Tables

Table 1.

Summary of d family effect sizes, standardizers, and their recommended use.

ES	Standardizer	Use	
Cohen's d _{pop}	σ (population)	Independent groups, use in power analyses when population σ is known, σ calculated with n	
Cohen's d _s	Pooled SD	Independent groups, use in power analyses when population σ is unknown, σ calculated with n-1	
Hedges' g	Pooled SD	Independent groups, corrects for bias in small samples, report for use in meta-analyses	
Glass's Δ	SD pre measurement or control condition	Independent groups, use when experimental manipulation might affect the SD	
Hedges' g _{av}	$(SD_1 + SD_2)/2$	Correlated groups, report for use in meta-analyses (generally recommended over Hedges' g_{rm})	
Hedges' g _{rm}	SD difference scores corrected for correlation	Correlated groups, report for use in meta-analyses (more conservative then Hedges' g_{av})	
Cohen's dz	SD difference scores	Correlated groups, use in power analyses	

Table 2.

Summary of r family effect sizes and their recommended use.

ES (Biased)	ES (Less Biased)	Use	
eta squared (μ²)	omega squared (ω²)	Use for comparisons of effects within a single study	
eta squared (μ_p^2)	omega squared (ω_p^2)	Use in power analyses, and for comparisons of effect sizes across studies with the same experimental design.	
Generalized eta squared (μ_G^2)	Generalized omega squared (ω_G^2)	Use in meta-analyses to compare across experimental designs	

Table 3.

Artificial movie evaluations

	Movie 1	Movie 2	Difference
	9.00	9.00	0.00
	7.00	6.00	1.00
	8.00	7.00	1.00
	9.00	8.00	1.00
	8.00	7.00	1.00
	9.00	9.00	0.00
	9.00	8.00	1.00
	10.00	8.00	2.00
	9.00	8.00	1.00
	9.00	7.00	2.00
M	8.70	7.70	1.00
SD	0.82	0.95	0.67