

IntroML

4 July 2022

IntroMI

Welcome

The ML ⇒Science Colaboratory

Plan for the morning

Agenda

9:00 Opening and introductions

9:20 Core ML Concepts

ML & software / learning paradigms / supervised learning / NNs

~10:30 short break

10:40 Tutorials!

11:45 Machine Learning in Practice

project pipeline: data, models & evaluation / ML in Science

~12:30 end (of our part)

Questions welcome at any time

Slides, links, and notebook at mlcolab.org/introml-rhetai

Round of introductions

Tübingen is a great place to form a community of practice and mutual support around ML and science.

Let's get to know each other! Tell us...

... your name

... field of research

... the role ML plays for your research

The ML ≠ Science Colaboratory

At the Cluster ML: new perspectives in science

«Establish machine learning across disciplines at the University of Tübingen»
 via (1) cooperations – (2) training – (3) scientific ML software

- Part of the Cluster ML in Science
- Scientists like you
 Astro, atmospheric, & quantum
 physics, environmental sciences,
 neuroscience, genomics, urban
 systems, int'l policy, structural bio...
- Let's work together!

@elenasizana Elena Sizana @alpiges Alexandra Gessner @alvorithm Álvaro Tejero

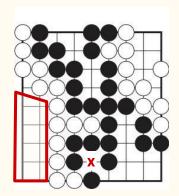
Core Concepts in Machine Learning

Core Concepts in Machine Learning

What is ML?

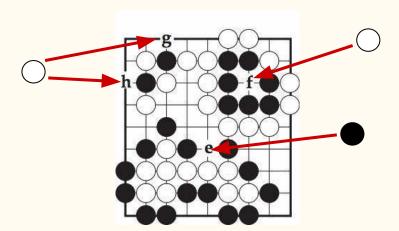
What problems does it solve?

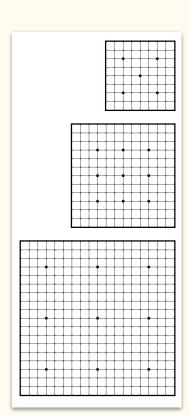
Games and the nature of intelligence



- form territories by surrounding empty areas
- capture by completely surrounding (prisoners) x

Points = crossings + prisoners





Real go is 19x19

A surprising move

Definition of Machine Learning

Learning

Improving with experience at some task

- Improve over task T,
- with respect to performance measure M (metric)
- based on **experience** D (**data**)

e.g., Learn to play Go

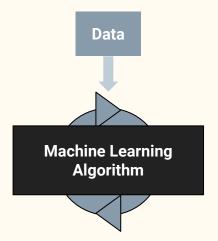
- T: playing Go,
- M: points at the end of the game
- D: database of past games

AlphaGo: Deep-Learning powered (ML) Monte-Carlo Tree *Search*.

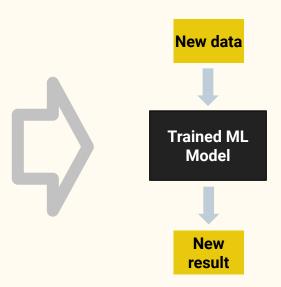
Machine learning: the study of **algorithms** that allow computer programs to automatically improve **on a specific task** through **experience**

ML: Training and deployment

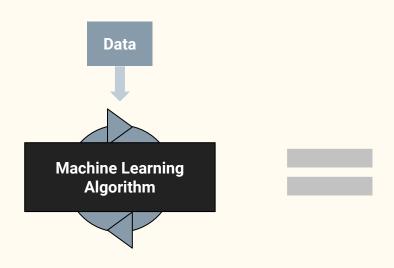
Training phase

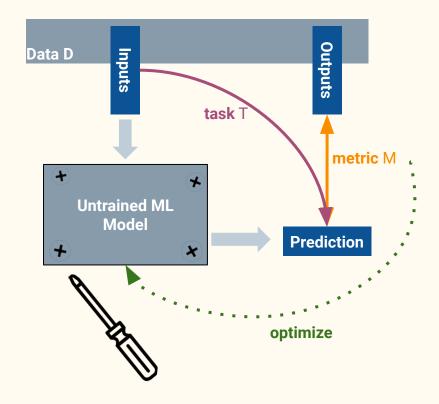


Use, or "inference" phase

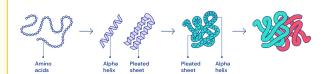


Inside the black box



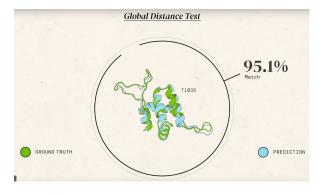


From proteins to planets, ML in science



Protein structure prediction with transformers

Senior et al. 2020, Jumper et al. 2021



a Text restoration (Athens, 361/0 BC)

b Geographical attribution (Amorgos, 400-300 pc)

Chronological attribution (Delos, 300–250 pc)

Text restoration and geochronological attribution with data augmentation

θεοι επι νικοφημο αρχοντος -----ια αθηναιών και θετταλών εις τον αει χρονον

(2) 58 θεοι επι νικοφημο αρχοντος εχκλησία αθηναίων και θετταλών εις τον αει χρονον
(3) 59 θεοι επι νικοφημο αρχοντος προξενία αθηναίων κν. θετταλών εις τον αει χρονον

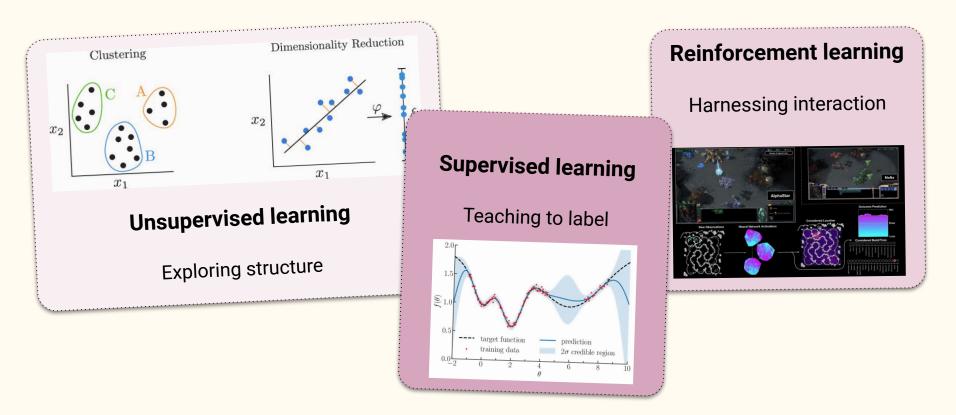
Restorations: (1) 🦠 θεοι επι γικοφημό αρχοντός συμμαχία αθηναίων και θετταλών είς τον αεί χρονον 👻

Assael, Sommerschield et al. 2022

Core Concepts in Machine Learning

Learning paradigms

Main Learning Paradigms



Core Concepts in Machine Learning

Unsupervised learning

An example dataset

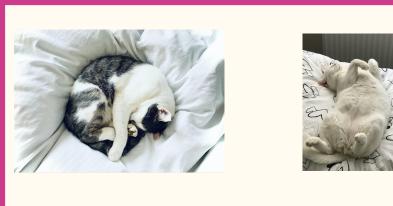
Instance

ID	R01	G01	B01
1	215	198	180
2	61	61	51
3	219	227	227
4	47	43	37

Feature

Task: group the images into any numbers of groups that you like

For example: 4 groups based on the breed of cat



For example: 2 groups based on colors (orange or not orange)

For example: 2 groups based on gesture

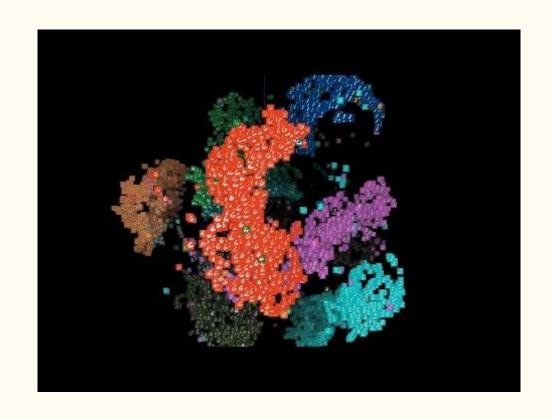
Unsupervised Learning

Goals

- Structure discovery
- Dimensionality reduction
- Community detection

Requirements

- Data (unlabeled)
- Some notion of similarity of data points



Core Concepts in Machine Learning

Supervised learning

Supervised Learning

Goal

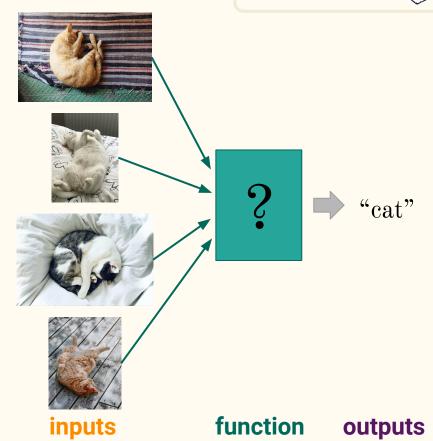
Learn a function to map inputs to outputs

Requirement

Dataset of inputs and outputs ("labels")

Modes

- Classification (category outputs)
- Regression (continuous outputs)



Supervised Learning: Classification

Category Label

ID	R01	G01	B01	Туре
1	184	187	187	Cat
2	218	157	164	Dog
3	61	61	51	Cat
4	236	236	236	Dog

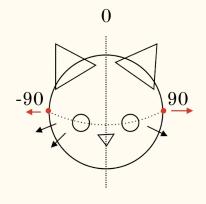
Supervised Learning: Regression

Continuous Label

47

0

ID	R01	G01	B01	Head pose (degree)
1	116	98	81	47
2	157	146	164	0
3	23	22	21	2
4	137	130	129	-33



Core Concepts in Machine Learning

Supervised learning

One step at a time

Let's train a supervised classifier

We've trained a supervised classifier

- Collect data image frames + labels
- Train* neural network

* fine-tune

 Infer or predict class of new image

ML brings the senses to computers

HOW? Supervised Learning Tutorial

Supervised learning: One step at a time

In this notebook, we slowly introduce supervised learning, along with basic machine learning concepts we encounter on the way.

The data

At regularly spaced 1-dimensional points x, we have generated fake, noisy 1-dimensional observations y. We assume that there is some true but unknown underlying process f, so that

$$y_i = f(x_i) + \text{noise}.$$

 x_i is a single raw feature. y_i is an output or continuous label.

Core Concepts in Machine Learning

Neural Networks

Layer upon layer upon layer

Building a neural network - terminology

DATA

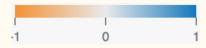
Inputs: coordinates X_1 horizontal X_2 vertical optional: (hand-crafted) features X_1^2 , X_2^2 , X_1^2 , X_2^2 , X_1^2 , X_2^2 , X_1^2 , X_2^2 , X_1^2 , X_2^2 , augment input

Outputs: Binary classes orange (-1) or blue (+1) \rightarrow TASK: CLASSIFICATION

MODEL

Hidden layers = number of nestings in the NN; here: fully connected Neurons = units in each layer architecture

Model output: $f(X_1, X_2, features(X_1, X_2))$



Neural network playground – Training

What is the simplest architecture you can find?

What minimal architecture can you find using only X_1 and X_2 ?

Can you improve using features?

Does the default setting solve the problem?

Use 1 layer and features

→ "feature engineering"

Can you simplify the network using features?

Construct a deep network, but only use X_1 and X_2

Testing: Use various sizes for the test set. How well do we generalize?

Task-specific architectures

Data

Time series, sequences (1D)

Images (2D)

Networks

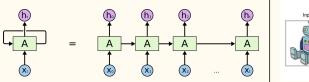
e.g.

Text, speech, temperature, ...

Microscopy, astronomical shots, density maps, ...

GNNs - graph NNs

NN types RNNs (recurrent) NNs Transformers



Feature maps

Imput

Images

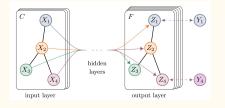
Convolutions

Subsampling

Convolutions

Subsampling

Fully connected



Toxt speech temperature

Social networks, Molecular graphs, knowledge graphs, ...

CNNs - (convolutional) NNs

Machine Learning in Practice

Machine Learning in Practice

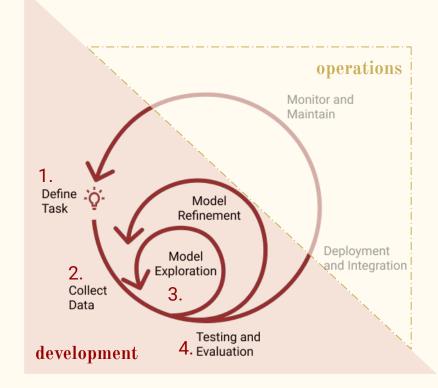
ML development cycle

From data to scientific results

Zooming out: the ML dev cycle

Let's talk about how to...

- 1. ... define the task
- 2. ... obtain data, and prepare it
- 3. ... implement the model
- 4. ... evaluate, interpret and report output



1. Task: Feasibility & Impact of ML Project

Do you know your data?

- All relevant regimes/conditions covered?
- Cost of additional (labeled) data?

Model requirements, alternatives

- Are there pre-trained models?
- Does it need to be interpretable?
- Are there classical/hand-crafted models known to work well?

How to measure performance?

- Can performance be measured?
 How?
- Can humans do it?With what performance?
- Consequence of wrong predictions?
- Are there performance baseline? (even if non-ML)

2. Data: How to get It

ANSWER QUICKLY—OUR SELF-DRIVING CAR IS ALMOST AT THE INTERSECTION.

50 MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD HORK ONTO RANDOM STRANGERS.

Strategies for data preparation (YOU!)

- Complement with public ancillary data
- Reduce via pretrained models
- Augment with synthetic or modified data ("Data augmentation")

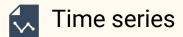
Data sources

- Your own sensor data. Cheap!
- Your own survey data
- Public data sources

Data preparation: labeling

- Make it efficient: user interfaces
- Automatic labeling (active learning)
- 3rd party services: gamification

2. Data: Common Modalities



- Images
- Relational (graph) data
- Tabular
- Video
- Georeferenced measurements
- Spectra
- A mix!

Data modalities provide knowledge that can be exploited, e.g.

The future depends on the past

Close points are usually similar

The curvature of the Earth matters

2. Data: Pitfalls

- Systematic error (bias)
- Noise (i.e. "random" error)
- Sampling bias
- Independence across samples
- Missing data
- Multi-scale phenomena
- Censored data
- etc.

2. Data: Processing

EBERHARD KARLS
UNIVERSITÄT
TÜBINGEN

- Validation verify data quality:
 - Are data types correct and consistent?
 - o Is data plausible / consistent?
 - Do data satisfy ranges and constraints?
 - Reasons for data imbalance?
- Aggregation
- Cleaning
 - Outlier detection/removal
 - Integrating data from different sources
- Transforming
 - Standardizing (shifting and scaling)
 - Smoothing/denoising
 - Imputation of missing data
 - Augmentation
- Reduction
 - Downscaling, feature selection
- Summarization, Visualization

Take home:

- Data processing assumes some model!
- Make data processing programmatic for reproducibility!
- Never overwrite raw data with processed data!

3. Model: Training, Validating and Testing

Training	Validation	Test	
			DATA

- Training for best parameters: training data ■□, minimize loss function
- Validation for best *hyper*parameters: held-out validation data [], evaluate metrics <u>during</u> training (sometimes called dev set)

TRAINING

USE

- Test for generalization performance: test data □□□ , report metrics after training
 - Compare with baselines (random or specific) and toplines (human performance)

3. Model: Implementation & Embodiments

"Classical ML"

- + stable, documented, interpretable
- CPU arrays (numpy, R)

R, sklearn, mlj

Probabilistic programming

- + Uncertainty quantification
- CPU mostly, expensive
- Sampling in probabilistic DSL

PyMC, Pyro, Stan, turing

Deep learning

- + expressive, versatile
- hard to interpret
- Training vs inference
 - Resources & devices
- GPU

PyTorch, TensorFlow, jax, flux

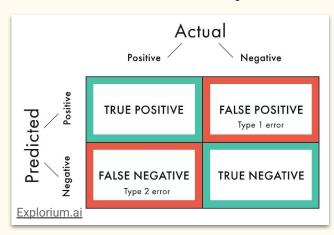
Pretrained

- API serving (query only) or
- download-and-finetune (transfer learning)

Huggingface, GPT, ...

4. Evaluation & Performance Metrics

- Use held-out test data □□□ to report & compare models
 - o Benchmarks are combinations of task + dataset used to drive development in ML
- You get what you optimize for...
 - ... but not all you care about we can optimize for \rightarrow need **metrics**, not just loss
- Metrics for:
 - o Regression: MSE (cf. poly regression), ...
 - o Classification: precision, recall, F-score, ...



Machine Learning in Practice

Machine Learning in Science

Learning from language, images, simulations...

Computer Vision (CV)

Data: images or videos

Pose estimation

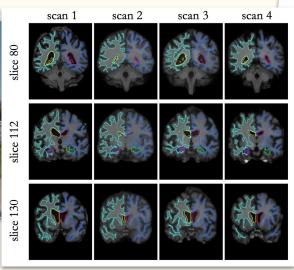
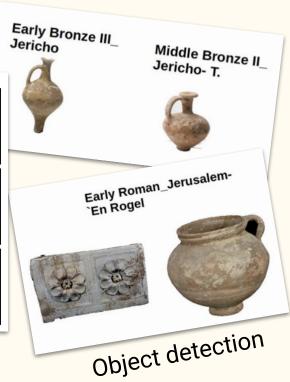


Image segmentation



CV: pose estimation without body markers

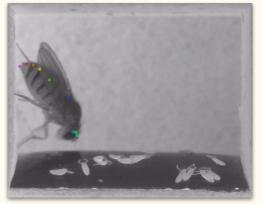
Hypothesis We can detect body parts of multiple animal species from unstaged video without body markers

Dataset video frames with *labeled* positions of body parts

Task frame-based pose estimation

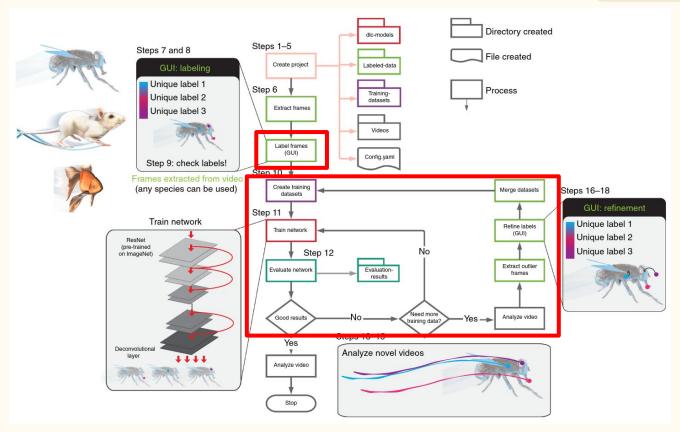
Evaluation *RMSE* between predicted and labeled positions

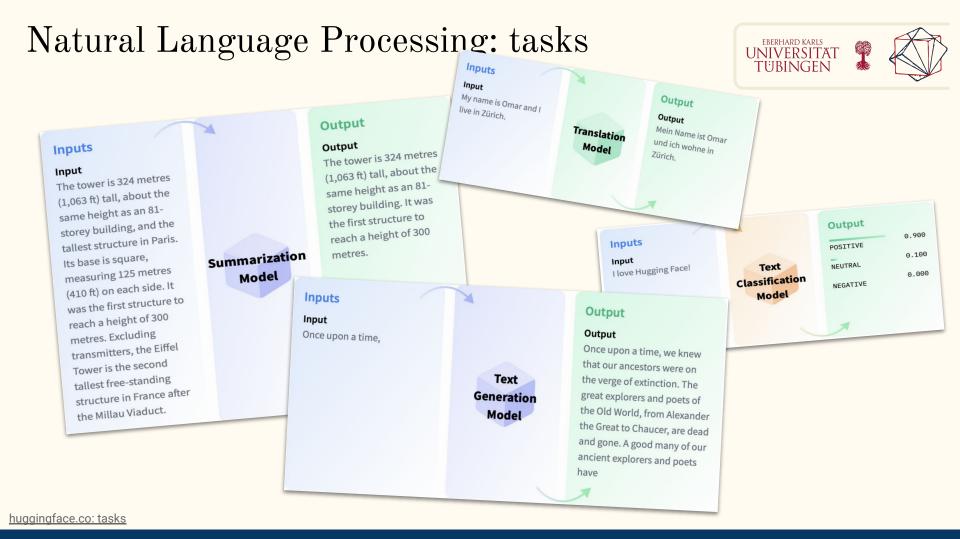
Model *pre-trained* ResNet with fully convolutional upsampling



Fruit fly

CV: pose estimation without body markers





NLP: Tasks

NLP: Author Attribution in Latin

Hypothesis rhythmic constructions in Latin help reveal author identity

Data Samples: ~37k prose fragments of 10 consecutive > 4-word sentences. Labels: Author class Features (computed) Base (BF): histograms of function words, word & sentence lengths Distorted views (DV): hide topic, keep style (4 strategies) Syllabic length (SL): short \cup , long -, anceps X (ngrams)

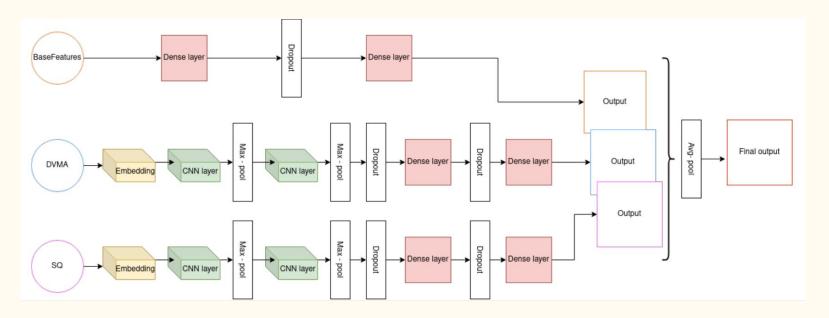
Arma vi|rumque ca|nō, Trō|iae quī| prīmus ab| ōrīs|| \longrightarrow $- \cup \cup |- \cup \cup |--|--|--|--|--||$

Task author attribution = fragment *classification*

Evaluation cross-entropy *loss* for training, F-score M/m *metric* for early stopping & feature importance

Model multi-channel NN (BF, SL, DVs), CharCNN 5 layers, avg proba decision

NLP: Author Attribution in Latin



NN ensembling approach for decisions from a variety of (computed) features.

Limitations of Today's ML for Science

- Inductive paradigm, limited by data
 - Bad at extrapolation
 - Building in inductive biases still a craft
- Compute intensive
- Correlational, mostly not causal
 - o But can help you fit mechanistic models that are causal
- Interpretability (mostly post-hoc)
- Uncertainty quantification

Should I use ML for my problem?

Use ML when the problem...

- ... has a simple objective,
- is too complex for explicit rules,
- is constantly changing,
- is perceptive, or
- is observable, but unstudied

Don't use if

- there exist performant classical models
- every decision must be explainable
- errors are high-consequence,
- getting dense data is infeasible or costly...

The ML = Science Colaboratory

Connecting ML with Science

Engaging with Us

NLP, probprog, dim red...

the right people

ML for

science

ML Colab Cooperations

we bring in the ML expertise document the system, and hand it over. Up to 12 person-month

How to design an ML project

In closing...

Thank you very much for attending our IntroML workshop!

Álvaro

Elena

Alex

Yutong

Please help us with some feedback!

We're looking forward to your workshop:)