where researchers (often implicitly) correct for bias in the 

effect size estimate when they use Cohen’s ds in power analyses, but they do not correct for 
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this bias when they use 𝜂𝑝2. To correct for bias 𝜔𝑝2 can be calculated, and although I 

recommend reporting 𝜂𝑝2 or 𝜂𝐺2  for practical reasons, calculating 𝜔𝑝2 for simple designs is 

straightforward. In a One-Way ANOVA with equal sample sizes in each cell, 𝜔𝑝2 can be 

calculated through the formula:  

 𝜔𝑝2 =  1⨯(5−0.789)
1⨯5+(20− 1)⨯0.789

 (20) 

For the current difference, 𝜔𝑝2 = .21, but as explained above, calculating 𝜔𝑝2 can 

become quite complex in more elaborate designs, and therefore I recommend to report 𝜂𝑝2. To 

report this analysis, researchers could write in the procedure section that: “Twenty 

participants evaluated either Movie 1 (n = 10) or Movie 2 (n = 10). Participants reported 

higher evaluations of Movie 1 (M = 8.7, SD = 0.82) than Movie 2 (M = 7.7, SD = 0.95), F(1, 

18) = 6.34, p = .022, 𝜂𝑝2 = 0.26, 90% CI [0.02, 0.48].” Whereas in a t-test, we compare two 

groups, and can therefore calculate a confidence interval for the mean difference, we can 

perform F-tests for comparisons between more than two groups. To be able to communicate 

the uncertainty in the data, we should still report a confidence interval, but now we report the 

confidence interval around the effect size. An excellent explanation of confidence intervals 

around effect size estimates for F-tests, which is accompanied by easy to use syntax files for 

a range of statistical software packages (including SPSS) is provided by Smithson (2001)2. 

The 90% confidence interval is reported due to the fact that an F-test is always a one-sided 

test, and the 90% confidence interval always excludes 0 when the F-test is statistically 

significant, while the 95% confidence interval does not. 

Finally, let’s look at the repeated measures ANOVA that mirrors the dependent t-test, 

which gives F(1, 9) = 22.50, p = .001. Statistical software such as SPSS will provide 𝜂𝑝2 = 

.71, and using the supplementary spreadsheet we find that 𝜂𝐺2  = 0.26 (which is identical to 𝜂𝐺2  
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when analyzing the data as a between-subjects design). For this simple design, we can again 

easily calculate 𝜔𝑝2:  

 𝜔𝑝2 =  1⨯(5−0.222)
1⨯5+(10− 1)⨯0.222

 = 0.68 (21) 

We can use 𝜂𝑝2 to perform a power analysis. It was already explained that for within-

subjects designs, 𝜂𝑝2 from SPSS differs from 𝜂𝑝2 from G*Power. G*Power provides two 

options, ‘as in SPSS’ and ‘as in Cohen (1988) – recommended’. The difference between the 

two lies in how the noncentrality parameter (λ) is calculated, which is used in the power 

calculations. A full explanation of the noncentral t-distribution is beyond the scope of this 

article, but for an accessible introduction, see Cumming (2012). The formula either uses N 

(Cohen, 1988) or the degrees of freedom (SPSS). Selecting the ‘as in SPSS’ option will 

therefore always provide a more conservative estimate. If we select the recommended option 

‘as in Cohen (1988)’ G*Power returns the estimated sample size of eight participants. Again, 

readers should be reminded that power analysis provides a point estimate of the minimal 

sample size, and these calculations should be interpreted while keeping the typical 

uncertainty about the true effect size in mind. 

To report this analysis, researchers could write: “Participants reported higher 

evaluations for Movie 1 (M = 8.7, SD = 0.82) than Movie 2 (M = 7.7, SD = 0.95), F(1, 9) = 

22.50, p = .001, 𝜂𝑝2 = .71, 90% CI [0.31, 0.82], 𝜂𝐺2  = .26.” Note that I’ve chosen to report both 

partial eta squared (including the 90% confidence interval, using the scripts provided by 

Smithson, 2001) as generalized eta squared. By providing 𝜂𝑝2, researchers can perform a-

priori power analyses, and by providing 𝜂𝐺2 , researchers can easily include the study in a 

future meta-analysis that compares effects across different designs (see Olejnik & Algina, 

2003). Providing two effect sizes is in line with the suggestion that reporting multiple effect 

sizes can yield a greater understanding of a specific effect (Preacher & Kelley, 2011).  

General Discussion 
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The aim of this article was to provide a practical primer on how to calculate and 

report effect sizes to facilitate cumulative science, with a focus on t-tests and ANOVA’s. 

Current practices in the way researchers report effect sizes can be improved. First, 

researchers should always report effect sizes. When using effect sizes based on Cohen’s d, 

researchers should specify which standardizer is used (for example by using subscripts). 

When reporting effect sizes for ANOVA’s it is recommended to report generalized eta 

squared instead of (or in addition to) partial eta squared. Finally, effect sizes should be 

interpreted, preferably by comparing them to other effects in the literature or through the 

common language effect size, instead of using the benchmarks provided by Cohen (1988). 

This primer explained which effect sizes should be reported and provides a supplementary 

spreadsheet that researchers can use to easily calculate these effect sizes. 

Correctly reporting effect sizes does not only facilitate meta-analyses, but also makes 

it easier for researchers who build on previous results to perform power analyses. 

Considering the statistical power of a test when designing a study is useful for cumulative 

science. As the sample size increases, sampling bias goes down (e.g., Borenstein, Hedges, 

Higgins, & Rothstein, 2009), and therefore high-powered studies provide better effect size 

estimates for meta-analyses than studies with low power. Researchers should keep in mind 

that observed effect sizes in a study can differ from the effect size in the population, and there 

are reasons to believe overestimations are common given current publication practices where 

journals mainly accept studies that observe statistically significant effects (Lane & Dunlap, 

1978). Early publications of a given finding tend to overestimate the effect size due to 

regression to the mean (Fiedler, et al., 2012). For these reasons, it is inadvisable to focus 

solely on an a-priori power analysis when the sample size for a future study is determined 

(unless a very accurate effect size estimate is available), and researchers should pay attention 

to alternative approaches to plan sample sizes (see Maxwell et al., 2008). 
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Because power-analyses are inherently tied to null-hypothesis significance testing, 

some researchers are ambivalent about justifying the sample size of a study based on the 

likelihood to observe a significant effect. An often heard criticism about null hypothesis 

significance tests is that the null hypothesis is never true (Schmidt, 1992; Tabachnick & 

Fidell, 2001). However, the null hypothesis is often a good (and sometimes extremely 

accurate) approximation (Murphy et al., 2012), and in strictly controlled experiments, it is 

possible to make the direction of the difference, instead of the size of the effect, central to the 

purpose of the research (Cohen, 1995). On the other hand, one can reasonably argue that even 

when researchers are performing a null-hypothesis significance test, they are in reality testing 

whether an effect is so small that it can be considered negligible (for a detailed description of 

such minimum-effect tests, see Murphy & Myors, 1999). This in turn requires that 

researchers at least implicitly consider only effects that are large enough to be theoretically 

interesting. 

The current article is limited to effect sizes for standardized mean differences. Such 

comparisons are extremely common in experimental psychology, but hardly cover all 

possible research designs. Instead of a complete overview of effect sizes in experimental 

research (e.g., Grissom & Kim, 2005), I have tried to provide a practical primer that aims to 

be an time-efficient but complete overview of one specific type of research question. I 

therefore see the limitation as a strength, and think similar dedicated overviews for other 

types of analyses (e.g., risk ratios, multi-level modeling) would be very useful for the 

scientific community, especially when they are openly accessible. When possible, future 

articles about effect size calculations should provide software or spreadsheets to make it as 

easy as possible for researchers to implement these calculations into their workflow. For 

excellent examples, see ESCI (Cumming & Finch, 2001), confidence interval software by 

Smithson (2001), and G*Power (Faul, et al., 2009). Note that the easiest way to facilitate 
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cumulative science is to share the data of the studies you report. The internet makes it 

incredibly easy to upload data files in order to share them with the scientific community (for 

example, see www.openscienceframework.org). Especially for mixed designs or analyses 

with covariates, where calculating 𝜔𝐺
2  becomes quite complex, sharing the data will always 

enable researchers who want to perform a meta-analysis to calculate the effect sizes they 

need. 

A more fundamental question is whether effect sizes from within-subjects designs that 

control for intra-subjects variability (𝜂𝑝2 and 𝜔𝑝2), or that take the correlation between 

measurements into account (Cohen’s dz) are an accurate description of the size of the effect, 

or whether effect sizes that do not control for intra-subjects variability (𝜂𝐺2  and 𝜔𝐺
2), or that 

control for correlation between measurements (e.g., Cohen’s drm or Cohen’s dav) are 

preferred. I believe this discussion is currently biased by what could be called designism, a 

neologism to refer to the implicit belief that between-subjects designs are the default 

experimental design, and that effect sizes calculated from between-subjects designs are more 

logical or natural. The defense for designism is as follows. It is desirable to be able to 

compare effect sizes across designs, regardless of whether the observations originate from a 

within or between-subjects design. Because it is not possible to control for individual 

differences in between-subject designs, we therefore should consider the effect size that does 

not control for individual differences as the natural effect size. As a consequence, effect sizes 

that control for individual differences are ‘inflated’ compared to the ‘default’ (e.g., Dunlap et 

al., 1994). 

Such a reasoning ignores the fact that many effects in psychology are inherently 

contextual. For example, consider the investigation of how people slow down in a reaction 

time task after they have made an error (post-error slowing; Rabbit, 1966). Recently, Dutilh, 

Ravenzwaaij, Nieuwenhuis, van der Maas, Forstmann, and Wagenmakers (2012) have 

http://www.openscienceframework.org/
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suggested that the best way to answer research questions about post-error slowing is to 

calculate pairwise comparisons around each error, and analyze these difference scores 

(against zero, or against the difference score in other conditions), instead of averaging 

response times over all pre-error and post error responses and compare these two averages in 

a paired-samples t-test. In other words, the difference score is the most natural unit of 

analysis in such research. Because a between-subjects design is not possible, there will never 

be a meta-analysis that compares post-error slowing across between and within-subjects 

designs. Because difference scores are the natural unit of analysis, one could argue that the 

larger effect sizes are not inflated, but within-subjects analyses simply reflect a different 

research question, examined at a different level of analysis (intra-individual instead of inter-

individual). There are clear parallels with continuing discussions about measures for the 

proportion of variance explained in multilevel modeling, where it is much more common to 

assume that repeated measurements of individuals are the default unit of analysis (see 

Tabachnik & Fidell, 2001).  

When empirical questions can only be examined in within-subjects designs (such as in 

the case of post-error slowing), effect sizes that control for intra-subjects variability (𝜂𝑝2 and 

𝜔𝑝2), or that take the correlation between measurements into account (Cohen’s dz) is a 

reasonable statistic to report. This is nicely demonstrated by the common language effect size 

(which can be directly calculated from Cohen’s ds or Cohen’s dz). In the illustrative example 

presented earlier in this article, we concluded the chance that for a randomly selected pair of 

individuals the evaluation of Movie 1 is higher than the evaluation of Movie 2 is 79% (in the 

between-subject experiment), but that the chance that an individual who sees both movies (in 

a within-subject experiment) prefers Movie 1 over Movie 2 is 93%. The CL of 93% is not an 

overestimation, but an accurate description of the likelihood in correlated samples where 

measurements are paired. We can calculate effect sizes for within-subject designs (e.g., 
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Cohen’s drm and Cohen’s dav ) that are generalizable to between-subjects designs, but if our 

goal is to make a statement about whether individuals who watch both movies will prefer 

Movie 1 over Movie 2, an effect size that generalizes to situations where two different groups 

of people watch one of the two movies might not provide the best answer to our question. 

Generalization across designs (that include or do not include blocking factors, for 

example) can still be desirable. It would be possible to develop a ‘within-subjects generalized 

eta squared’ equivalent that excludes variation due to individual differences from the 

denominator (as 𝜂𝑝2) for the effect size calculation, but includes variation due to manipulated 

factors (as 𝜂𝐺2), if one was inclined to make a statement against ‘designism’. The current 

article highlights that there is no single ‘true’ definition of an standardized effect size. 

Researchers need to choose which effect size provides the best summary of the effect, and 

specify which effect size they report (Cumming, 2012; Thompson, 2007). An efficient way to 

do so is the use of subscript letters, as used throughout the current article.  

In the end, the choice of an effect size calculation depends on the research question 

and the experimental design. It is important to explicitly state which effect size is calculated, 

and to make a motivated choice about which effect sizes to report. With the current overview, 

I hope to have provided a practical primer to assist researchers in choosing and calculating 

effect sizes, in the conviction that making a more informed choice of about which effect size 

estimates to report will facilitate cumulative science. 
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Footnotes 

1 ESCI can be downloaded from http://www.latrobe.edu.au/psy/research/projects/esci  

2 These files can be downloaded from 

http://dl.dropboxusercontent.com/u/1857674/CIstuff/CI.html  

  

http://www.latrobe.edu.au/psy/research/projects/esci
http://dl.dropboxusercontent.com/u/1857674/CIstuff/CI.html
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Appendix A 

The parameter Cohen’s 𝑓2 used in G*Power differs from the parameter for Cohen’s 

𝑓2 that is used in the statistical software package SPSS. Since 𝜂𝑝2 = 𝑓2 1 + 𝑓2⁄ , this also 

means the values for 𝜂𝑝2 are not interchangeable between SPSS and G*Power. As Erdfelder 

(personal communication) explains, 𝑆𝑃𝑆𝑆 𝜂𝑝2 can be converted to G*Power 𝜂𝑝2 by first 

converting it to 𝑓𝑆𝑃𝑆𝑆2  using:  

𝑓𝑆𝑃𝑆𝑆2  = 𝑆𝑃𝑆𝑆 𝜂𝑝2

1−𝑆𝑃𝑆𝑆 𝜂𝑝2
 

Then, insert it in the following formula: 

𝑓𝐺∗𝑃𝑜𝑤𝑒𝑟2  = 𝑓𝑆𝑃𝑆𝑆2  ⨯ 𝑁−𝑘
𝑁

 ⨯ (𝑚−1)
𝑚

 ⨯ (1-ρ) 

where N is the sample size, k is the number of groups, m is the number of repetitions, 

and ρ is the (mean) correlation between the measures, which can finally be converted into 

partial eta as it is used in G*Power: 

G*Power 𝜂𝑝2 =  𝑓𝐺∗𝑃𝑜𝑤𝑒𝑟2 1 + 𝑓𝐺∗𝑃𝑜𝑤𝑒𝑟2⁄ . 
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