Virtio: An |I/O virtualization
framework for Linux

Anish Jain
Subodh Asthana
Suraj Kasi

Fall 2015: October 14th

Agenda

* Motivation

* Full Virtualization vs Paravirtualization
* Virtio Architecture

* Virtio Transport Layer

* Vring

* Data Exchange Flow

* Interrupt Handling (speculative)
 Example : VirtlO Block Device Driver

Motivation

* Linux supports 8 distinct virtualization systemes:
* Xen, KVM, VMWare, ...
* Each of these has its own block, console, network, ... drivers

* VirtlO — The three goals
* Driver unification

* Uniformity to provide a common ABI for general publication
and use of buffers

* Device probing and configuration

Full Virtualization vs Paravirtualization

- | Para-drives
Interfaces
Hypervisor | Device Emulation

Traps
Device Emulation

Full virtualization Para-virtualization

Full Virtualization vs Paravirtualization

Kernel's device communication with VMware (emulated):

volid nic_write buffer(char *buf, int size)

for (; size > 0; size--)
nic poll ready(); // many traps
outb (NIC TX BUF, *buf++); // many traps

}
}

« Kernel's device communication with hypervisor (hypercall):

void nic_write buffer(char *buf, int size)

{

vimm write(NIC TX BUF, buf, size); // one trap
}

VirtlO Architecture

* Front End Driver
* A kernel module in the guest OS

* Accepts I/O requests from the
user process

* Transfer I/O requests to back-end
driver

e Back-end Driver

* Accepts I/O requests from front-
end driver

* Perform |/O operation via physical
device

o

Linux guest

Front-end drivers |

‘\

/
‘y ,/o

Back-end drivers

Device
emulation

KVM
(Linux hypervisor)

Hardware

VirtlO Architecture

Front-end

——

driver

Virtqueue
Virtio-buffer

Back—end_.
driver

— ~N
Virtio Driver
Guest
Virtio PCI Controller
L\ J
Vring Transport
= S
Virtio PCl Controller
o) QEMU
Virtio Device
— S

VirtlO Transport layer

* Virtqueue
* It is a part of the memory of the
guest OS

A channel between front-end and
back-end

* |tis an interface Implemented as

* Vring is a memory mapped region
between QEMU and guest OS

* Vring is the memory layout of the
virtqueue abstraction

struct virtqueue_ops {

int (*add_buf) (struct virtqueue *vq,
struct scatterlist sg[],
unsigned int out_num,
unsigned int in_num,
void *data);

void (*kick) (struct virtqueue *vq);

void *(*get_buf) (struct virtqueue *vq,

unsigned int *len);
void (*disable_cb) (struct virtqueue *vq);
bool (*enable_cb) (struct virtqueue *vq);

Vring

struct vring_desc

{
__ub4d addr,;

__u32 len;
__ulé flags;
__1ul6é next,

};

Vring Descriptor structure

struct vring_avail

{
_-ul6é flags;

__ulé idx,
__ul6 ring[NUM];

};

Vring available structure

Vring

p
uest
.
Virt queue Write Virt queue Read
a Descriptor Table Available Used . . A 4
s |
Vrin i
g N Vring
. VAN J

EMU

Data Exchange Flow

-

e

[vimoorver gy et
Add Buf

~

/

Virt queue Write

Virt queue Rea

d

o T

L=

Vring

~,

(vitooewee)

~,

11

Data Exchange Flow

12

Data Exchange Flow

4 N
_G uest
. S
Wirt queue Writ Virt queue R
- e

13

Data Exchange Flow

4 !
_G uest

- S

Virt queue Write Virt queue Read

- e ™,

Vring In Out Vring

Cdatz]
Push

s ™

Data Exchange Flow

Guest

Wirt queue Write

Vring

15

Interrupt Handling

2) There i1s one QEMU process for each guest

system. When multiple guest systems Guest OS
are running, the same number of QEMU
processes are running. User
Mode
Fujitsu’s : Kernel Based Virtual Machine Technology white paper o ------%’ier.
e

disable_cb is a hint that the guest doesn’t want to know

when a buffer is used: this is the equivalent of disabling
a device’s interrupt. The driver registers a callback for

tha srivtkmiroarn mrhaoan aif 10 anitialirad and fha srivtmsiraonnn nall

Host OS

Taken from: Rusty Russel’s Virtio paper

16

Interrupt handling (VMWare Workstation)

* Hosted virtual machine model
splits the virtualization software
between a virtual machine
monitor that virtualizes the CPU,
an application the uses a host
operating system for device
support, and an operating
system driver for transitioning
between them

Host World

VMM World

Applications

Operating System

Appls

VM App

Virtual Machine

Host OS§

VM Driver]

VM Monitor

Physical Machine

VirtlO Driver Example — VirtlO Block Driver

struct virtio_blk_outhdr
{

__u32 type;

__u32 ioprio;

__u64 sector;

};

Figure 1: Header structure of block device

struct virtio_blk_outhdr

empty
buffer

Figure 2: Ingredients for a virtio block read

Descriptor Table Available Used

?\&%
‘?REE

| struct virtio_blk_outh

empty
buffer

Figure 3: Virtio request placed into descriptor table

Descriptor Table Available Used

N R -,
N W "D
S W
struct virtin_blk_auth}\ status
kT
empty
buffer

18
Figure 4: Virtio block read ready to be serviced

References

ftp://ftp.os3.nl/people/nsiim/INR/Week%201/papers/32 virtio Russel.pdf

http://www.ibm.com/developerworks/library/l-virtio/

http://bit.ly/1ZtUPah

http://www.linuxinsight.com/files/kvm whitepaper.pdf

http://Ixr.free-electrons.com/source/include/linux/virtio.h?v=2.6.34

15-410 lecture slides
Fujitsu’s Kernel-based Virtual Machine Technology white paper

Quamranet’s Kernel based Virtualization Driver white paper

19

http://www.ibm.com/developerworks/library/l-virtio/
http://www.ibm.com/developerworks/library/l-virtio/
http://bit.ly/1ZtUPah
http://www.linuxinsight.com/files/kvm_whitepaper.pdf
http://lxr.free-electrons.com/source/include/linux/virtio.h?v=2.6.34

