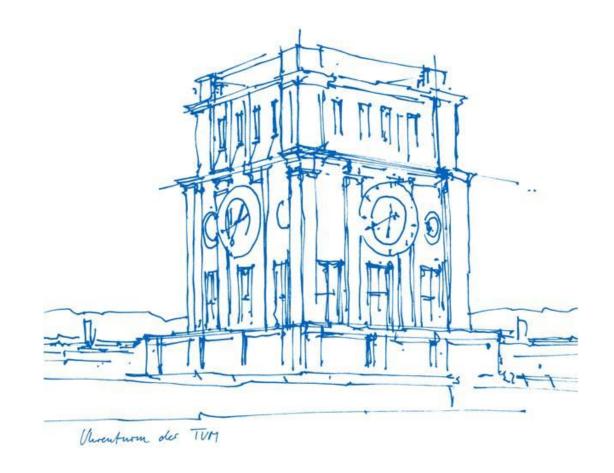


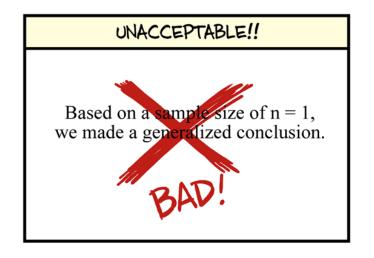
Thesis Seminar Meta-analysis


Dr. Theresa Treffers

Technical University of Munich

TUM School of Management

Chair for Strategy and Organization


Prof. Dr. Isabell M. Welpe

Why do we need meta-analyses?

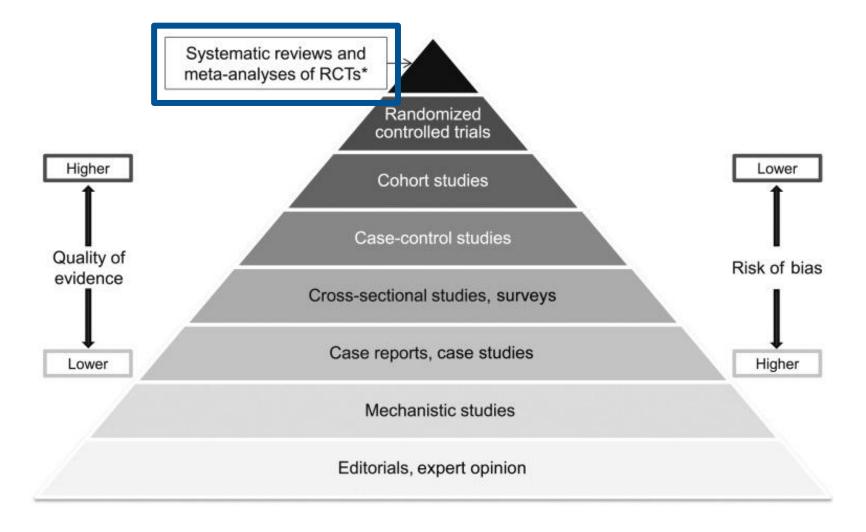
ACADEMIC CONCLUSIONS

WWW.PHDCOMICS.COM

Why do we need meta-analyses?

- Nowadays an enormous stream of academic publications!
- A single study does not provide a precise, definite answer
- Science is cumulative: many studies are (partial) replications and extensions

But do more and more empirical findings lead to more certainty


or to more variety and inconsistency in results...?

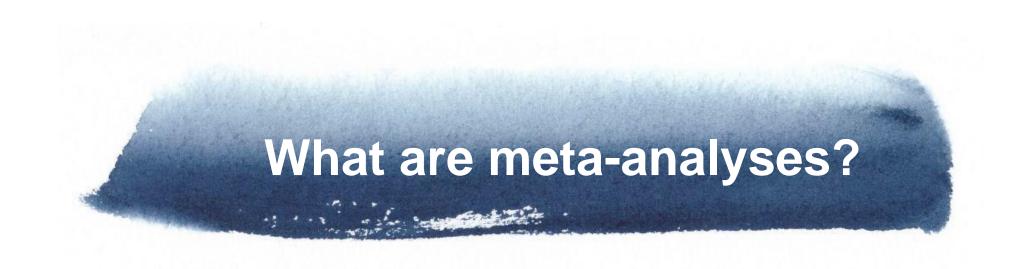
Required:

- Insightful summary or overview
- Combine a (large) set of studies to determine the limits & conditions of findings

Meta-analysis on experiments: highest level of evidence

Yetley, E. A., MacFarlane, A. J., Greene-Finestone, L. S., Garza, C., Ard, J. D., Atkinson, S. A., Bier, D. M., Carriquiry, A. L., Harlan, W. R., Hattis, D., King, J. C., Krewski, D., O'Connor, D. L., Prentice, R. L., Rodricks, J. V., & Wells, G. A. (2017). Options for basing Dietary Reference Intakes (DRIs) on chronic disease endpoints: Report from a joint US-/Canadian-sponsored working group. *American Journal of Clinical Nutrition*, 105(1), 249S-285S. https://doi.org/10.3945/ajcn.116.139097

Agenda


1. What are meta-analyses?

2. How are meta-analyses conducted?

3. How to **read** & **critically examine** meta-analytical findings?

4. Best practices & further readings

What are meta-analyses?

"The analysis of analyses."

- Gene V. Glass in "Primary, secondary and meta-analysis of research", 1976.

Definition:

= statistical integration of all "published" (better: existing) empirical research results through quantitative comparison & combining of these findings

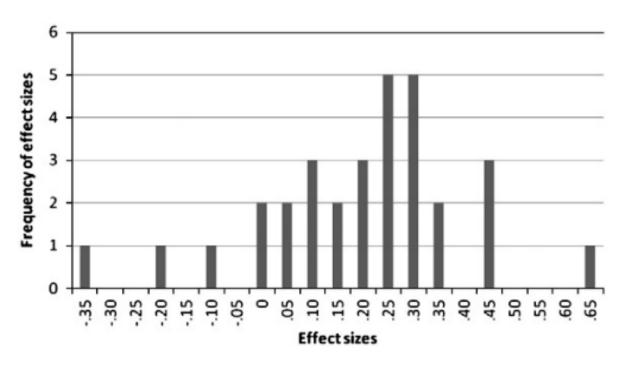
Meta-analyses overcome typical problems & validity issues of primary studies

- For meta-analysis, effect sizes are summarized independently of significance
- Weighted, mean effect size over all studies is closer to true effect in the whole population

- 1. Definition of the research proposition
- 2. Data collection
 - a) Collection of studies
 - b) Selection / Exclusion of studies
 - c) Development of coding questionnaire
 - d) Coding of studies
- 3. Data analysis
 - a) Computation of effect sizes
 - b) Dealing with publication bias
 - c) Examination of heterogeneity
 - d) Moderator analysis, meta-regression, ...
- 4. Report findings
- 5. Formulation of conclusions and directions for further research

1. Definition of the research proposition

2. Data collection


- a) Collection of studies
- b) Selection / Exclusion of studies
- c) Development of coding questionnaire
- d) Coding of studies

3. Data analysis

- a) Computation of effect sizes
- b) Dealing with publication bias
- c) Examination of heterogeneity
- d) Moderator analysis, meta-regression, ...
- 4. Report findings
- 5. Formulation of conclusions and directions for further research

Example: Contradictory findings

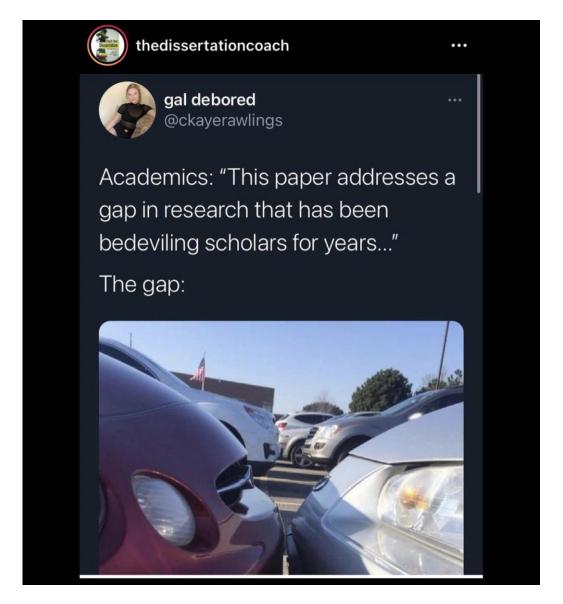


Fig. 1. Range of effect sizes (r) for the relationship between transformational leadership and innovation (aggregated correlations).

But ...

1. Definition of the research proposition

2. Data collection

- a) Collection of studies
- b) Selection / Exclusion of studies
- c) Development of coding questionnaire
- d) Coding of studies

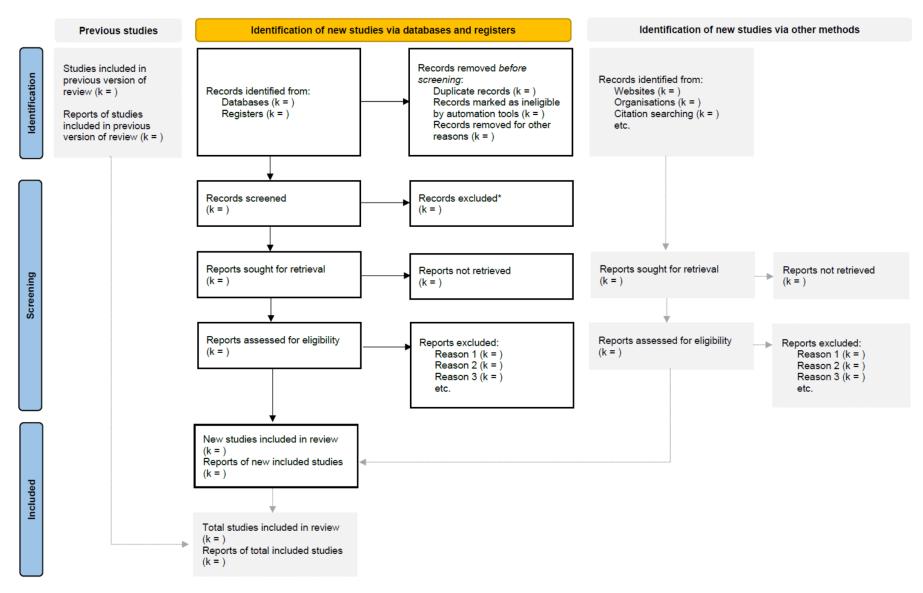
3. Data analysis

- a) Computation of effect sizes
- b) Dealing with publication bias
- c) Examination of heterogeneity
- d) Moderator analysis, meta-regression, ...
- 4. Report findings
- 5. Formulation of conclusions and directions for further research

Collection of studies

- Recommendation: systematic literature review
- But meta-analyses do not necessarily require a comprehensive set of studies
- → example: single-study meta-analysis

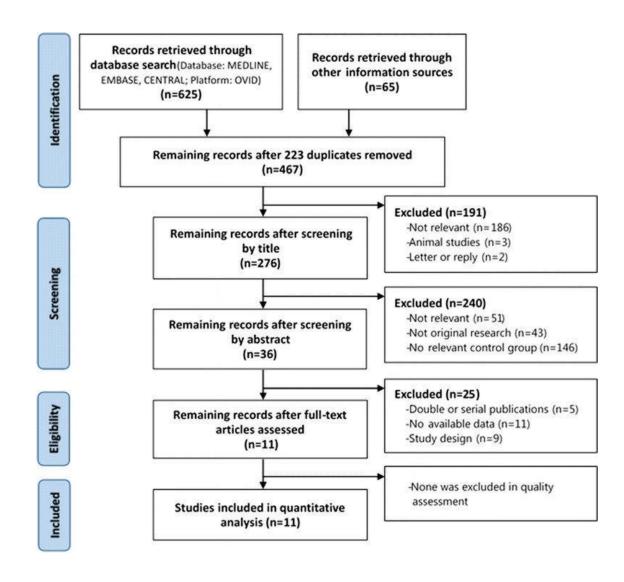
TABLE 3 Meta-analysis of main effect sizes


	Integral Incidental													
Anger	k	d	95% CI	p	Q	l ²	T ²	k	d	95% CI	p	Q	l ²	T ²
Deliberative RPs	14	0.17	0.06, 0.29	.003	20.07	35.23	0.03	14	-0.17	-0.28, -0.06	.003	34.46	68.28	0.07
Affective RPs	14	0.14	0.02, 0.25	.018	18.21	28.59	0.02	14	-0.07	-0.18, 0.04	.217	17.54	25.90	0.02
Experiential RPs	14	0.15	0.03, 0.26	.011	19.42	33.07	0.02	14	-0.10	-0.22, 0.01	.067	18.66	30.23	0.02
Intentions	10	-0.15	-0.27, -0.03	.014	31.11	71.07	0.10	10	-0.06	-0.18, 0.06	.324	4.69		
	Inte	gral							Incidental					
Fear	k	d	95% CI	p	Q	l ²	T^2	k	d	95% CI	р	Q	l ²	T ²
Deliberative RPs	16	0.26	0.17, 0.36	<.001	21.22	29.30	0.02	16	-0.01	-0.10,0.09	.910	9.17		
Affective RPs	16	0.31	0.22, 0.41	<.001	43.75	65.72	0.07	16	-0.01	-0.10,0.08	.854	1.76		
Experiential RPs	16	0.28	0.18, 0.37	<.001	33.84	55.67	0.05	16	0.01	-0.08, 0.10	.820	9.81		

Note. I^2 and T^2 reported only with significant Q. Bolded values are significant at p < .05.

Abbreviations: CI, confidence interval; RP, risk perception.

PRISMA Flow Chart



Page, M. (2020). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Preprint, 59(Supplement), S59–S61. https://doi.org/10.7248/jjrhi.59.s59

PRISMA Flow Chart - Example

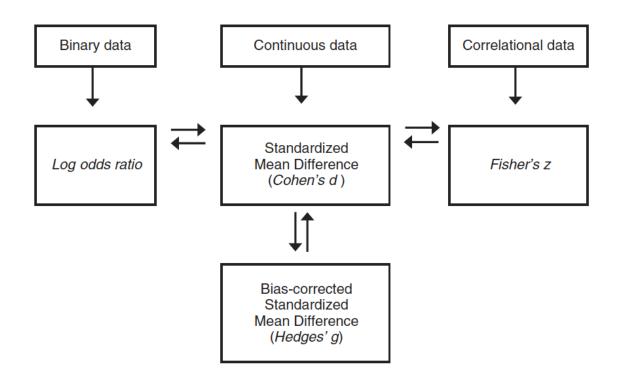
Zheng, Y., Wang, M., He, S., & Ji, G. (2015). Short-term effects of intragastric balloon in association with conservative therapy on weight loss: a meta-analysis. *Journal of Translational Medicine*, 13(1), 246.

1. Definition of the research proposition

2. Data collection

- a) Collection of studies
- b) Selection / Exclusion of studies
- c) Development of coding questionnaire
- d) Coding of studies
- 3. Data analysis
 - a) Computation of effect sizes
 - b) Dealing with publication bias
 - c) Examination of heterogeneity
 - d) Moderator analysis, meta-regression, ...
- 4. Report findings
- 5. Formulation of conclusions and directions for further research

Coding table



Α	В	D	E	G	н	1	J
Stud_ID	Jahr	 Samp_ID	Ν	 ES_ID	aV	aV_Name	ES_r
01	1998	 01	245	 01	6	Job satisfaction	.26
01	1998	 02	316	 02	7_1	Emotional attachment	.34
01	1998	 02	316	 03	7_2	Turnover thoughts (rev.)	.32
01	1998	 02	316	 04	7	Comb: Org. attachment	.33
02	2005	 03	81	 05	7	Org. attachment	.4

Choosing and calculating effect sizes

- Choice based on reported studies
- Effect sizes can be converted into others
- Most studies do not report effect sizes, hence calculation is necessary

Often more than one effect size from one study (different treatment groups, multiple comparisons etc.)

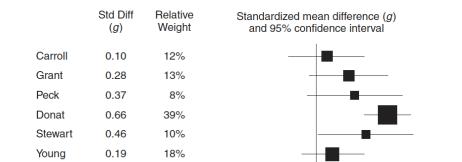
→ Before calculation of summary effect: combining or correcting dependent effect sizes & standard errors

- 1. Definition of the research proposition
- 2. Data collection
 - a) Collection of studies
 - b) Selection / Exclusion of studies
 - c) Development of coding questionnaire
 - d) Coding of studies

3. Data analysis

- a) Computation of effect sizes
- b) Dealing with publication bias
- c) Examination of heterogeneity
- d) Moderator analysis, meta-regression, ...
- 4. Report findings
- 5. Formulation of conclusions and directions for further research

Computation of the summary effect: Fixed effect model vs. random effects model


Fixed effect model:

- All studies included in analyses are functionally identical
- Goal: estimate one true effect
- No generalization to other populations

Random effects model:

- Studies not functionally identical
- Goal: estimate mean of effects' distribution
- Generalize to other populations

Only applicable if enough studies available!

Impact of Intervention (Fixed effect)

Figure 13.1 Fixed-effect model – forest plot showing relative weights.

100%

0.41

Summary

Impact of Intervention (Random effects)

-0.5

0.0

0.5

1.0

-1.0

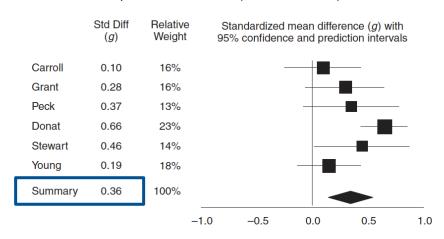


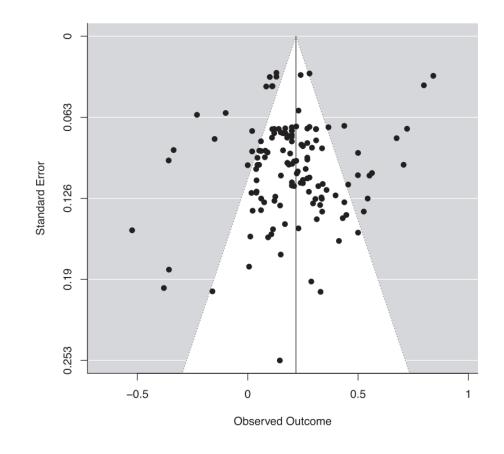
Figure 13.2 Random-effects model – forest plot showing relative weights.

- 1. Definition of the research proposition
- 2. Data collection
 - a) Collection of studies
 - b) Selection / Exclusion of studies
 - c) Development of coding questionnaire
 - d) Coding of studies

3. Data analysis

- a) Computation of effect sizes
- b) Dealing with publication bias
- c) Examination of heterogeneity
- d) Moderator analysis, meta-regression, ...
- 4. Report findings
- 5. Formulation of conclusions and directions for further research

The file drawer problem


Studies with significant intervention effect tend to be **published more often** than studies with null results

Tests: (exemplary)

- Funnel plot
- Orwin's Fail-Safe-N-Test

Solutions: (exemplary)

- Search for grey literature
- Trim-and-Fill
- Cumulative meta-analysis

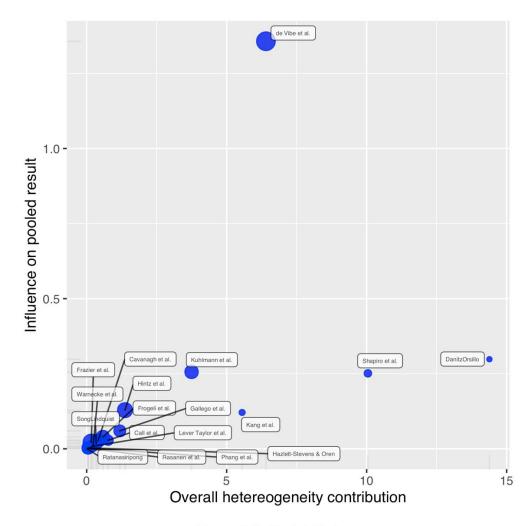
- 1. Definition of the research proposition
- 2. Data collection
 - a) Collection of studies
 - b) Selection / Exclusion of studies
 - c) Development of coding questionnaire
 - d) Coding of studies

3. Data analysis

- a) Computation of effect sizes
- b) Dealing with publication bias
- c) Examination of heterogeneity
- d) Moderator analysis, meta-regression, ...
- 4. Report findings
- 5. Formulation of conclusions and directions for further research

Assessing heterogeneity

Heterogeneity = variation in true effect sizes


Important because heterogeneity could suggest

- a. The existence of outliers
- b. The existence of **subgroups**
- c. That we compare apples with oranges

Important estimators: Q test, I², T²

Investigation via

- 1. Outlier detection with Confidence Intervals
- 2. Influence Analysis
- 3. Gosh Plot Analysis
- (4. Subgroup analyses)

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). Introduction to meta-analysis. John Wiley & Sons

Figure 6.2: Baujat Plot

Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. *Research Synthesis Methods*, 1(2), 112–125.

https://doi.org/10.1002/jrsm.11

Figure: Harrer, M., Cuijpers, P., Furukawa, T.A, & Ebert, D. D. (2019). Doing Meta-Analysis in R: A Hands-on Guide. DOI:

0.5281/zenodo.2551803.https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/

- 1. Definition of the research proposition
- 2. Data collection
 - a) Collection of studies
 - b) Selection / Exclusion of studies
 - c) Development of coding questionnaire
 - d) Coding of studies

3. Data analysis

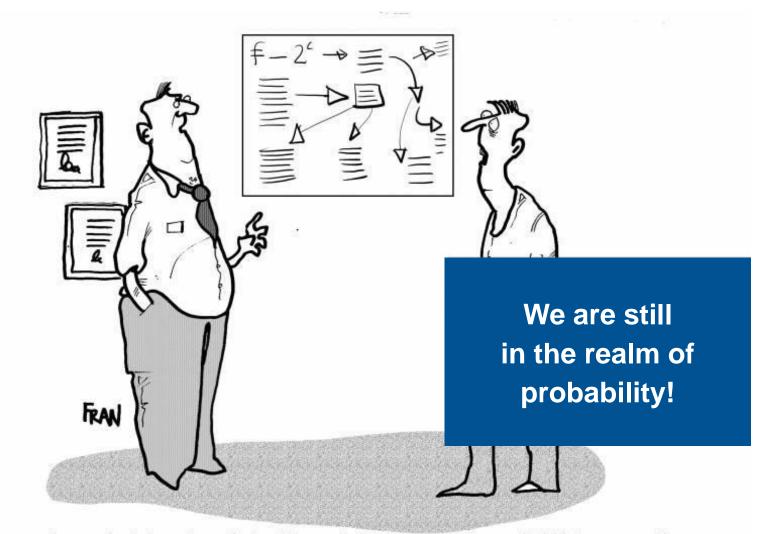
- a) Computation of effect sizes
- b) Dealing with publication bias
- c) Examination of heterogeneity
- d) Moderator analysis, meta-regression, ...
- 4. Report findings
- 5. Formulation of conclusions and directions for further research

Moderator analyses

Options

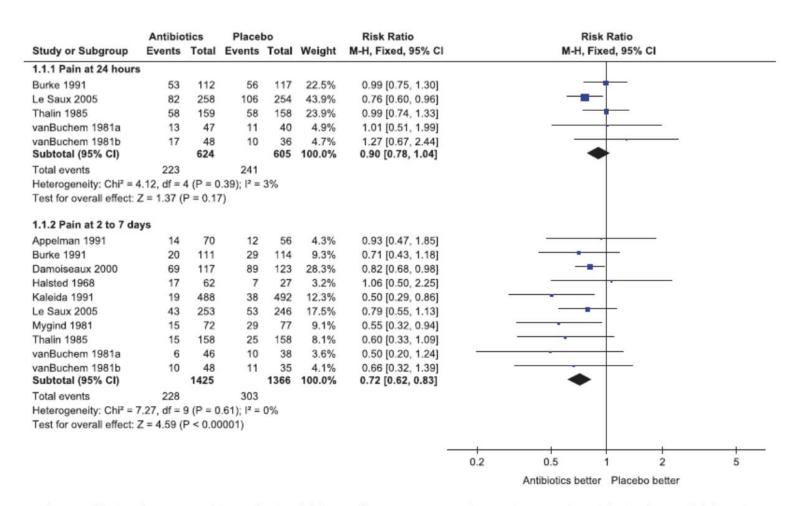
- 1. Subgroup analyses
- 2. Correlations between moderator & common effect size
- 3. Meta-regression

Because of


- a. A priori hypotheses
- b. High heterogeneity
- → Better: specific set of moderators based on theoretical assumptions because of capitalization of chance
- → In subgroup analyses: watch out for interdependence/correlation of moderators
- → Meta-regression not advised as it is error-prone & requires high k

How to read & critically examine meta-analytical findings?

What is important when reading meta-analyses?



I've conducted a meta analysis of the myriad of tests we've run and I think I can say with a certain level of certainty that you are probably screwed...

How to read a meta-analysis? - Forest Plot

Figure 1. Forest plot. Antibiotics for acute otitis media in children: Effect on recovery from pain [16]. Copyright Cochrane Collaboration, reproduced with permission.

Anzures-Cabrera, J., & Higgins, J. P. (2010). Graphical displays for meta-analysis: an overview with suggestions for practice. Research synthesis methods, 1(1), 66-80.

How to read a meta-analysis? - Table

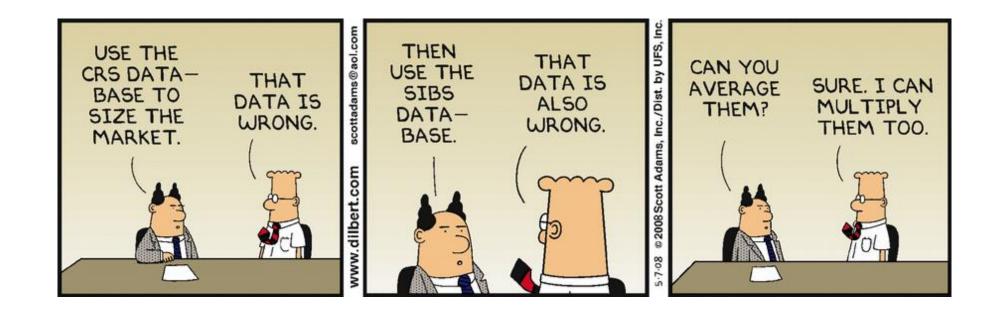
Table 3. Overall results for treatment—control sample on judgement and decision-making outcomes by emotion group comparison

							95% CI		
	k	N	d	SD	SE	PVA	L	U	Q
TC^{j}									
Anger	6	535	0.06	0.09	0.05	100.00	-0.04	0.16	1.16
Fear	6	542	0.11*	0.11	0.05	100.00	0.01	0.21	1.54
Sadness	9	553	0.18*	0.22	0.07	100.00	0.04	0.32	6.66
Happiness	5	304	0.17*	0.26	0.07	100.00	0.03	0.31	4.83
TC^{dm}									
Anger	10	862	0.26***	0.29	0.05	58.69	0.16	0.36	17.04*
Fear	6	484	0.18***	0.19	0.05	100.00	0.08	0.28	4.44
Sadness	13	975	0.33***	0.28	0.06	71.02	0.21	0.45	18.31
Disgust	2	192	0.36***	0.27	0.04	59.06	0.28	0.44	3.39
Guilt	3	333	0.98***	0.34	0.04	34.85	0.90	1.06	8.61*

Notes: TC^j = treatment-control judgement sample; TC^{dm} = treatment-control decision-making sample; k = number of effect-size estimates; N = sum of participants; d = average sample-weighted effect-size estimate using Cohen's d; SD = standard deviation of effect-size estimates; SE = standard error of effect-size estimates; PVA = percent of variance accounted for by sampling error; 95% CI = 95% confidence interval; Q = Q statistic (Hunter & Schmidt, 1990). *p < .05; **p < .01; ***p < .001.

Example: Business Case for Women Leaders

Table 2
Meta-Analytic Results for Women's Representation in Leadership and Firm Financial Performance


	k	n	$ar{p}$	95% Confidence Interval	80% Credibility Interval	Qw
Women's leadership and firm performance	78	117,639	+.02	+.01 to +.04	07 to +.12	345.51*
Female representation on board of directors	62	75,978	+.04	+.05 to +.09	04 to +.18	561.95*
Female CEO	12	45,165	02	04 to +.15	08 to +.05	-64.72
Female representation on top management team	13	27,431	+.01	$00 \ to \ +.04$	03 to $+.07$	165.66*
Accounting performance measures	75	111,905	+.02	+.01 to +.05	09 to +.15	246.03*
Return on assets	46	90,368	+.03	00 to +.05	09 to +.13	150.16*
Return on equity	20	37,026	+.05	03 to $+.03$	09 to +.09	-9.58
Leverage	18	56,119	+.06	$00\ to\ +.05$	11 to +.13	119.56*
Sales	10	18,077	+.04	+.03 to $+.37$	16 to +.56	25.84*
Profitability	9	4,329	+.00	01 to +.14	08 to +.20	46.10*
Composite measure	5	1,041	05	09 to $+.04$	12 to +.09	-22.90
Return on capital	3	205	03	20 to $+.24$	33 to +.35	-1.33
Return on investment	2	850	+.01	05 to $+.06$	04 to $+.07$	8.67*
Market performance measures	30	67,627	+.05	+.01 to +.05	05 to +.10	228.93*
Tobin's Q	17	56,348	+.01	00 to +.06	06 to +.12	115.93*
Stock performance	14	21,011	+.06	06 to +.04	14 to +.12	-14.65
Market capitalization	4	3,879	+.14	08 to +.16	12 to +.20	10.61*

Note: Confidence intervals in italics include 0; credibility intervals in italics range in excess of .11. k = number of effect sizes; \bar{p} = mean estimate of the Fisher's z-transformed corrected population correlation of the cumulated effect sizes. *p < .05.

Hoobler, J. M., Masterson, C. R., Nkomo, S. M., & Michel, E. J. (2018). The business case for women leaders: Meta-analysis, research critique, and path forward. *Journal of Management*, 44(6), 2473-2499.

Always keep in mind ...

... garbage in, garbage out!

Best practices & further readings

5 Things to Know About Meta-Analysis

- 1. A meta-analysis is a safer starting point than a single study
 - but it won't necessarily be more reliable
- 2. A meta-analysis is a snapshot in time
 - it can even be out-of-date the day it's published
- 3. Look carefully before you take an outcome literally
 - it may not be what it appears to be
- 4. Data choices and statistical technique can change a result
- **5. Absence of evidence** is not evidence of absence ...most of the time

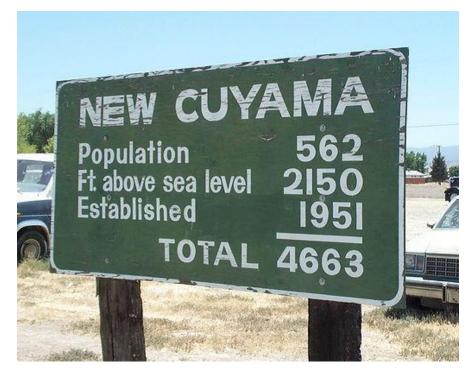


Photo by Mike Gogulski (Wikimedia Commons)

Additional materials: Tutorial videos on meta analysis http://metalab.stanford.edu/tutorials.html

The website offers several video tutorials on the following questions:

- Why meta-analysis (MA)?
- What are effect sizes?
- How do I define my MA question?
- Why should I bother keeping track of the MA creation process?
- Now that I have my list of related studies, how do I set my inclusion criteria?
- How do I select the studies to include?
- How exactly can I go about looking through my initial list and making decisions?
- What are the relevant variables for a MA, and how many input rows/columns should I make?
- How do I enter and code relevant studies?
- How do I calculate Effect Sizes?
- What if I don't have all the required information?
- How to run a meta-analytic regression?
- Are there some MA specific plots that I should make?

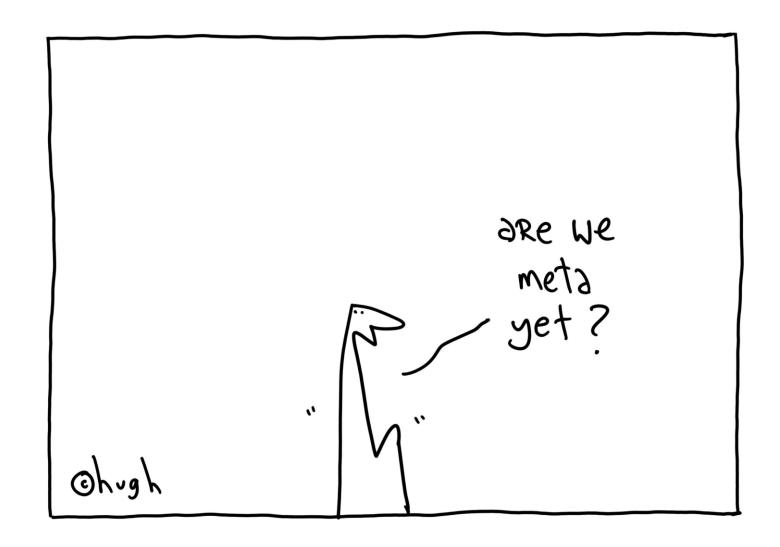
Own experiences/Best practices

- Published meta-analyses often do not stick to guidelines
- Learning by doing
- Document each step
- Report for replicability
- Be critical about own results
- Use R packages or other software for calculations

TYPES OF PSYCHOLOGY PAPERS

Resources

Recommended books


- Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). *Introduction to meta-analysis*. John Wiley & Sons → My favorite!
- Schmidt, F. L., & Hunter, J. E. (2003). Meta-analysis. *Handbook of psychology*, 533-554.
- Lipsey, M. W., & Wilson, D. B. (2001). *Practical meta-analysis*. SAGE publications, Inc. → especially for how to calculate effect sizes from missing data

Useful guides for conducting meta-analyses with R

- Harrer, M., Cuijpers, P., Furukawa, T.A, & Ebert, D. D. (2019). Doing Meta-Analysis in R: A
 Hands-on Guide. DOI:
 - 10.5281/zenodo.2551803.https://bookdown.org/MathiasHarrer/Doing Meta Analysis in R/
- Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. http://www.metafor-project.org/doku.php/

Questions?

