

Sustainable Built Environment Learning and Exhibition Center

CEE 220B Advanced Building Modeling Workshop Xuan Wu

AGENDA

Project Overview

Introduction of the Project Background, Goal, & Overview

01

Key Design Features

Building Layout , Envelope, Structural, HVAC & Plumbing System Design

02

Successes & Challenges

What Worked Well & What Was Difficult

03

Lessons Learned

Main Takeaways & Suggestions for Upcoming Students

04

Project Background

Location:

The Stanford Dish, Stanford, CA

Purpose:

Provide exhibition space and resources for visitors to explore sustainable building practices

Target Users:

Families and school groups, Design professionals, Anyone who is interested in sustainable technologies and living opportunities

Project Goals

01

Functionality

Design with the intended purpose in mind

04

Aesthetics

Visually appealing and contribute positively to the surrounding environment

02

Sustainability

Achieve the Architecture 2030 target and even become a net-zero project

05 Comfort

Provide comfortable conditions, with appropriate ventilation, lighting, and temperature control

03 Accessibility

Ensure building accessibility for all occupants, regardless of physical ability

06 Learn!!!

Understand how BIM and Revit are used to design, analyze, and model building systems

Project Overview

1. Conceptual Design

2. Building Layout

3. Building Envelope

4. Structural Systems

5. HVAC Systems

6. Plumbing Systems

Key Features

ELUMION

Central Atrium

Fire Sprinkler System

Key Features

High R-value Wall & Floor Building Materials

Greywater System

Steel Structural Framing Systems

VAV Units

Elevator Stairs Mechanical Rooms

Quick Walkthrough! More Key Features!

Exhibition Space

Corridor

Restrooms

Big Success

Achieve ARCH 2030

EUI value finally drops to 9.27, as I added more and more design improvements.

02

Visually appealing

Used curtain wall to improve aesthetics, energy efficiency, and natural light

Private Office

Analytical Design Process

Used tools offered in Revit to analyse the design decisions

04

03

Incorporate sustainable system design

Ex. greywater collection systems, green roofs, VAV units in HVAC systems, etc.

Big Challenges

01

System Coordination

Coordinate systems to make sure they would not collide with each other

02

Optimize the size of ducts in HVAC System

Use Duct Sizing in Revit and get getting an error about some flow in the section is 0

Lessons Learned

Building Modeling

Learned how to use Revit and coordinate different systems in the BIM 360

Trial and Error

Learn from mistakes and use that knowledge to inform future designs

Time Management

Break the project down into smaller milestones and phases to help manage the project

Balance Between the Big Picture & Details

In the initial stages of the design process, it is important to clearly define the design plan

