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Motivation

* Linux supports 8 distinct virtualization systemes:
* Xen, KVM, VMWare, ...
* Each of these has its own block, console, network, ... drivers

* VirtlO — The three goals
* Driver unification

* Uniformity to provide a common ABI for general publication
and use of buffers

* Device probing and configuration



Full Virtualization vs Paravirtualization
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Full Virtualization vs Paravirtualization

Kernel's device communication with VMware (emulated):

volid nic_write buffer(char *buf, int size)

for (; size > 0; size--)
nic poll ready(); // many traps
outb (NIC TX BUF, *buf++); // many traps

}
}

« Kernel's device communication with hypervisor (hypercall):

void nic_write buffer(char *buf, int size)

{

vimm write(NIC TX BUF, buf, size); // one trap
}



VirtlO Architecture

* Front End Driver
* A kernel module in the guest OS

* Accepts I/O requests from the
user process

* Transfer I/O requests to back-end
driver

e Back-end Driver

* Accepts I/O requests from front-
end driver

* Perform |/O operation via physical
device
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VirtlO Architecture
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VirtlO Transport layer

* Virtqueue
* It is a part of the memory of the
guest OS

A channel between front-end and
back-end

* |tis an interface Implemented as

* Vring is a memory mapped region
between QEMU and guest OS

* Vring is the memory layout of the
virtqueue abstraction

struct virtqueue_ops {

int (*add_buf) (struct virtqueue *vq,
struct scatterlist sg[],
unsigned int out_num,
unsigned int in_num,
void *data);

void (*kick) (struct virtqueue *vq);

void *(*get_buf) (struct virtqueue *vq,

unsigned int *len);
void (*disable_cb) (struct virtqueue *vq);
bool (*enable_cb) (struct virtqueue *vq);



Vring

struct vring_desc

{
__ub4d addr,;

__u32 len;
__ulé flags;
__1ul6é next,

};

Vring Descriptor structure

struct vring_avail

{
_-ul6é flags;

__ulé idx,
__ul6 ring[NUM];

};

Vring available structure
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Data Exchange Flow
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Data Exchange Flow
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Data Exchange Flow
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Data Exchange Flow
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Data Exchange Flow
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Interrupt Handling

2) There i1s one QEMU process for each guest

system. When multiple guest systems Guest OS
are running, the same number of QEMU
processes are running. User
Mode
Fujitsu’s : Kernel Based Virtual Machine Technology white paper o ------%’ier.
e

disable_cb is a hint that the guest doesn’t want to know

when a buffer is used: this is the equivalent of disabling
a device’s interrupt. The driver registers a callback for

tha srivtkmiroarn mrhaoan aif 10 anitialirad and fha srivtmsiraonnn nall

Host OS

Taken from: Rusty Russel’s Virtio paper
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Interrupt handling (VMWare Workstation)

* Hosted virtual machine model
splits the virtualization software
between a virtual machine
monitor that virtualizes the CPU,
an application the uses a host
operating system for device
support, and an operating
system driver for transitioning
between them
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VirtlO Driver Example — VirtlO Block Driver

struct virtio_blk_outhdr
{

__u32 type;

__u32 ioprio;

__u64 sector;

};

Figure 1: Header structure of block device
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Figure 2: Ingredients for a virtio block read
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Figure 3: Virtio request placed into descriptor table
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Figure 4: Virtio block read ready to be serviced
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