
Public

SMART CONTRACT AUDIT REPORT

for

JPYCoin

Prepared By: Yiqun Chen

PeckShield
February 18, 2022

1/19 PeckShield Audit Report #: 2022-047

contact@peckshield.com

Public

Document Properties

Client JPYCoin
Title Smart Contract Audit Report
Target JPYC
Version 1.0
Author Xuxian Jiang
Auditors Jing Wang, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author Description
1.0 February 18, 2022 Xuxian Jiang Final Release
1.0-rc February 12, 2022 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/19 PeckShield Audit Report #: 2022-047

Public

Contents

1 Introduction 4
1.1 About JPYCoin . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 8
2.1 Summary . 8
2.2 Key Findings . 9

3 ERC20 Compliance Checks 10

4 Detailed Results 13
4.1 Fork-Compliant Domain Separator in JPYC . 13
4.2 Trust Issue Of Admin Roles . 15

5 Conclusion 18

References 19

3/19 PeckShield Audit Report #: 2022-047

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the JPYCoin protocol,
we outline in the report our systematic method to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistency between smart contract code and
the documentation, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of the smart contract can be further improved due to the presence
of some issues related to ERC20-compliance, security, or performance. This document outlines our
audit results.

1.1 About JPYCoin

JPYCoin (JPYC) is a JPY-pegged stablecoin, legally dealt as a prepaid payment instrument in Japan.
The audited token contract is an ERC20-compliant implementation deployable on Ethereum. It is
proposed based on the observation that the JPY-pegged stablecoins have been far from practical use.
JPYC is expected to expand the target of customers compared to ICB, which is for business use only,
and streamline the cryptocurrency payment in buying and selling goods for the public use. The basic
information of the audited contracts is as follows:

Table 1.1: Basic Information of JPYC

Item Description
Issuer JPYCoin

Website https://jpyc.jp/
Type Ethereum ERC20 Token Contract

Platform Solidity
Audit Method Whitebox

Audit Completion Date February 18, 2022

In the following, we show the Git repository and the commit hash value used in this audit:

• https://github.com/jcam1/JPYCv2.git (fbe36c9)

4/19 PeckShield Audit Report #: 2022-047

Public

And here is the commit ID after all fixes for the issues found in the audit have been checked in.

• https://github.com/jcam1/JPYCv2.git (2caec90)

1.2 About PeckShield

PeckShield Inc. [6] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading ser-
vices and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [5]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

We perform the audit according to the following procedures:

5/19 PeckShield Audit Report #: 2022-047

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• ERC20 Compliance Checks: We then manually check whether the implementation logic of the
audited smart contract(s) follows the standard ERC20 specification and other best practices.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead of Transfer

Costly Loop
(Unsafe) Use of Untrusted Libraries
(Unsafe) Use of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Approve / TransferFrom Race Condition

ERC20 Compliance Checks Compliance Checks (Section 3)

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

To evaluate the risk, we go through a list of check items and each would be labeled with a severity
category. For one check item, if our tool does not identify any issue, the contract is considered safe

6/19 PeckShield Audit Report #: 2022-047

Public

regarding the check item. For any discovered issue, we might further deploy contracts on our private
testnet and run tests to confirm the findings. If necessary, we would additionally build a PoC to
demonstrate the possibility of exploitation. The concrete list of check items is shown in Table 1.3.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/19 PeckShield Audit Report #: 2022-047

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the JPYC token contract. During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logics, examine
system operations, and place ERC20-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 1

Informational 0

Total 2

Moreover, we explicitly evaluate whether the given contracts follow the standard ERC20 specifi-
cation and other known best practices, and validate its compatibility with other similar ERC20 tokens
and current DeFi protocols. The detailed ERC20 compliance checks are reported in Section 3. After
that, we examine a few identified issues of varying severities that need to be brought up and paid
more attention to. (The findings are categorized in the above table.) Additional information can be
found in the next subsection, and the detailed discussions are in Section 4.

8/19 PeckShield Audit Report #: 2022-047

Public

2.2 Key Findings

Overall, no ERC20 compliance issue was found and our detailed checklist can be found in Section 3.
Also, there is no critical or high severity issue, although the implementation can be improved by
resolving the identified issues (shown in Table 2.1), including 1 medium-severity vulnerability and 1
low-severity issue.

Table 2.1: Key JPYC Audit Findings

ID Severity Title Category Status
PVE-001 Low Fork-Compliant Domain Separator in

JPYC
Business Logic Confirmed

PVE-002 Medium Trust Issue Of Admin Roles Security Features Confirmed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for our detailed compliance checks and Section 4 for elaboration of reported issues.

9/19 PeckShield Audit Report #: 2022-047

Public

3 | ERC20 Compliance Checks

The ERC20 specification defines a list of API functions (and relevant events) that each token contract
is expected to implement (and emit). The failure to meet these requirements means the token
contract cannot be considered to be ERC20-compliant. Naturally, as the first step of our audit, we
examine the list of API functions defined by the ERC20 specification and validate whether there
exist any inconsistency or incompatibility in the implementation or the inherent business logic of the
audited contract(s).

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

Our analysis shows that there is no ERC20 inconsistency or incompatibility issue found in the
audited token contract. In the surrounding two tables, we outline the respective list of basic view-only

functions (Table 3.1) and key state-changing functions (Table 3.2) according to the widely-adopted

10/19 PeckShield Audit Report #: 2022-047

Public

ERC20 specification.

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the caller does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the spender does not have enough token allowances to spend ✓

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

✓

Reverts if the from address does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval status ✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approve() event Is emitted on any successful call to approve() ✓

In addition, we perform a further examination on certain features that are permitted by the ERC20
specification or even further extended in follow-up refinements and enhancements (e.g., ERC777),
but not required for implementation. These features are generally helpful, but may also impact or
bring certain incompatibility with current DeFi protocols. Therefore, we consider it is important to
highlight them as well. This list is shown in Table 3.3.

11/19 PeckShield Audit Report #: 2022-047

Public

Table 3.3: Additional Opt-in Features Examined in Our Audit

Feature Description Opt-in
Deflationary Part of the tokens are burned or transferred as fee while on trans-

fer()/transferFrom() calls
—

Rebasing The balanceOf() function returns a re-based balance instead of the actual
stored amount of tokens owned by the specific address

—

Pausible The token contract allows the owner or privileged users to pause the token
transfers and other operations

✓

Blacklistable The token contract allows the owner or privileged users to blacklist a
specific address such that token transfers and other operations related to
that address are prohibited

✓

Mintable The token contract allows the owner or privileged users to mint tokens to
a specific address

✓

Burnable The token contract allows the owner or privileged users to burn tokens of
a specific address

✓

12/19 PeckShield Audit Report #: 2022-047

Public

4 | Detailed Results

4.1 Fork-Compliant Domain Separator in JPYC

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: High

• Target: FiatTokenV1/V2

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

The FiatTokenV1 token contract strictly follows the widely-accepted ERC20 specification (Section 3).
In the meantime, we notice the support of EIP-2612 with the permit() function that allows for ap-
provals to be made via secp256k1 signatures. Interestingly, we notice the state variable DOMAIN_SEPARATOR
is initialized once inside the initialize() function (line 105).

68 function initialize(
69 string memory tokenName ,
70 string memory tokenSymbol ,
71 string memory tokenCurrency ,
72 uint8 tokenDecimals ,
73 address newMasterMinter ,
74 address newPauser ,
75 address newBlacklister ,
76 address newOwner
77) public {
78 require (! initialized , "FiatToken: contract is already initialized");
79 require(
80 newMasterMinter != address (0),
81 "FiatToken: new masterMinter is the zero address"
82);
83 require(
84 newPauser != address (0),
85 "FiatToken: new pauser is the zero address"
86);
87 require(

13/19 PeckShield Audit Report #: 2022-047

Public

88 newBlacklister != address (0),
89 "FiatToken: new blacklister is the zero address"
90);
91 require(
92 newOwner != address (0),
93 "FiatToken: new owner is the zero address"
94);
95
96 name = tokenName;
97 symbol = tokenSymbol;
98 currency = tokenCurrency;
99 decimals = tokenDecimals;

100 masterMinter = newMasterMinter;
101 pauser = newPauser;
102 blacklister = newBlacklister;
103 _transferOwnership(newOwner);
104 blacklisted[address(this)] = true;
105 DOMAIN_SEPARATOR = EIP712.makeDomainSeparator(name , "1");
106 initialized = true;
107 }

Listing 4.1: FiatTokenV1::initialize()

The DOMAIN_SEPARATOR is used in the permit() function and should be unique to the contract
and chain in order to prevent replay attacks from other domains. However, when analyzing this
permit() routine, we realize the current implementation needs to be improved by recalculating the
value of DOMAIN_SEPARATOR inside the permit() function, for the very purpose of preventing cross-
chain replay attacks. Specifically, when there is a chain-level hard-fork, because of the pre-computed
DOMAIN_SEPARATOR, a valid signature for one chain could be replayed on the other.

552 function permit(
553 address owner ,
554 address spender ,
555 uint256 value ,
556 uint256 deadline ,
557 uint8 v,
558 bytes32 r,
559 bytes32 s
560) external whenNotPaused notBlacklisted(owner) notBlacklisted(spender) {
561 _permit(owner , spender , value , deadline , v, r, s);
562 }
563
564 function _permit(
565 address owner ,
566 address spender ,
567 uint256 value ,
568 uint256 deadline ,
569 uint8 v,
570 bytes32 r,
571 bytes32 s
572) internal {

14/19 PeckShield Audit Report #: 2022-047

Public

573 require(deadline >= block.timestamp , "EIP2612: permit is expired");
574
575 bytes memory data = abi.encode(
576 PERMIT_TYPEHASH ,
577 owner ,
578 spender ,
579 value ,
580 _permitNonces[owner]++,
581 deadline
582);
583 require(
584 EIP712.recover(DOMAIN_SEPARATOR , v, r, s, data) == owner ,
585 "EIP2612: invalid signature"
586);
587
588 _approve(owner , spender , value);
589 }

Listing 4.2: FiatTokenV1::permit()

Recommendation Recalculate the value of DOMAIN_SEPARATOR inside the permit() function. Note
this issue is applicable to a number of functions (in both FiatTokenV1 and FiatTokenV2 contracts) that
uses the DOMAIN_SEPARATOR value, including transferWithAuthorization(), receiveWithAuthorization(),
and cancelAuthorization().

Status The issue has been confirmed.

4.2 Trust Issue Of Admin Roles

• ID: PVE-002

• Severity: Medium

• Likelihood: Medium

• Impact:Medium

• Target: Multiple Contracts

• Category: Security Features [3]

• CWE subcategory: CWE-287 [1]

Description

In JPYC, there are privileged accounts that play a critical role in governing and regulating the
protocol-wide operations (e.g., privileged account management, account blacklisting/whitelisting,
and token minting). In the following, we show the representative functions potentially affected by
the privileged accounts.

67 /**
68 * @dev called by the owner to pause , triggers stopped state
69 */
70 function pause() external onlyPauser {

15/19 PeckShield Audit Report #: 2022-047

Public

71 paused = true;
72 emit Pause();
73 }
74
75 /**
76 * @dev called by the owner to unpause , returns to normal state
77 */
78 function unpause () external onlyPauser {
79 paused = false;
80 emit Unpause ();
81 }
82
83 /**
84 * @dev update the pauser role
85 */
86 function updatePauser(address _newPauser) external onlyOwner {
87 require(
88 _newPauser != address (0),
89 "Pausable: new pauser is the zero address"
90);
91 pauser = _newPauser;
92 emit PauserChanged(pauser);
93 }

Listing 4.3: A number of representative setters in Pausable

72 /**
73 * @dev Adds account to blacklist
74 * @param _account The address to blacklist
75 */
76 function blacklist(address _account) external onlyBlacklister {
77 blacklisted[_account] = true;
78 emit Blacklisted(_account);
79 }
80
81 /**
82 * @dev Removes account from blacklist
83 * @param _account The address to remove from the blacklist
84 */
85 function unBlacklist(address _account) external onlyBlacklister {
86 blacklisted[_account] = false;
87 emit UnBlacklisted(_account);
88 }

Listing 4.4: A number of representative setters in Blacklistable

Moreover, it should be noted that current contracts are deployed behind a proxy and there is a
need to properly manage the proxy-admin privileges as they fall in this trust issue as well.

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. At the same time the extra power to the owner may also be a counter-party risk to the
token users. Therefore, we list this concern as an issue here from the audit perspective and highly

16/19 PeckShield Audit Report #: 2022-047

Public

recommend making these privileges explicit or raising necessary awareness among token users.

Recommendation Make the list of extra privileges granted to privileged accounts explicit to
JPYC users.

Status The issue has been confirmed.

17/19 PeckShield Audit Report #: 2022-047

Public

5 | Conclusion

In this security audit, we have examined the JPYCoin design and implementation. The smart contracts
being audited are a JPY-pegged stablecoin, legally dealt as a prepaid payment instrument in Japan.
During our audit, we first checked all respects related to the compatibility of the ERC20 specification
and other known ERC20 pitfalls/vulnerabilities and found no issue in these areas. We then proceeded
to examine other areas such as coding practices and business logics. Overall, although no critical
or high level vulnerabilities were discovered, we identified three medium/low severity issues that
were promptly confirmed and addressed by the team. Meanwhile, as disclaimed in Section 1.4, we
appreciate any constructive feedbacks or suggestions about our findings, procedures, audit scope,
etc.

18/19 PeckShield Audit Report #: 2022-047

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[5] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[6] PeckShield. PeckShield Inc. https://www.peckshield.com.

19/19 PeckShield Audit Report #: 2022-047

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About JPYCoin
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	ERC20 Compliance Checks
	Detailed Results
	Fork-Compliant Domain Separator in JPYC
	Trust Issue Of Admin Roles

	Conclusion
	References

