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What will I learn?

Learn how to design workflows with Generative Design in Revit and Dynamo for building synthetic data 
sets to be used in training machine-learning models.

LEARNING OBJECTIVE 2
Discover the diversity of mass model geometry required to represent a comprehensive set of possible 
building types.

LEARNING OBJECTIVE 3
Learn how to represent your data to be used in training machine-learning models.

LEARNING OBJECTIVE 4
Discover potential uses of machine-learning models toward achieving faster analysis in early conceptual 
design stages.

LEARNING OBJECTIVE 1



Project Rationale
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Early Stage Analysis = 
High Performance & Lower Cost
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Surrogate modeling
Statistical models can be used as surrogates of detailed simulation models.

TRAINING DATA MACHINE LEARNING 
ALGORITHMS

SURROGATE MODEL

NEW DATA SURROGATE MODEL ESTIMATE



How can a surrogate model help in the conceptual 
design stage?

Surrogate models can be evaluated instantly and provide estimates of the building performance. 
This enables designers to rapidly assess a design concept and explore the design space.

SURROGATE MODEL BUILDING PERFORMANCE 
ESTIMATE

NEW DESIGN

125 
kWh/m 2/yr



How can we acquire data to 
be used in machine learning?

Fusion 360 Gallery Dataset - https://github.com/AutodeskAILab/Fusion360GalleryDataset

Floor plans from the CVC-FP dataset - http://dag.cvc.uab.es/resources/floorplans/

https://github.com/AutodeskAILab/Fusion360GalleryDataset
http://dag.cvc.uab.es/resources/floorplans/


INCOMPLETE INCOSISTENT
QUALITY & FORMAT

NOT ENOUGH NOT DIVERSE

Limitations of collected data in AEC



EXPANDABLE

PARAMETRIC REPRESENTATION

BALANCED

LARGE SIZE

GROUND TRUTH LABELS

VARIATION

Which are the properties of a good dataset?
Koch et al. (2019), ABC: A Big CAD Model Dataset For Geometric Deep Learning



Synthetic data creation 
via generative design 

workflows



Generative Design in Revit

Generative Design Primer – https://www.generativedesign.org/

https://www.generativedesign.org/


How do we structure a workflow for deriving a surrogate model?

DEFINE PROBLEM

implement the
generative algorithm

define inputs define outputs

generate models run simulations

BUILD DATASET

FIT SURROGATE MODEL TO DATASET

VALIDATE MODEL ACCURACY

1 2 3



How do we structure a workflow for deriving a surrogate model?

DEFINE PROBLEM

implement the
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generate models run simulations

BUILD DATASET

FIT SURROGATE MODEL TO DATASET

VALIDATE MODEL ACCURACY
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Defining the problem 
for synthetic data generation
..the generative design way!





EXPANDABLE

PARAMETRIC REPRESENTATION

LARGE SIZE

GROUND TRUTH LABELS

VARIATION



EXPANDABLE

PARAMETRIC REPRESENTATION

LARGE SIZE

GROUND TRUTH LABELS

VARIATION

AUTOMATED GENERATION

SIMULATED PERFORMANCE 
RESULTS

REPRODUCIBLE WORKFLOW

SCALABLE WORKFLOW

UNBIASED



Establish design variables

Establish design objectives

Reduce objectives to ranks/outputs

Reduce variables to inputs

Select appropriate solver

An algorithm that moves smartly 
through the design space to satisfy

objectives. 

GENERATE ! Explore design options

Export design option

Tweak study

Generative design workflow



IDENTIFY

TARGET TAXONOMIES

Footprint level Massing level

Generative design workflow



IDENTIFY

TARGET TAXONOMIES

Algorithmically representableCategorically differentiable

CATEGORY I CATEGORY II

Reproducible and scalable Modular generative 
workflows



IDENTIFY

TARGET TAXONOMIES

Avoid overlaps

Avoid repetition / bias

Breakdown algorithmically

Category of ‘L’ shaped geometries
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4. Vertical indent

Algorithm



CATEGORY  I

CATEGORY  II

CATEGORY  III

Algorithm I

Algorithm II

Algorithm III

variable I(a)
variable I(b)
variable I(c)
variable I(d)

variable II(a)
variable II(b)
variable II(c)
variable II(d)

variable III(a)
variable III(b)
variable III(c)
variable III(d)

Generative 
workflow I

Generative 
workflow II

Generative 
workflow III

Inputs I

Inputs II

Inputs II

Mass 
generation 
workflow

Mass 
generation 

inputs

Category selection 
variable

Synthetic building data : establishing variables



Identify Dataset 
Objective

Identify Nature 
of Dataset

Choose 
Appropriate Solver Generate Dataset

Synthetic building data : establishing objectives



RANDOMIZE SOLVER

Sample space

Diverse datasets

Synthetic building data : establishing objectives



CROSS-PRODUCT SOLVER

Sample space

Feature search/ 
Combinatorial analysis 

dataset

Synthetic building data : establishing objectives



Synthetic building data : establishing objectives
LIKE – THIS  SOLVER

Sample space

Form finding / 
Sensitivity analysis 

dataset



Synthetic building data : establishing objectives
OPTIMIZE SOLVER

Sample space

Design Optimization / 
Performance oriented 
form-finding dataset



Synthetic building data : generating the dataset



Synthetic analytical data : ground truth labels

Generated solids

Ground truth labels 
(Simulation)

Analytical model 
(GbXML)

Revit energy settings



Synthetic data: a glance

6 Taxonomies

862 Different 
geometrical forms

248 Analytical 
models per form

~1 Million 
Data samples 

5 Climate zones



Machine learning for 
performance prediction



Describing the problem

BUILDING SIMULATION RESULT



Define the inputs and outputs

GEOMETRIC FORM
LOCATION
FACADES
CONSTRUCTIONS
OPERATION

SIMULATION EUI

RESULTBUILDING

physics based number

Describing the problem



GEOMETRIC FORM
LOCATION
FACADES
CONSTRUCTIONS
OPERATION

SURROGATE MODEL EUI

RESULTBUILDING

y = f(x) y: numberx: number(s)

FEATURE VECTOR

X0
X1
X2
…
Xn

Describing the problem



GEOMETRIC FORM
LOCATION
FACADES
CONSTRUCTIONS
OPERATION

BUILDING FEATURE VECTOR

X0
X1
X2
…
Xn

?

Representing the data



From buildings to feature vectors

GEOMETRIC FORM
LOCATION
FACADES
CONSTRUCTIONS
OPERATION

BUILDING FEATURE VECTOR

X0
X1
X2
…
Xn

U-value
WWR

HVAC type

pre-processing

normalize
encode

?

Representing the data



Handling the Geometries

• High Level Representations

o Parameters of the generative model

o Post process geometries to extract parameters

• Generic Geometric Format

o Meshes ?

o Images

o Voxels

o Point clouds

selecting and 
engineering features

learning features

Representing the data



• Linear Regression

• Gaussian Process

• Random Forest

• Deep Learning

• …

Model types



TRAINING SET
Fit model to data

VALIDATION SET
Model selection, tuning

TEST SET
Evaluate final model

Training a model



SELECT MODELS, DATA REPRESENTATIONS
Use domain knowledge
Use precedents

BUILD DATASET
Identify sources
Combine data
Cleanup data

TEST AND REPEAT
Simplify problem
Use subset of data
Add complexity

How to start?



GEOMETRIC FORM
LOCATION
FACADES
CONSTRUCTIONS
OPERATION

SURROGATE MODEL EUI

high level representations raw geometries deep learning

Annual EUI prediction



mesh

gbxml

csv results

gbxml results

DATASET

Data sources



GEOMETRIC FORM
LOCATION
FACADES
CONSTRUCTIONS
OPERATION

SURROGATE MODEL EUI

Annual EUI prediction



SIMPLE GEOMETRIES SURROGATE MODEL EUI

Results inform the:
model type
geometry representations
dataset diversity

Annual EUI prediction



COMPLEX GEOMETRIES SURROGATE MODEL EUI

Annual EUI prediction



GEOMETRIC FORM
LOCATION
FACADES
CONSTRUCTIONS
OPERATION

SURROGATE MODEL EUI

Annual EUI prediction



~862 geometric forms
X

242 parameter variations
X

5 climate zones



1.91 % error



GEOMETRIC FORM
LOCATION
FACADES
CONSTRUCTIONS
OPERATION

SURROGATE MODEL EUI

Get annual EUI result in milliseconds

Annual EUI prediction





To Sum Up

[1]
Discussed the importance and current obstacles of integrating energy prediction early in design.

[2]
Introduced the potential of ML methods as a solution, and the necessity of synthetic data.

[3]
Demonstrated an example of generating a diverse dataset of labeled synthetic data.

[4]
Introduced the steps for training and evaluating a ML model and demonstrated how achieved 
real-time EUI predictions.



Please put any questions you have in 
the class comment box!

Michael Floyd  · michael.floyd@autodesk.com

Varvara Toulkeridou · varvara.toulkeridou@autodesk.com

Vishal Vaidhyanathan · vishal.vaidhyanathan@autodesk.com

Spyridon Ampanavos · sampanavos@gsd.harvard.edu
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