ITN Series

Pneumatic Torque Wrenches

Instructions Manual

Read all instructions, warnings and cautions carefully. Follow all basic safety precautions to avoid personal injury or property damage during system operation. ITORQ cannot be held responsible for damage or injury resulting from unsafe product use, lack of maintenance or incorrect product and/or system operation. contact ITORQ when in doubt as to the safety precautions and operations.

Safety:

- Do not disconnect the Hydraulic Couplers during operation or when under pressure.
- Do not drop heavy objects on the Pneumatic Hose.

A sharp impact may cause internal damage to the Pneumatic Hose.
Applying pressure to a damaged Pneumatic Hose may cause it to rupture which
could lead to failure and injury.

- Never use a chrome plated socket.
- Do not use old or damaged socket.
- Make sure not to use wrong size socket.
- Incorrect system connection may cause failure and injury.

Before connecting the Pneumatic Torque Wrench, Pneumatic Hose and FRL, make sure all the Hydraulic Couplers are clean and free of debris.

- Keep hands away from the reaction arm during operation.
- Immediately replace any worn or damaged parts with genuine ITORQ replacement parts/spares.

Setup:

1) Inspect the Pneumatic Torque Wrench set.

Also verify that the Pneumatic Hose isn't kinked, crushed or damaged.
2) Connect the Pneumatic Hose Assembly from the FRL air outlet to the Pneumatic Torque Wrench air inlet. To do so, ensure that all the Pneumatic Couplers are fully engaged and fastened snugly together.

Connection: Female coupler of Pneumatic Hose assembly with male coupler of Pneumatic Torque Wrench \& male coupler of Pneumatic Hose assembly with female coupler of FRL.
In order to remember this important step at all times, please remember the saying: Opposites attract each other.
3) Check that the lubricator has been filled to the required levels and set to achieve $5-7$ drops per minute.

ITN Series

Pneumatic Torque Wrenches

Instructions Manual

Operation (for Tightening):

1) Make sure the Setup procedure is completed.
2) Ascertain the size of the nut or bolt head, material, strength grade and determine the desired torque required for tightening.
3) Set the torque by pressing the trigger on the Pneumatic Torque Wrench and adjusting the air inlet pressure on the $F R L$ to the required pressure.

Note: Use the Torque Chart provided by ITORQ to determine at what pressure the desired torque will be achieved.
4) Make sure that the Pneumatic Torque Wrench is in tightening mode by shifting the direction toggle to ' R '.

Note: The direction toggle is located just above the trigger.
5) Connect the square drive of the Pneumatic Torque Wrench to the chosen socket.
Now, place the Pneumatic Torque Wrench on the nut or bolt to be tightened.

To Remember: Make sure to have the reaction arm correctly positioned in accordance to the direction that the socket will be rotating at.

Note: The reaction arm will rotate in the opposite direction to the rotation of the socket.
6) Press the trigger and tighten until the Pneumatic Torque Wrench stalls, thereby, achieving the set torque.
7) Continue this process until all nuts or bolts are successfully tightened.

Operation (for Loosening):

1) Make sure the Setup procedure is completed.
2) Ascertain the size of the nut or bolt head, material, strength grade and determine the desired torque required for tightening.
3) Make sure that the Pneumatic Torque Wrench is in loosening mode by shifting the direction toggle to 'L'.

Note: The direction toggle is located just above the trigger.
4) Connect the square drive of the wrench to the chosen socket.
Now, place the Pneumatic Torque Wrench on the nut or bolt to be loosened.

To Remember: Make sure to have the reaction arm correctly positioned in accordance to the direction that the socket will be rotating at.

Note: The reaction arm will rotate in the opposite direction to the rotation of the socket.
5) Press the trigger and operate until the nut or bolt is loose.
6) Continue this process until all nuts or bolts are successfully loosened.

Instructions Manual

Recommended Bolt Tightening Force:

Strength $\boldsymbol{\text { Grade: }}$		$\mathbf{4 . 8}$		$\mathbf{6 . 8}$	$\mathbf{8 . 8}$	10.9
Bolt	$\boldsymbol{A} / \boldsymbol{F}$	Torque (Nm)				
M16	24 mm	87	131	174	245	294
M18	27 mm	128	192	256	360	432
M20	30 mm	170	256	341	479	575
M22	34 mm	232	348	465	653	784
M24	36 mm	294	442	589	828	994
M27	41 mm	432	647	863	1,214	1,457
M30	46 mm	585	877	1,171	1,646	1,975
M33	50 mm	796	1,195	1,593	2,240	2,688
M36	55 mm	1,023	1,535	2,046	2,878	3,453
M39	60 mm	1,324	1,986	2,649	3,725	4,469
M42	65 mm	1,638	2,457	3,277	4,608	5,529
M45	70 mm	2,045	3,068	4,090	5,752	6,903
M48	75 mm	2,461	3,691	4,921	6,921	8,305
M52	80 mm	3,181	4,771	6,362	8,946	10,736
M56	85 mm	3,956	5,934	7,912	11,127	13,352
M60	90 mm	4,932	7,398	9,864	13,871	16,645
M64	95 mm	5,960	8,940	11,920	16,762	20,115
M68	100 mm	7,230	10,845	14,460	20,335	24,401
M72	105 mm	8,669	13,003	17,337	24,381	29,257
M76	110 mm	10,287	15,430	20,573	28,931	34,717
M80	115 mm	12,094	18,141	24,188	34,014	40,815
M85	120 mm	14,636	21,953	29,271	41,163	49,395
M90	130 mm	17,510	26,266	35,021	49,248	59,098
M100	145 mm	24,341	36,512	48,683	68,460	82,152
M110	155 mm	32,751	49,126	65,501	92,111	$1,10,533$
M120	175 mm	42,902	64,354	85,805	$1,20,663$	$1,44,795$
M125	180 mm	48,683	73,024	97,366	$1,36,920$	$1,64,304$

Note:

- The recommended tightening torque is 80% of above values.
- The recommended loosening torque is 150% of tightening torque.
- Example:

For 8.8 grade M36 bolt, the tightening torque will be $2,046 \times 80 \%=1,636 \mathrm{Nm}$ For 8.8 grade M36 bolt, the loosening torque will be $1,636 \times 150 \%=2,454 \mathrm{Nm}$
(The above mentioned values are for reference only, exact bolt tightening force depends upon the variety of bolt used, variation in friction etc. Please consult with the bolt manufacturer for the exact torque value)

