

Using generative design and machine learning for faster analysis feedback

Varvara Toulkeridou Autodesk Sr. Research Engineer

Spyridon Ampanavos Harvard University Doctoral Candidate

Michael Floyd Autodesk AEC Sustainability Strategy Manager

Vishal Vaidhyanathan Autodesk Computational BPA Researcher

About the speakers

Michael Floyd

AEC Sustainability Strategy
Manager at Autodesk.
Environmental technologist
working to bring better
sustainability solutions to life
through Autodesk's products.
14 years experience in design
& sustainability.

Varvara Toulkeridou

Sr. Research Engineer for
Autodesk's AEC Generative Design
group. Doctoral candidate in
Computational Design at Carnegie
Mellon University, researching
how machine learning can
augment parametric modeling
tools for supporting design
exploration.

Vishal Vaidhyanathan

Computational BPA Researcher at
Autodesk and a Graduate Student
Researcher at Carnegie Mellon
University. Researching on the
confluence of computational
methods, Data Science and
Artificial Intelligence for fostering
synergies through the coexistence
of early-phase design and realtime impact assessment.

Spyridon Ampanavos

Doctoral candidate at Harvard
Graduate School of Design,
researching the use of machine
learning methods to support early
phase performance driven design.
Background in Architectural
Engineering and Computational
Design.

What will I learn?

LEARNING OBJECTIVE 1

Learn how to design workflows with Generative Design in Revit and Dynamo for building synthetic data sets to be used in training machine-learning models.

LEARNING OBJECTIVE 2

Discover the diversity of mass model geometry required to represent a comprehensive set of possible building types.

LEARNING OBJECTIVE 3

Learn how to represent your data to be used in training machine-learning models.

LEARNING OBJECTIVE 4

Discover potential uses of machine-learning models toward achieving faster analysis in early conceptual design stages.

Project Rationale

Total carbon from buildings → 2050

Energy Use Intensity (kWh/m2): 201.42

Energy Cost Mean (\$/m2): 3021.3

Embodied Carbon (kg-CO2e/m2): 273.9312

Surrogate modeling

Statistical models can be used as surrogates of detailed simulation models.

How can a surrogate model help in the conceptual design stage?

Surrogate models can be evaluated instantly and provide estimates of the building performance. This enables designers to rapidly assess a design concept and explore the design space.

Limitations of collected data in AEC

Koch et al. (2019), ABC: A Big CAD Model Dataset For Geometric Deep Learning

Which are the properties of a good dataset?

Synthetic data creation via generative design workflows

How do we structure a workflow for deriving a surrogate model?

How do we structure a workflow for deriving a surrogate model?

Building Form Building Form Location Location

LARGE SIZE

GROUND TRUTH LABELS

PARAMETRIC REPRESENTATION

EXPANDABLE

VARIATION

LARGE SIZE

AUTOMATED GENERATION

GROUND TRUTH LABELS SIMULATED PERFORMANCE **RESULTS**

PARAMETRIC REPRESENTATION

REPRODUCIBLE WORKFLOW

EXPANDABLE

SCALABLE WORKFLOW

000 000 000 **VARIATION**

UNBIASED

Generative design workflow

Generative design workflow

TARGET TAXONOMIES

CATEGORY II

Categorically differentiable

Algorithmically representable

Reproducible and scalable

Modular generative workflows

IDENTIFY

TARGET TAXONOMIES

Avoid overlaps

Avoid repetition / bias

Breakdown algorithmically

Category of 'L' shaped geometries

- 1. Height
- 2. Width
- 3. Horizontal indent
- 4. Vertical indent

Synthetic building data: establishing variables

Category selection variable

Mass generation inputs

Mass generation workflow

RANDOMIZE SOLVER

CROSS-PRODUCT SOLVER

LIKE - THIS SOLVER

Sample space

Form finding /
Sensitivity analysis
dataset

OPTIMIZE SOLVER

Sample space

Design Optimization /
Performance oriented
form-finding dataset

Synthetic building data: generating the dataset

Synthetic analytical data: ground truth labels

Synthetic data: a glance

Describing the problem

Describing the problem

Define the inputs and outputs

Describing the problem

Representing the data

BUILDING

GEOMETRIC FORM
LOCATION
FACADES
CONSTRUCTIONS
OPERATION

FEATURE VECTOR

X_0
X_1
X_2
0 0 0
X _n

Representing the data

From buildings to feature vectors

Representing the data

Handling the Geometries

- High Level Representations
 - Parameters of the generative model
 - Post process geometries to extract parameters

selecting and engineering features

- Generic Geometric Format
 - Meshes?
 - Images
 - Voxels
 - Point clouds

learning features

Model types

- Linear Regression
- Gaussian Process
- Random Forest
- Deep Learning
- •

Training a model

TRAINING SET

Fit model to data

VALIDATION SET

Model selection, tuning

TEST SET

Evaluate final model

How to start?

SELECT MODELS, DATA REPRESENTATIONS

Use domain knowledge

Use precedents

BUILD DATASET

Identify sources

Combine data

Cleanup data

TEST AND REPEAT

Simplify problem

Use subset of data

Add complexity

Data sources

Results inform the:
model type
geometry representations
dataset diversity

SURROGATE MODEL

EUI

~862 geometric forms 242 parameter variations 5 climate zones

1.91 % error

Get annual EUI result in milliseconds

To Sum Up

[1]

Discussed the importance and current obstacles of integrating energy prediction early in design.

[2]

Introduced the potential of ML methods as a solution, and the necessity of synthetic data.

[3]

Demonstrated an example of generating a diverse dataset of labeled synthetic data.

[4]

Introduced the steps for training and evaluating a ML model and demonstrated how achieved real-time EUI predictions.

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2020 Autodesk. All rights reserved.

