The Machine Learning Science Colaboratory

Cluster of Excellence Machine Learning in Science, University of Tübingen Seth Axen, Vladimir Starostin, Hanqi Zhou, and Álvaro Tejero-Cantero

Making ML accessible to scientists

Advice

We offer advice on your ML application idea or implementation and share helpful resources.

Guidance

We provide regular guidance to post-graduate researchers in applying machine learning to scientific problems.

Execution *

We develop an ML solution for a well-identified research gap for which there is data.

research applications

* We currently prioritize advice and guidance.

Ensuring best practices

We update ML code to adhere to best software practices.

Software stewardship

We provide fixed-term maintenance of select ML software.

Overcoming fragmentation

We upstream ML research code to popular software packages.

software and reproducibility

Introductory courses

We teach domain scientists the main machine learning concepts and terminology they will need to formulate an ML project or discuss their problem with an ML expert.

Technical workshops

We train domain-science researchers in the practical use of the latest ML techniques as well as reproducibility, open science, and performance aspects of ML software engineering.

Learning materials and position pieces

Image: British Library,

public domain

We develop interactive learning materials and contribute our experience to community discussions.

training and dissemination

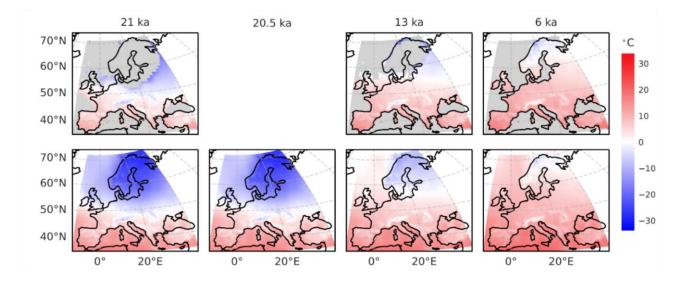
Example projects

Paleoclimate reconstruction from fossil pollen and simulations

Domain #geosciences #climate science ML #sparse spatiotemporal Gaussian processes

Collaborators: C. Sommer, N. Weitzel (Geosciences)

Build a consensus model of paleoclimate.



Characterization of lithic scars in Upper Paleolithic

Domain #archeology
ML #GNNs #active learning
Collaborators:

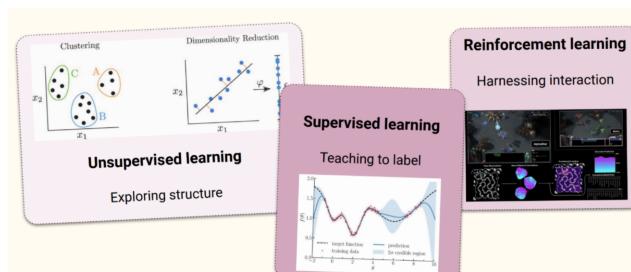
A. Falcucci (Geosciences)

Automate the analysis of lithic artifacts.

Introduction to machine learning

Runs twice a year

How does machine learning work, and what data, assumptions, and metrics do I need to think about for a successful application to my research?



Tracing neutrino paths from scintillation radiation

Domain #particle physics
ML #graph neural networks
Advised: L. Bieger,
T. Laschenmaier (Physics)

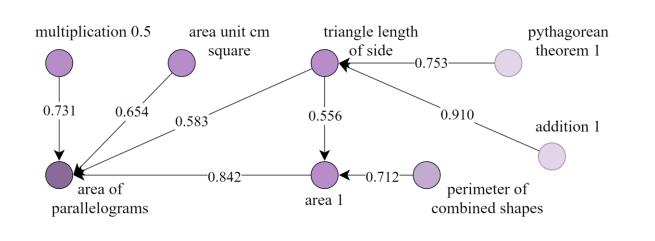
Reconstruct neutrino trajectories from the light they generate, to evaluate the neutrino mass hierarchy.

Interpretable knowledge tracing for personalized education

Domain #education
ML #stochastic processes #variational
inference #probabilistic modeling

Collaborators from education, computational linguistics and cognitive sciences.

Analyze learner cognitive traits and knowledge structure from online platform interaction data.



Extraction of concept dependencies from LLMs

Domain #education #data science
ML #data mining #LLM prompting
Student research project by D. Glandorf and A.
Alekseeva (Computer science)

Map the relational structure of knowledge.

International workshop on simulation-based inference

mlcolab.org/resources/simulation-based-inference-for-scientific-discovery

How do I find parameters for my simulator that reproduce my data? We held a 3-day workshop focused on this question.

Subsurface flow and transport modeling

Domain #subsurface hydrology
ML #simulation-based inference
Advised: J. Allgeier, O. Cirpka (Geosciences)

Infer simulator parameters that reproduce hydraulic head data.

Advice across disciplines

Domains #archaeology #particle physics #philology #medicine #neuroscience #linguistics #sedimentology #paleoclimatology #transcriptomics

Advised: J. Lehmann (Romance studies), B. Starkovich, K. Fitzsimmons (Geosciences), J. Heyder (Art History), B. Goswami, K. Nieselt (Computer science), M. Inostroza (Medicine), A.-K. Schütz (Physics), F. Carcassi, M. Franke (Linguistics).

Time, space, and relations in Hadith literature

Domain #oriental and islamic studies
ML #NLP #LSTMs
#transformers #semantic

embeddings Collaborators: M. Bednarkiewicz (Asian-Oriental Sciences)

Analyze chains of oral transmission to better understand islamic history.

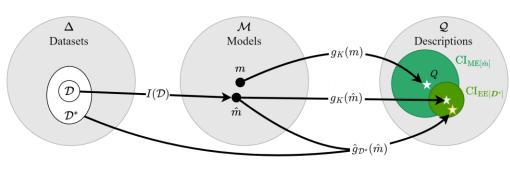
Analyzing ML models to learn about real-world phenomena

Domain #epistemology #interpretable machine learning

ML #statistical learning theory #interpretable ML

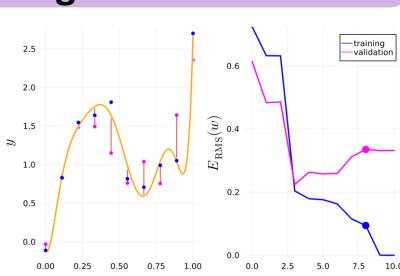
Collaborators: T. Freiesleben, G. König, C. Molnar (Computer science)

Determine if and how we can do science using a-priori weakly interpretable ML models.



Interactive notebook on supervised learning

mlcolab.github.io/IntroML.jl
Major concepts in
supervised learning, from
linear regression all the way
to a feedforward neural
network



Frequency effects in linear discriminative learning

Domain #computational linguistics
ML #linear algebra #statistics
Advised: M. Heitmeier, H. Baayen (Linguistics)

Account for word frequency in models of semantic learning.

ML for classifying prime numbers

Domain #mathematics
ML #neural nets

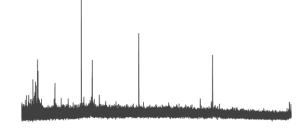
Advised: R. Kahle (Philosophy) Explore feasibility of classifying whether a number is prime.

Zooarchaeology by mass spectrometry

Domain #archaeology
ML #convolutional neural networks
#interpretable ML
Collaborators: S. Brown (Geosciences),

V. Borisov (Computer science)

Classify ancient animal samples into taxonomic groups using their mass spectra.



Climate drivers of leaf morphology

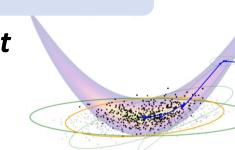
Domain #paleobotany
ML #logistic-binomial regression
#Bayesian inference

Collaborators: C. Traiser, S. Roth-Nebelsick, J. Nebelsick (Geosciences)

Explore associations between fossilized leaf morphology and biodiversity.

Pathfinder.jl

Maintenance and development
Accelerating Bayesian model
development and refinement



ArviZ

Maintenance and development

Exploratory analysis of Bayesian models.

CircStats.jl

Updating to follow best practicesCircular statistics in Julia.

ArviZ integration with SBI

Contributed feature

ArviZ diagnostics & visualizations for simulation-based inference.

Review of ML in Archaeology

Domain #archaeology #knowledge mapping
ML #ontologies #general ML
Advised: M. Bellat (Geosciences)

Survey the impact of ML in archaeology.

Seth Axen, ML research engineer

ML expertise: #Bayesian inference #probabilistic programming #Gaussian processes #automatic differentiation Domain expertise: bioinformatics, structural biology

Vladimir Starostin, ML research engineer

ML expertise: #Bayesian inference #simulation-based inference #computer vision #object detection

Domain expertise: scattering physics, nonlinear optics, economics

Hanqi Zhou, PhD student

ML expertise: #transfer learning (domain adaptation) #computer vision #3D scene understanding #adversarial learning

Domain expertise: cognitive sciences, personalized education

Alvaro Tejero-Cantero, team lead

ML expertise: #time series #natural language #physical simulations #recommendation systems #graphs and networks

Domain expertise: physics, neuroscience

