

IntroML

30 March 2022

IntroMI

Welcome

The ML ⇒Science Colaboratory

Plan for the day

Agenda

9:10 Round of introductions

- Core ML Concepts
 ML & software / learning paradigms / supervised learning / NNs
- 2. Machine Learning in Practice project pipeline: data, models & evaluation / ML in Science
- 3. Discussion of Selected Scientific Use Cases question / learning task / dataset / evaluation

12:45 Closing – feedback round

Practical aspects

- Lunch veg stew/chicken chops: register?
- Pauses \rightarrow 2 x 10'
- Internet → eduroam, share laptop
- Toilet → elevator
- Corona & ventilation

Questions welcome at any time

Slides, notebook and feedback at mlcolab.org/introml-participants

Round of introductions

Tübingen is a great place to form a community of practice and mutual support around ML and science.

Let's get to know each other! We can share

- Name & affiliation
- Current research
- Expectations from ML related to your research

The ML ≠ Science Colaboratory

At the Cluster ML in Science

Mission Establish ML across disciplines in Tübingen

Activities Cooperations and trainings, scientific ML software

- ML Colab ⊂ Cluster ML in Science ⊂ ML Tübingen
- Scientists like you, only some subfields of ML
 Our domain languages
 Astro, atmospheric, & quantum physics,
 environmental sci, neuroscience, genomics,
 urban sci, int'l policy, structural bio...
- We can work together, more at the end.

Great Potential for ML in Research

- + More data in sciences (sensors) and humanities (text understanding)
- ML is hard to use for domain researchers
 - Resources abundant data and powerful compute
 - Planning coupled model-data development
 - Skills exploding ML literature, software engineering, training lore
 - Limitations for research biases, interpretation, uncertainty, and causality
- **ML-to-domain** *application gap* Do research with *existing* ML algorithms?
 - Incentives misalignment in standard collaborations

Core Concepts in Machine Learning

Core Concepts in Machine Learning

What is ML?

What problems does it solve?

Games and the nature of intelligence

- form territories by surrounding empty areas
- capture by completely surrounding (prisoners) x

• at $e \rightarrow 10 \circ$ and 10 crossings!

Points = crossings + prisoners

Real go is 19x19

A surprising move

Creative?

Machine learning as 'software 2.0'

- ML produces computer algorithms, called "ML models"
 - Like traditional computer programming based on **rules**, the result is computer code
 - But ML models are substantially based on **data**, not pre-specified rules
 - o In fact, ML models use traditional code containing general rules for learning specific rules
- Stages of an ML model and its internal parameters (IPs)
 - Untrained it has not seen any data; IPs are typically random
 - Training changing IPs progressively reflect presented data/experience
 - Operational IPs fixed by training to values that satisfy a desired performance level
- Who interacts with ML when?
 - ML researchers design learning algorithms, train and test them, often on standardized tasks
 - Users train ML algorithms with their data for their use case
 - Everybody (almost) supplies data for 3rd-party ML, or uses ML trained by others

Towards Software 2.*

Different strengths

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE. Use ML when the problem...

- ... has a simple objective,
- is too complex for explicit rules,
- is constantly changing,
- is perceptual ("unstructured" data), or
- is observable, but unstudied due to scale e.g. network traffic logs

Don't use if: every decision/change in behavior must be explainable; errors are high-consequence, getting dense data is infeasible or costly...

Why ML now?

ML coming of age ca 2010, a coalition of factors

- Data: commoditization of sensors and distributed data collection
- Hardware: parallelized linear algebra, originally for gaming ("GPUs")
- Software:
 - Usable automatic differentiation engines (e.g. Theano 2007)
 - Languages for composing models easily
- Models
 - Multiple layers and training tricks (grad clipping, dropout, batchnorm, ...) to stabilize training
 - Compositionality of neural networks
 - Transfer learning

From proteins to planets, ML in science

Protein structure prediction with transformers

Senior et al. 2020, Jumper et al. 2021

Planetary stability with Bayesian neural networks

Cranmer, Tamayo et al. 2021

Ancient greeks and seasonal hurricanes

Text restoration and geochronological attribution with data augmentation

Assael, Sommerschield et al. 2022

Hurricane path forecast & speed field with nODEs & GANs

RNN Encoder

ODE Solve $(x_{t_0}, y_{t_0} w_{t_0}, h_{t_0}, x_{t_1}, y_{t_1} w_{t_1}, h_{t_1}, x_{t_{n-1}}, y_{t_{n-1}}, h_{t_{n-1}}, h_{t_{n-1}}, x_{t_n}, y_{t_n} w_{t_n}, h_{t_n})$ X_{t_0} X_{t_0} X_{t_1} $X_{t_{n-1}}$ $X_{t_{n-1}}$ $X_{t_{n-1}}$ X_{t_n} X_{t_n} $X_{t_{n+1}}$ X_{t

Park, Kim et al. 2020

Core Concepts in Machine Learning

Learning Paradigms

Main Learning Paradigms

Reinforcement learning

Harnessing interaction

Supervised learning

Teaching to label

Unsupervised learning

Exploring structure

Reinforcement Learning

Goal

Train an agent to perform some task

Requirements

- Agent interacting with an environment (real or simulated)
- Reward mechanism

Reinforcement Learning

Reinforcement Learning

Core Concepts in Machine Learning

Unsupervised learning

An example dataset

Instance

ID	R01	G01	B01
1	215	198	180
2	61	61	51
3	219	227	227
4	47	43	37

Feature

Photo by Gökhan Konyalı on Unsplash

Photo by Ben Wicks on Unsplash

Photo by Jacalyn Beales on Unsplash

Task: group the images into any numbers of groups that you like

For example: 4 groups based on the breed of cat

For example: 2 groups based on colors (orange or not orange)

For example: 2 groups based on gesture

Unsupervised Learning

Goals

- Structure discovery
- Dimensionality reduction
- Community detection

Requirements

- Data (unlabeled)
- Some notion of similarity of data points

Core Concepts in Machine Learning

Supervised learning

One step at a time

Supervised Learning

Goal

learn a function to map inputs to outputs

Requirement

Dataset of inputs and outputs ("labels")

Modes

- Classification (category outputs)
- Regression (continuous outputs)

Supervised Learning: Classification

Category Label

ID	R01	G01	B01	Туре
1	184	187	187	Cat
2	218	157	164	Dog
3	61	61	51	Cat
4	236	236	236	Dog

Supervised Learning: Regression

Continuous Label

47

0

ID	R01	G01	B01	Head pose (degree)
1	116	98	81	47
2	157	146	164	0
3	23	22	21	2
4	137	130	129	-33

Let's train a supervised classifier

Navigate to:

https://teachablemachine. withgoogle.com/ train/image

We've trained a supervised classifier

- Collect data image frames + labels
- Train* neural network

* fine-tune

 Infer or predict class of new image

ML brings the senses to computers

Supervised Learning Tutorial

Supervised learning: One step at a time

In this notebook, we slowly introduce supervised learning, along with basic machine learning concepts we encounter on the way.

The data

At regularly spaced 1-dimensional points x, we have generated fake, noisy 1-dimensional observations y. We assume that there is some true but unknown underlying process f, so that

$$y_i = f(x_i) + \text{noise}.$$

 x_i is a single raw feature. y_i is an output or continuous label.

Interactive notebook downloadable at mlcolab.org/introml-participants

Core Concepts in Machine Learning

Neural Networks

Layer upon layer upon layer

Building a neural network - playground

Visit a simplified version or go to https://playground.tensorflow.org for the general interface

Input data

- 'DATA' chooser: blobs, quadrants, concentric & spiral
- 'OUTPUT' visualizer
 - Raw features: coordinates of the dots, X_1 and X_2
 - Supervised labels: binary classes
 - Training data; tick checkbox for test data

- Model

- 'FEATURES' add computed features X_1^2 , X_2^2 , X_1^2 , $\sin X_1$, $\sin X_2$ to form an input layer
- 'HIDDEN LAYERS' select architecture by adding fully connected hidden layers of desired size.

- Output

- 'OUTPUT': $f(X_1, X_2, \frac{features}{(X_1, X_2)})$ as function of X_1, X_2 shown as color level
- Input dots overlaid for visual comparison.

Training the neural network

Training

- → Start: initialize weights randomly, (hence activations also random)
- Learn: blame training loss on specific weights, and adjust them to reduce it
- Stop: see when training loss (or test error) plateaus, call it a day

Inference and evaluation

- Check on a separate test set how well we generalize
 - E.g. do all spirals have arms this long? Distance between the arms?

Challenge time!

blobs: find simplest network, using raw features only

concentric: same, then find simplest with engineered features

xor: simplest network with engineered features, then without

spiral: 1 layer and engineered features vs. deep and raw features only. ReLU

Think about:

How you find/invent features? how/when to trim the network? how good is extrapolation? why oscillations in the loss? why different results every time?

Machine Learning in Practice

Machine Learning in Practice

ML development cycle

From data to scientific results

Zooming out: the ML dev cycle

Let's talk about how to...

- 1. ... define the task
- 2. ... obtain data, and prepare it
- 3. ... implement the model
- 4. ... evaluate, interpret and report output

O. Task: Feasibility & Impact of ML Project

- Can performance be measured?
- Can humans do it? With what performance?
- Does the data cover all relevant regimes/conditions? (density, not size!)
- How much does additional (labeled) data cost?
- What is the consequence of wrong predictions? (false alarms and omissions)
- Does it need to perform well to be useful?
- Does it need to be interpretable?
- Which are performance baselines in your field? (even if non-ML)
- Are there pre-trained models you can leverage? (esp. NLP/foundation models)
- Is the task really necessary, are there shortcuts?

1. Data: How to get It

TO COMPLETE YOUR REGISTRATION, PLEASE TELL US WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

ANSWER QUICKLY—OUR SELF-DRIVING CAR IS ALMOST AT THE INTERSECTION.

50 MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD WORK ONTO RANDOM STRANGERS.

DATA COLLECTION

Strategies

- Reduce via pretrained models
- Find public datasets in your field
- Complement with public ancillary data
- Augment with computational transforms

Sources

- Your own sensor data. Cheap!
- Your own survey data
 - Passive data collection? (need to provide value)
- Labeling
 - Specialized user interface
 - Active learning
 - 3rd party services: gamification
 - Cross-human agreement metrics!

1. Data: Common Modalities

A mix!

Data modalities go hand in hand with a specific approach to reflect aspects such as

The future depends on the past

Close points are usually similar

The curvature of the Earth matters

1. Data: Pitfalls

- Systematic error (bias)
- Contradiction (e.g. databases with different conventions)
- Noise (i.e. "random" error)
- Independence across samples (e.g. are errors/noise correlated?)
- Missingness
 - Completely at random (missingness independent of known or unknown features)
 - At random (missingness could be predicted from known features)
 - Not at random (missingness could not be predicted from known features)
- Size/resolution (e.g. images with different dimensions/DPI)
- Multi-scale phenomena
- Censored data (data thresholded to some interval, e.g. bathroom scale)

1. Data: Processing

Every dataset has a story; being able to explain that story is important for ML.

 As a domain expert, you know a lot about the data that you might take for granted

- Examples:
 - pollen counts
 - outlier removal

2. Model: Training, Validating and Testing

- Training for best parameters: training data ■■□, minimize loss function
- Validation for best hyperparameters: held-out data [], evaluate metrics for model settings that are not differentiable
 - Examples: # layers, # units, learning rate, activation function, rescaling of inputs ...
 - All combinations (="grid search") quickly impracticable.
 - o Smarter: random sampling, Bayesian optimization, dataset-size extrapolation, ...
- **Test** for **generalization performance**: test data [] [] [] •, report metrics
 - Compare with baselines (random or specific) and toplines (human performance)
 - Monitoring: evaluate on fresh data to check for degradation:
 - relevant for operational systems,
 - caused by covariate shift, target shift or concept drift.

2. Model: Implementation & Embodiments

"Classical ML"

- stable, documented, interpretable
- CPU arrays (numpy, R)
- o R, sklearn, mlj

Probabilistic programming

- complex models
- Bayesian outputs
- model checking culture
- o CPU mostly, expensive
- Sampling + AD + probabilistic DSL
- PyMC, Pyro, Stan, turing

Deep learning

- expressive, versatile, hard to interpret
- Training vs inference
 - Resources & devices
- AD + arrays on the GPU + computational kernels + layering syntax
- PyTorch, TensorFlow, jax, flux

Pretrained DL (that you can't train)

- API serving (per-query cost)
- or download-and-finetune
- Huggingface, GPT, ...

3. Evaluation & Performance Metrics

- Use held-out test data [] [] [to report & compare models
 - Benchmarks are combinations of task + dataset used to drive development in ML
- You get what you optimize for...
- ... but not all you care about we can optimize for → need metrics, not just loss
- Metrics for:
 - Regression: MSE (cf. poly regression), MdAE (robust), MAE, ...
 - Olassification: precision, recall, F-score, (cost-sensitive) accuracy, Cohen's κ ...
 - o Ranking, e.g. search: several metrics that weight more correct top results

3. Evaluation: Classification Metrics

- False alarms (FPs) vs. omissions (FNs)
- ML \rightarrow decisions, can't ignore **asymmetric** losses, e.g. early diagnostic w. $L_{FP} << L_{FN}$
- Know your goals (error penalties) and your data (class imbalance)
- Key concepts: precision, recall, F_{β} -score, P-R curve, ROC (TPR-FPR) curve, AUC.

5-class						
	Perceived vowel Vowel produced	i	e	а	o	u
	i	15		1		
	е	1		1		
	а			79	5	
	o			4	15	3
<u>Wikipedia</u>	u				2	2

Machine Learning in Practice

Machine Learning in Science

Learning from language, images, simulations...

Computer Vision (CV)

Data: images or videos

Pose estimation

Image segmentation

CV: pose estimation without body markers

Hypothesis We can detect body parts of multiple animal species from unstaged video without body markers

Dataset video frames with *labeled* positions of body parts

Task frame-based pose estimation

Evaluation *RMSE* between predicted and labeled positions

Model *pre-trained* ResNet with fully convolutional upsampling

Fruit fly

CV: pose estimation without body markers

Dimensionality reduction

- Data
 - High-dimensional data (e.g. k space data)

Tasks

Models

Data compression

o Unsupervised models

Principal component analysis (PCA) & Kernel PCA

- Autoencoders
- t-SNE, UMAP (for visualization)
- NOTE: Often for pre-processing of the data

Cell-type prediction for single-cell transcriptomics

Hypothesis we can identify cells with similar types using their gene expression profiles

Dataset gene expression matrix (matrices of read counts per million)

Task dimensionality reduction

Evaluation fraction of neighbor cells preserved in the lower dimensional space

Model *t-SNE* with PCA initialisation

NLP: Tasks

NLP: Author Attribution in Latin

Hypothesis rhythmic constructions in Latin help reveal author identity

Data Samples: ~37k prose fragments of 10 consecutive > 4-word sentences. Labels: Author class Features (computed) Baseline stylometric features, topic independent Syllabic length (SL): ∪ short, − long, X anceps.

Arma vi|rumque ca|nō, Trō|iae quī| prīmus ab| ōrīs|| \longrightarrow $- \cup \cup |- \cup \cup |--|--|--|--|--||$

Task author attribution = fragment *classification*

Evaluation cross-entropy *loss* for training, *F*-score M/m *metric* for early stopping & feature importance

Model multi-channel NN (BF, SL, DVs), CharCNN 5 layers, avg proba decision

Simulation-based inference (SBI)

Tasks

- General inference in absence of likelihoods (losses)
- Particularly suited for black-box simulators $x^{sim} = \mathbf{M}(\theta)$.
- How can we learn a distribution over the parameters θ such that $\mathbf{M}(\theta) \approx x^{\text{obs}}$

Note

We have a <u>full 3-day workshop</u> on SBI

SBI: Stable Firing in the Pyloric Ganglia

Hypothesis the pyloric rhythm is robust to changes in conductances θ .

Dataset summary features of cell-electrophysiological (x^{obs}), computer simulations of the same $x^{\text{sim}} = \mathbf{M}(\theta)$.

Task Bayesian solution for the inverse problem $\theta = \theta(x^{\text{obs}})$

Model normalizing flows (invertible NNs) as conditional density estimators

Gonçalves et al. 2020

Limitations of Today's ML for Science

- Inductive paradigm, limited by data
 - Bad at extrapolation
- Building in inductive biases still a craft
- Compute intensive, environmentally questionable
- Correlational, mostly not causal
 - But can help you fit mechanistic models that are causal
- Interpretability of expressive models mostly post-hoc
 - Model-specific and model-agnostic techniques
 - Global and local explanations
 - Contrastive explanations
 - Feature importances
 - Much ongoing research!

Machine Learning in Science

Bring Your Science Problem

Task, data, metrics...

Checklist for discussion

- What is the scientific question?
- Describe your dataset: data modalities, labels (if there are), size
- Which part of the work might involve machine learning?
 - What type? Supervised, unsupervised, ...?
- What is 'success'? How do you measure it?
- Any relevant baselines? toplines?

The ML = Science Colaboratory

Connecting ML with Science

Our Activities

- For Tübingen domain scientists
 - Advice on the use of ML
 - Cooperations spanning a few months (you already filled <u>the form!</u>)
 - o Trainings
- For Cluster ML researchers
 - Matching with domain researchers
 - Interesting problems and new datasets,
 - Increase applied impact of research projects (e.g. PhD innovation fund: structured learning)
- For the community
 - Sharing best practices in applied ML
 - Developing software to democratize access to ML
 - Nurturing a welcoming culture for women in applied ML

Mapping requests to actions

Scientific Infrastr.

Cooperation

We execute and provide resources

Joint application

Colab & partner get resources

Ongoing consultation

We advise team, do not execute Specific advice & training actions

Ocassional consultation

Mapping requests to actions

Data

Research question

Skills & resources (partner)

MLColab **⇌** partner fit

Scientific Infrastr.

Cooperation

We execute and provide resources

apposition

Colab & partner get resources

Ongoing consultation

We advise team, do not execute

Specific advice & training actions

Ocassional consultation

The Methods Center – Methodenzentrum

An <u>institute</u> for quantitative analysis in the social sciences.

Expertise

- multivariate & multilevel methods,
- (nonlinear) latent variable models,
- item-response theory,
- structural equation models,
- longitudinal studies, and
- causal mediator models.

Services

- consulting
- cooperations
 - publications
 - joint applications.

<u>office@mz.uni-tuebingen.de</u>

In closing...

Thank you very much for attending our first IntroML workshop!

Álvaro

Elena

Alex

Yutong

One last thing,

... we thrive on critical, constructive feedback

please visit mlcolab.org/introml-participants and give us some!