@ rafaeldtinoco / howtos @ '

<> Code 3% Pullrequests ® Actions @ Security I~ Insights 3 Settings

(D & main ~ howtos / DUMP / Published [Q Go to file t,]
/ QEMU Security Matters.md.md (3

@ rafaeldtinoco Public Data X 02400a6 - 8 months ago O History e]

TABLE OF CONTENTS

e QEMU/KVM Security Matters
o 1-) Introduction
= 1.a-) QEMU basics

1.b-) KVM basics

1.c-) Device Assignment Methods
= 1.c.1-) IOMMU

1.c.2-) VFIO

1.c.3-) viOMMU

1.c.4-) vIOMMU and DPDK
1.c.5-) SR-IOV

1.d-) Device Para-Virtualization
= 1.d.1-)virtio

= 1.d.2-)virtio-net vhost-net
= 1.d.3-) virtio-net openvswitch
= 1.d.4-) virtio-net SR-IOV

1.e-) Block Devices, LUNs and Disks
= 1.e.1-)virtio-blk

m 1.e.2-)virtio-scsi
m . virtio-scsi: QEMU target SCSI handling

m ji. virtio-scsi: LIO target SCSI handling
= jii. virtio-scsi: libiscsi target SCSI handling
= 1.e.3-) SCSI dev assignment

o 2-) QEMU Internals
= 2.3-) Networking
m 2.a.1-) User Networking - SLIP

= 2.a.2-) Networking - TUN/TAP scenario
= 2.b-) Common Inter-Process Communication (IPC) methods
m 2.c-) Virtio specification
= 2.d-) Vhost protocol

= 2.d.1-) The vhost-user protocol

o 3-) QEMU security surface
3.a-) QEMU and OS intersection

3.b-) QEMU vCPU assignment & side-channel observations

3.c-) QEMU devices emulation

3.e-) QEMU devices acceleration
3.f-) QEMU virtual disk devices
3.g-) QEMU storage backends
3.h-) QEMU vNIC AND SR-IOV

https://github.com/rafaeldtinoco
https://github.com/rafaeldtinoco/howtos/commit/02400a65bd1bcd4189b10884187c83a3e46f9b6d
https://github.com/rafaeldtinoco/howtos/commit/02400a65bd1bcd4189b10884187c83a3e46f9b6d
https://github.com/rafaeldtinoco/howtos/commits/main/DUMP/Published/QEMU%20Security%20Matters.md.md
https://github.com/
https://github.com/rafaeldtinoco
https://github.com/rafaeldtinoco/howtos
https://github.com/issues
https://github.com/pulls
https://github.com/notifications
https://github.com/rafaeldtinoco/howtos
https://github.com/rafaeldtinoco/howtos/pulls
https://github.com/rafaeldtinoco/howtos/actions
https://github.com/rafaeldtinoco/howtos/security
https://github.com/rafaeldtinoco/howtos/pulse
https://github.com/rafaeldtinoco/howtos/settings
https://github.com/rafaeldtinoco/howtos/tree/main
https://github.com/rafaeldtinoco/howtos/tree/main/DUMP
https://github.com/rafaeldtinoco/howtos/tree/main/DUMP/Published
https://github.com/rafaeldtinoco/howtos/commits?author=rafaeldtinoco

= 3.i-) QEMU monitor (QMP and HMP)

= 3,j-) QEMU confinement
= 3,j.1-) Guest isolation

m 3.j.2-) Principle of Least Privilege
m 3.j.3-) Isolation Mechanisms

= 3.,j.4-) Isolation: apparmor
= @ - PROPOSITION 1

= 3,j.5-) Isolation: cgroups (as resources manager)

m 3.j.6-) Isolation: namespaces
= namespace kinds

= @ - PROPOSITION 2

= 3,j.7-) Isolation: seccomp (sandbox)
= QEMU seccomp

= @ - PROPOSITION 2' (comments)

= 3.]-) QEMU logging: tracing execution not a good idea
3.1.1-) QEMU Machine Protocol

3.1.2-) QEMU QMP commands to change VM disks
3.1.3-) QEMU Monitor Event Loop

3.1.4-) QEMU LOGGING

3.1.5-) LIBVIRT LOGGING

o 4-) Learning with history: QEMU CVEs: study case
= 4.a-) CVE-2019-6778 - heap buffer overflow in SLIRP

= 4.b-) CVE-2019-14835 - V-gHost escape in virtio-net / vhost-net

o 5-) QEMU CVEs instrospection: a study case
m 5.3-) Lessons learned: avoid it happening again

= 5.b-) Introspection tools: avoid overhead
= events

= kprobes & uprobes
= eBPF

= 5.¢c-) Near future: predict/log unwanted known behavior
= Falco Security

= Tracee
= @ - PROPOSITION 3
o 6-) REFERENCE

QEMU/KVM Security Matters

1-) Introduction

This document describes how QEMU works, pointing out how its behavior can be analyzed, audited and logged having
in mind execution escapes and privilege escalations.

Before moving into virtual machines logs and confinement options, it is imperative that some basics of how QEMU
works are understood so there is a clear picture on how difficult is to predict a machine (virtual) behavior (specially
when parts of it are being emulated by the host kernel and parts are being emulated by userland binary code).

At the end of this document you will have a basic understanding of most of the intersection points between QEMU
and the host OS, and this is where security concerns will rise most of the times (mostly due to memory address space
sharing among the parts).

1.a-) QEMU basics

QEMU is a hosted virtual machine emulator that provides a set of different hardware and device models for the guest
machine. For the host, QEMU appears as a regular process scheduled by the standard Linux scheduler, with its own
process memory. In the process, QEMU allocates a memory region that the guest see as physical, and executes the
virtual machine’s CPU instructions.

To perform I/0 on bare metal hardware, like storage or networking, the CPU has to interact with physical devices
performing special instructions and accessing particular memory regions, such as the ones that the device is mapped
to.

When the guests access these memory regions, control is returned to QEMU, which performs the device's emulation in
a transparent manner for the guest.

QEMU has multiple operating modes

e User-mode emulation: In this mode QEMU runs single Linux programs that were compiled for a different
instruction set. System calls are thunked for endianness and for 32/64 bit mismatches. Fast cross-compilation and
cross-debugging are the main targets for user-mode emulation.

e System emulation: In this mode QEMU emulates a full computer system, including peripherals. It can be used to
provide virtual hosting of several virtual computers on a single computer. QEMU can boot many guest operating
systems and it supports emulating several instruction sets, including x86, MIPS, 32-bit ARMv7, ARMv8, PowerPC,
SPARC, ETRAX CRIS and MicroBlaze.

When used as user-mode or system emulator, QEMU can run OSes and programs made for one machine on a
different machine. The Tiny Code Generator (TCG) is the core binary translation engine that is responsible for QEMU
ability to emulate foreign processors on any given supported host:

The TCG works by translating each guest instruction into a sequence of host instructions. As a result there will be a
level of inefficiency which means TCG code will not be as fast as running native code. However with a reasonable host
system you can get a pretty good experience, especially when emulating older and slower chips.

386 386
7

MIPS . o —+ MIPS
S 2
— TCG —» @
2 =

ARM Z L ARM
=3
3

RISC-V || @ L RISC-V

The Tiny Code Generator (TCG) aims to remove the shortcoming of relying on a particular compiler, instead
incorporating the compiler (code generator) into other tasks performed by QEMU at run time. The whole translation
task thus consists of two parts: basic blocks of target code (TBs) being rewritten in TCG ops - a kind of machine-
independent intermediate notation - and subsequently this notation being compiled for the host's architecture by TCG
(with optional optimisation passes done by the just-in-time compiler (JIR).

KVM Hosting: Here QEMU deals with the setting up and migration of KYM images. It is still involved in the emulation of
hardware, but the execution of the guest is done by KVM as requested by QEMU. The picture above showing TCG and
the JIT technique does not apply in this case, as KVM only works when HOST and GUEST are in the same architecture
(guest binaries are executed without any type of modification/interpretation).

Xen Hosting:: QEMU is involved only in the emulation of hardware; the execution of the guest is done within Xen and
is totally hidden from QEMU.

When used as a virtualizer, QEMU achieves near native performance by executing the guest code directly on the host
CPU. QEMU supports virtualization when executing under the KVM kernel module or Xen hypervisor.

1.b-) KVM basics

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image01.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image01.png

Kernel-based Virtual Machine (KVM) is an open source virtualization technology built into Linux. It provides hardware
assist to the virtualization software, using built-in CPU virtualization technology to reduce virtualization overheads
(cache, I/0, memory) and improving security.

With KVM, QEMU can just create a virtual machine with virtual CPUs (vCPUs) that the processor is aware of, that runs
native-speed instructions. When a special instruction is reached by KVM, like the ones that interacts with the devices or
to special memory regions, vCPU pauses and informs QEMU of the cause of pause, allowing hypervisor to react to that
event.

In the regular KVM operation, the hypervisor opens the device /dev/KVM, and communicates with it using ioctl calls to
create the VM, add CPUs, add memory (allocated by QEMU, but physical from the virtual machine’s point of view), send
CPU interrupts (as an external device would send), etc. For example, one of these ioctl runs the actual KVM vCPU,,
blocking QEMU and making the vCPU run until it found an instruction that needs hardware assistance. In that
moment, the ioctl returns (this is called vmexit) and QEMU knows the cause of that exit (for example, the offending
instruction).

For special memory regions, KVM follows a similar approach, marking memory regions as Read Only or not mapping
them at all, causing a vmexit with the KVM_EXIT_MMIO reason.

KVM guest
r Applications]

v

- ‘_\!? Hardware Only one thread can
KVM F'i::le sis:iem‘ and Een e ;t:r;r?yEtr‘;‘imUEcode
guest’s ock devices
kernel [(QEMU) | (gemu_mutex)

Drivers
‘!7 V4 N4 Generates I/0

.. ; requests to the host
vcpuO vcpuN iothread on guest’s behalf
Ay Ay and handles events
KVM (kvm.ko)

File system and .
block devices Linux

Physical drivers kernel

g

Hardware

cpu0 © 0o O cpuN

1.c-) Device Assignment Methods

1.c.1-) IOMMU

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image02.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image02.png

(its security importance)

In computing, an input-output memory management unit IOMMU) is a memory management unit (MMU) that
connects a direct-memory-access-capable (DMA-capable) I/0 bus to the main memory. Like a traditional MMU, which
translates CPU-visible virtual addresses to physical addresses, the IOMMU maps device-visible virtual addresses (also
called device addresses or I/0 addresses in this context) to physical addresses. Some units also provide memory
protection from faulty or malicious devices.

Main Memory

T Physical addresses T

| IOMMU [l MMU |-

Device |addresses Virtual |addresses

Device CPU

1.c.2-) VFIO
PCI Path-through
Guest Guest
vNIC vNIC |
QEMU T QEMU T
| |
I 1
Kernel | 1
Y Y

1/O MMU

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image03.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image03.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image04.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image04.png

Let's consider a generic PCl device above, which is a real hardware attached to host system. The host can use generic
kernel drivers to drive the device. In that case, all the reads/writes of that device will be protected by host IOMMU (part
of host chipset), which is safe. The protected DMAs are shown in green arrow.

Guest

Guest
Memory

PCl Device

A

Assign

Unsafe
DMAs

Host

Host
Memary

VFIOidriver

Host I[OMMU

Protected

DMAs PCl Device

The PCl device can also be assigned to a guest. By leveraging VFIO driver in the host kernel, the device can be
exclusively managed by any userspace programs, like QEMU. In the guest with assigned device, we should be able to
see exactly the same device just like in the host. Here, the hypervisor is capable of modifying the device information,
like capability bits, etc... but the control is up to the userspace program.

When the device is assigned to the guest, guest memory address space is totally exposed to the hardware PCl device.
So there would have no protection when the device do DMAs to the guest system, especially writes. Malicious writes
can corrupt the guest in no time. Those unsafe DMAs are shown with a red arrow.

That is why viIOMMU is needed in the guest for security reasons

1.c.3-) viDOMMU

To protect the guest memory from malicious assigned devices, QEMU might give vIOMMU emulation to the guest, just
like what the host IOMMU does to the host.

QEMU vIOMMU tries to emulate the effect of a REAL IOMMU (part of the CPU architecture). It emulates all registers,
translations and interrupts re-mappings. Mechanism is similar to emulating other devices: QEMU constructs the ACPI
DMAR table so guest OS thinks there is an IOMMU available. By telling KVM to mark (the vCPU register space) as "not
present”, each time QEMU guest (accelerated or not) tries to access IOMMU it gets trapped and access is handled
through trapped faults.

Then the picture will be like:

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image05.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image05.png

Guest

Guest
Memorl:

PCl Device
A
i Assign Protected
H DMAs
Host
Host
Memo H
. WEIQidriver

Host 1OMMU

Protected
DMASs

PCl Device

In the above figure, the only difference from previous case is that we introduced guest vViOMMU to do DMA
protections. With that, guest DMAs are safe now (if we consider miss-behaving attached - to guests - devices).

1.c.4-) vIOMMU and DPDK

DPDK (the so-called DataPlane Development Kit) is vastly used in high performance scenarios, which moved the kernel
space drivers into userspace for the sake of even better performance. Normally, the DPDK program can run directly
inside a bare metal to achieve the best performance with specific hardware. Meanwhile, it can also be run inside guest
to drive either an assigned device from host, or an emulated device like VIRTIO ones. For the guest DPDK use case
mentioned, host can still continue leveraging DPDK to maximum the packet delivery in the virtual switches. OVS-DPDK
is a good example.

Nevertheless, DPDK introduced a problem that since we cannot really trust any userspace application program, we
cannot trust DPDK applications as well, especially if it can have full access to the system memory via the hardware and
taint the kernel address space. Here viIOMMU protects not only the malicious devices like hardware errors, it also
protects guest from buggy userspace drivers like DPDK (via VFIO driver in the guest).

Actually there are at least two ways that DPDK applications can manage a device in the userspace (and these methods
are mostly general as well not limited to DPDK use cases): with and without a viIOMMU.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image06.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image06.png

Guest

DPDK Application

PCI Device 1 Huge PCI Device 2
Pages
A A
| safe i Unsafe
H Guest
Ve Mgmery Ui/
: WEIO
1 {no-iefnmu)
Guesg Wl QMM H
FCl Device 1 PCl Device 2
A A
Protected
! DMAs
Safe

Host Safe /

/ WFIO

/ Host 1OMMU

~

PCl Device 1

In above case, PCl Device 1 and PCl Device 2 are two devices that are assigned to guest DPDK applications. In the host,
both of the devices are assigned to guest using kernel VFIO driver. While in the guest, when we assign devices to DPDK
applications, we can use one of the two methods mentioned above. However, only if we assign device with generic
VFIO driver (which requires a viOMMU) we get a safely assigned device. Assigning the device by "VFIO no-iommu

mode" is unsafe.

1.c.5-) SR-IOV

The Direct Assignment method of virtualization provides very fast I/0. However, it prevents the sharing of I/0 devices.
SR-IOV provides a mechanism by which a Single Root Function (for example a single Ethernet Port) can appear to be

multiple separate physical devices.

An image illustrating SR-IOV usage:

PC| Device 2

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image07.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image07.png

y Host N
/ T T \\
4 . '

' 8 r— Y, N\
| ' | DPDK : Guest
] 1
User I 1 vendor-NIC-driver
space : : A
1 1
] |
1 e : Qemu
1 process
p]
4 ! :)
OVSs kernel : :
1 1 >
Kernel ! 1 o
space ! B : w
vendor-NIC-driver I 2 :
A A : v ;
] 1
_ | ' Yy
1 1
4 5 : : B
E] 1
wn] 1
] 1
] 1
HW ¥ 1 A 4 1 A 4
e D EE
VF VF PF [VF PF I VF PF
1 1
\ 1 [/
Physical NIC Physical NIC 1 Physical NIC ‘
| ¢ : .)/
OVS Kernel with OVS DPDK with SRIOV for
. SRIOV SRIOV guest

SR-IOV enables a Single Root Function (for example, a single Ethernet port), to appear as multiple, separate, physical
devices. A physical device with SR-IOV capabilities can be configured to appear in the PCI configuration space as
multiple functions. Each device has its own configuration space complete with Base Address Registers (BARs).

SR-IOV uses two PCl functions:

1. Physical Functions (PFs) are full PCle devices that include the SR-IOV capabilities. Physical Functions are

discovered, managed, and configured as normal PCl devices. Physical Functions configure and manage the SR-IOV
functionality by assigning Virtual Functions.

2. Virtual Functions (VFs) are simple PCle functions that only process /0. Each Virtual Function is derived from a
Physical Function. The number of Virtual Functions a device may have is limited by the device hardware. A single
Ethernet port, the Physical Device, may map to many Virtual Functions that can be shared to virtual machines.

The hypervisor can assign one or more Virtual Functions to a virtual machine, an OS process or its own kernel. If

assigned to a virtual machine, the virtual function's configuration space is assigned to the configuration space
presented to the guest.

Each Virtual Function can only be assigned to a single guest at a time, as Virtual Functions require real hardware
resources. A virtual machine can have multiple Virtual Functions. A Virtual Function appears as a network card in
the same way as a normal network card would appear to an operating system.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image08.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image08.png

The SR-IOV drivers are implemented in the kernel. The core implementation is contained in the PCl subsystem, but
there must also be driver support for both the Physical Function (PF) and Virtual Function (VF) devices. An SR-IOV
capable device can allocate VFs from a PF. The VFs appear as PCl devices which are backed on the physical PCl device
by resources such as queues and register sets.

Some advantages for using SR-IOV:

e When an SR-IOV VF is assigned to a virtual machine, it can be configured to (transparently to the virtual machine)
place all network traffic leaving the VF onto a particular VLAN. The virtual machine cannot detect that its traffic is
being tagged for a VLAN, and will be unable to change or eliminate this tagging.

e Virtual Functions have near-native performance and provide better performance than paravirtualized (virtio)
drivers and emulated access. Virtual Functions provide data protection between virtual machines on the same
physical server as the data is managed and controlled by the hardware.

This method is very used in environments with NICs w/ 10GbE or more, supporting virtual functions, and able to
do RoCE (like Mellanox ConnectX cards).

1.d-) Device Para-Virtualization

1.d.1-) virtio
Jdrivers/virtiofvirtio-pcl.c
Jdrivers/net/virtio-net.c Jdrivers/virtiofvirtio-balloon.c
. virtio-
virtio-blk virtio-net virtio virtio-balloon
.pd console
Jdrivers/block/virtio-blk.c \ / Jdrivers fvirtio/virtio-consale.c
virtio JSlinex/drivers/virtiofvirtio.c

T[anspon SMinuxfdrivers/virtiofvirtio ring.c

virtio
back-end
drivers

Virtio is an open specification for virtual machines' data I/0 communication, offering a straightforward, efficient,
standard and extensible mechanism for virtual devices, rather than boutique per-environment or per-OS mechanisms.
It uses the fact that the guest can share memory with the host for I/0 to implement that.

The VIRTIO specification is based on two elements: devices and drivers. In a typical implementation, the hypervisor

exposes the VIRTIO devices to the guest through a number of transport methods. By design they look like physical
devices to the guest within the virtual machine.

The most common transport method is PCl or PCle bus. However, the device can be available at some predefined
guest's memory address (MMIO transport). These devices can be completely virtual with no physical counterpart or
physical ones exposing a compatible interface.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image09.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image09.png

The typical (and easiest) way to expose a VIRTIO device is through a PCl port since we can leverage the fact that PCl is a
mature and well supported protocol in QEMU and Linux drivers. Real PCl hardware exposes its configuration space
using a specific physical memory address range (i.e., the driver can read or write the device's registers by accessing
that memory range) and/or special processor instructions. In the VM world, the hypervisor captures accesses to that
memory range and performs device emulation, exposing the same memory layout that a real machine would have
and offering the same responses. The VIRTIO specification also defines the layout of its PCI Configuration space, so
implementing it is straightforward.

When the guest boots and uses the PCI/PCle auto discovering mechanism, the virtio devices identify themselves with
with the PCl vendor ID and their PCI Device ID. The guest's kernel uses these identifiers to know which driver must
handle the device. In particular, the linux kernel already includes virtio drivers.

The VIRTIO drivers must be able to allocate memory regions that both the hypervisor and the devices can access for
reading and writing, i.e., via memory sharing. We call data plane the part of the data communication that uses these
memory regions, and control plane the process of setting them up:

e VIRTIO element (1): control plane used for capability exchange negotiation between the host and guest both for
establishing and terminating the data plane.

e VIRTIO element (2): data plane: used for transferring the actual data (packets) between host and guest.
We can also split VIRTIO into those different parts:

e VIRTIO part (1): virtio spec defines how to create a control plane (1) and the data plane (2) between the guest and
host. The data plane (2) is composed of buffers and rings layouts defined in the spec.

The control plane (1) for VIRTIO is implemented in the QEMU process based on the VIRTIO spec however the data
plane (2) is not. Thus the question is why wasn't the data plane (2) also implemented in the QEMU process ? The
answer is performance.

If VIRTIO spec data plane was implemented in QEMU, for every packget going from kernel to the guest, and vice-
versa, theere would be a context switch. Context switches are expensive adding latency to the application and
requires more processing time (as QEMU is yet another linux process).

Virtio

Guest

Virtio front-end

Virtio back-end

QEM I < Context

TAP e switching
Kernel .

e VIRTIO part (2): vhost protocol allows the VIRTIO dataplane implementation to be offloaded to another element
(user process or kernel module) in order to enhance performance.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image10.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image10.png

Vhost implements a data plane going directly from the host kernel to the guest, bypassing QEMU process entirely.
The vhost only describes how to establish the data plane, however. Whoever implements it is also expected to
implement the ring layout for describing the data buffers (both host and guest) and the actual send/receive
packets.

The vhost protocol can be implemented in the kernel (vhost-net) or in the user space (vhost-user). The vhost-
net/virtio-net architecture described in this post focuses on the kernel implementation also known as vhost-net.

1.d.2-) virtio-net <=> vhost-net

e vhost-net = backend component: host side of the VIRTIO interface

e virtio-net = frontend component: guest side of the VIRTIO interface

Vhost-net
Guest
Virtio ﬁillla-l'ld
QEMU DMA
Kernel virtqueue
vhost_net

I vhost-net is part of the host kernel but and yet still called 'driver’
Both components:

e vhost-net (backend)

e virtio-net (frontend)
Have separate control plane (1) and data plane (2) between the backend and frontend:

e control plane implements VIRTIO spec for vhost-net (module) <-> QEMU-process communication.
e vhost protocol sets communication for data plane to fwd pkts from host to guest using shared memory.
e data plane communication is accomplished through dedicated queues

e each guest vCPU has at least 1 RX/TX queue

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image11.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image11.png

y Host

/ /J-ser

-y

- mEmmy - --
’P“‘im::vcws::m::m: TP
i (X ¥ " '
User § e o OF 4
L] L] i 1
' me L} T L L
’ T
n m [}
: " [Iy 1
1 1, 'y 'y -
_ - " " " ' ':;'.c_":)
r r r]
W KT K-t AT

Qemu

process

11

Kernel
space

Up to this point we have described how the guest can pass the packets to the host kernel using the virtio-networking
interface.

I ATTENTION: This is the method that will be used as an example further in this document.

1.d.3-) virtio-net <=> openvswitch

In order to forward these packets to other guest running on the same host, or outside the host, one may use
openvswitch. OVS is a software switch which enables the packet forwarding inside the kernel. It's composed of a
userspace part and a kernel part:

e User space - database (ovsdb-server) and an OVS daemon/controller (ovs-vswitchd)

e Kernel space - ovs kernel (module responsible for the datapath or forwarding plane)

The OVS controller communicates both with the database server and the kernel forwarding plane. To push packets in
and out of the OVS we use Linux ports.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image12.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image12.png

. N

3
y.

1 /,':p’:; Guest\
f—‘]
User]
space
R virtio-net
Kernel
A o
L] Y
Libvirt < > i

-1 I)
/

Y h 4 Yy
\ vhostnet |
Kernel Port
g, _[OVS kernel model KVM
’L torwarding plane
\ | port | /

N | g

In the example above we have one port that connects the OVS kernel forwarding plane to a physical NIC while the
other port connects to the vhost-net backend (which will communicate with the virtio-net frontend).

1.d.4-) virtio-net <=> SR-IOV

Single root I/0 virtualization (SR-IOV) is a standard for a type of PCl device assignment that can share a single device to
multiple virtual machines. In other words, it allows different VMs in a virtual environment to share a single NIC. This
means we can have a single root function such as an Ethernet port appear as multiple separated physical devices
which address our problem of creating "virtual ports" in the NIC.

You can think of SR-IOV as a virtio-net (front-end) vhost-net (backend) but, instead of having the vhost protocol in
between QEMU virtual machine driver and the host kernel, with the vhost-net part implemented directly by a virtual
function of the hardware itself.

Similar to previous VIRTIO architectures, we separate our communication channel to data plane and control plane
towards the NIC:

e Control plane: config changes and capability negotiation between the NIC and guest (establishing and terminating
the data plane)

e Data plane: transfer the actual data (packets) between NIC and guest. When connecting the NIC directly to the
guest, this implies that the NIC is required to support the VIRTIO ring layout.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image13.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image13.png

Host

6ser

space Guest
User
space
Kernel
space

b

Libvirt

4
\ Q"’"‘ j/
~

/’ A

4 \
g2 e
Kernel a3 E_E-
space KVM

_ v),
s A

HW
blocks

Physical NIC

I This is the model we will be analyzing further in a virtual machine XML example.

e The data plane goes directly from the NIC to the guest and this is implemented by a shared memory the guest and
the NIC can access (shared by the guest), bypassing the host kernel (differently than vhost-net when the host
kernel is the one accessing the shared memory).

both sides need to use the exact same ring layout or translations will be required and translations have a
performance penalty attached.

1.e-) Block Devices, LUNs and Disks

(virtio-blk, virtio-scsi, PCI/VFIO assignment)

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image31.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image31.png

From now on this document might address Block Devices, LUNs and or Disks merely as "disks" or "vdisks",
depending on the context.

Configuration Whether guest

SCS| commands
Device Type Initiator | Target Backend reach to storage
1 File No
2 virtio-blk - Device No
3 LUN Yes
4 File No
5 - gemu Device No
6 o , LUN Yes
] virtio-scsi block No
—_ | 1

8 10 pSCSi 777
9 [ibiscsi - iSCS| storage Yes
10 | PCl Device | Legacy - PCI device Yes
11| assignment | yr|q - PCI device Yes

I any application that sends SCSI commands are better served by the virtio-scsi device, which has full SCSI support

I sometimes it is simpler to use a single virtio-scsi PCl adapter instead.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image14.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image14.png

(1)virtio-blk

Block | [/dev/vdx]

Guest | Layer | [virtio-blk | :
kernel SCS|
_Layer | | |

Device

L irtio- :

QEMU ayer virtio-blk i
Block [/dev/sdx }

Layer i

Host SCSI 5
kernel Layer
Device

Layer | | j

Hardware

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image15.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image15.png

|/dev/vdx]

|/dev/vdx]

(/dev/vdx]

jFiIe

Block

Guest [virt o-t}kl [virt o-tl)kl [virt o-lbkl
A
SCSI ! ! H
R i] 11
Device e T i
QEMU [virtio Pylkl Lvirtio \?,"d Lvirtio blkl
() Pass- | |,
through

Host ﬁ“ :

kernel |BlOcK @ :

. Vi
Hardware|Device

R E R E R R R o T T I T L

I SCSI passthrough was removed from the Linux virtio-blk driver in v5.6 in favor of using virtio-scsi

I Clustering software uses SCSI Persistent Reservations and is usually only supported by virtio-scsi, not by virtio-blk.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image16.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image16.png

(a)Qemu target

(b)lio target

(c)libiscsi

Block /dev/sdx /dev/sdx /dev/sdx
Guest Layer
kernel | SCSI scsi_mod scsi_mod scsi_ mod
Layer virtio-scsi virtio-scsi virtio-scsi
Device virtio-scsi
QEMU Layer virtio-scsi libiscsi
Block , q tcm_vhost
Layer /dov/sdx] [_Mosdx
Host SCSI
kernel | Layer
Device
Layer | |
Hardware| Device @ @ @
"""""" (/dev/sdx] (/dev/sdx] (/dev/sdx] |
Guest Block /dev/sdx / BV/S\I,XA / ev/s\l’)lc :
. ' | |
SCS| scsi_mod scsi_mod scsi_mod 5
virtio-scsi virtio-scsi virtio-sesi | !
Device - - B
QEMU virtio-scsi virtio-scsi virtio-scsi |
Emulated ! !
result Pass- | [,
— JFile . through| [
VFS Device L
Host Block @ Ej.LUN:
kernel — i
o
! !
. v i
Hardware |Device E‘j @ @ |

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image17.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image17.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image18.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image18.png

The LIO Linux SCSI Target implements a generic SCSI target that provides remote access to most data storage device
types over all prevalent storage fabrics and protocols. LIO neither directly accesses data nor does it directly
communicate with applications. LIO provides a fabric-independent and fabric-transparent abstraction for the
semantics of numerous data storage device types.

The LIO SCSI target engine is independent of specific fabric modules or backstore types. Thus, LIO supports mixing
and matching any number of fabrics and backstores at the same time. The LIO SCSI target engine implements a
comprehensive SPC-3/SPC-4 feature set with support for high-end features, including SCSI-3/SCSI-4 Persistent
Reservations (PRs), SCSI-4 Asymmetric Logical Unit Assignment (ALUA), VMware vSphere APIs for Array Integration
(VAAI), T10 DIF, etc.

The concept of a SCSI target isn't narrowly restricted to physical devices on a SCSI bus, but instead provides a
generalized model for all receivers on a logical SCSI fabric. This includes SCSI sessions across interconnects with no
physical SCSI bus at all. Conceptually, the SCSI target provides a generic block storage service or server in this scenario.

Target Architecture

CLI GUI

Library and API (Local and Remote)

Unified Target

Generic Target Engine
SPC-3/4 SCSI Core
Clustering support (PRs, ALUA, Referrals, Fencing)
Smart Array Offloads (VAAL, ODX)

Storage Management Engine
Manage physical and virtual storage resources
Memory allocation and memory map
RDMA buffer management or internal allocation

Fabric Modules

Storage Modules

v
E 2
— =

g%

CS
FCoE
iSE

i
FC/

InfiniBa
SRP/

c
=i =

Now it is easier to understand QEMU backend for LIO:

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image19.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image19.png

(b)lio target

Block /dev/sdx |
Guest Layer
kernel | SCSI sc¢si_mod
_Layer | |virtio-scsi|
Device
QEMU |=2Yer
“Block | WM%@L
Layer (/dev/sdx] |
Host SCSI
kernel | Layer
Device
_Layer | |
Hardware|| Device @

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image20.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image20.png

As you can see, this virtio-scsi method is close to what virtio-net/vhost-net schema is for a networking device. The
vdisk communicates directly with in-kernel LIO subsystem after initially setup by QEMU.

I Analogy: virtio-net <-> vhost-net

iii. virtio-scsi: libiscsi target SCSI handling

Differently from the LIO target approach, which allows the virtual machine to communicate directly to the HostOS

kernel LIO subsystem, by using libiscsi support within QEMU you are making the QEMU emulation process to do the
SCSI'1/0 on your vdisk's behalf:

(c)libiscsi I

Block | [/dev/sdx]
Guest Layer
kernel SCSI scsi_mod |
_Layer | |virtio-scsi| :
Device | |virtio-scsi|
QEMU Layer libiscsi
Host
kernel i
Directly tal
ISCSI store
Hard Devi -
ardware| Device @

I Network analogy: virtio-net

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image32.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image32.png

(a) Legacy

(b) VFIO

| /dev/sdx |

scsi mod

SCSI LLD

PCl device

| /dev/sdx |

scsi mod

SCSI LLD

PCl device

Block
Guest Laver
kernel SCS|

__Layer

Device
QEMU Layer
Host
kernel

Device

Layer
Hardware| Device

pci-stub

PCI device

]

““““““ | et e e

PCI device

]

This is usually not used in production environments, nor in the cases being shown here, BUT SLIRP networking

CVE will be explained further in this document.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image21.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image21.png

In one side we have the real NIC, on the other side the tun/tap devices: virtual point-to-point network devices that
userspace apps can use to exchange packets:

e tap = layer 2 (ethernet frames) tun = layer 3 (IP packets)

When the tun kernel module is loaded it creates a special device /dev/net/tun. A process can create a tap device
opening it and sending special ioctl commands to it. The new tap device has a name in the /dev filesystem and another
process can open it, send and receive Ethernet frames.

2.b-) Common Inter-Process Communication (IPC) methods

Unix sockets are one of the ways to do IPC: server binds a socket to a path in the filesystem so a client can connect to
it and exchange messages. Unix sockets are also capable of exchanging file descriptors among 2 different processes.

An eventfd is a lighter IPC: while sockets allow to send and receive data, eventfd is basically an integer that might be
changed by a producer to signalize a consumer to poll and read data somewhere else. It works as a wait/notify
mechanism.

Shared memory is, like the name says, a portion of the OS memory reserved so two or more processes can exchange
data from the same pages: one process writes and affects subsequent reads from another process accessing the same
memory pages.

2.c-) Virtio specification

Virtqueues are the mechanism for bulk data transport on VIRTIO devices. Each device can have zero or more
virtqueues. It is a queue of guest-allocated buffers that the host interacts with (rw). In addition, the VIRTIO
specification also defines bi-directional notifications:

e Available Buffer Notification: Used by the driver (guest) to signal there are buffers ready to be processed by the
device (QEMU process)

e Used Buffer Notification: Used by the device (QEMU process) to signal driver (guest) it has finished processing
some buffers.

In the PCl case, the guest sends the available buffer notification by writing to a specific memory address, and the
device (QEMU) uses a vCPU interrupt to send the used buffer notification.

The VIRTIO specification also allows the notifications to be enabled or disabled dynamically. That way, devices and
drivers can batch buffer notifications or even actively poll for new buffers in virtqueues (busy polling). This approach is
better suited for high traffic rates.

In summary, the VIRTIO driver interface exposes:

e Device's feature bits (which device and guest have to negotiate)

e Status bits

e Configuration space (that contains device specific information, like MAC address)
¢ Notification system (configuration changed, buffer available, buffer used)

e Zero or more virtqueues

e Transport specific interface to the device

Symbol Meaning
I:l virtio data path // Guest \\
element User space
non-virtio data
path element Guest
virtio control path Kernel
element
vring vring virtio-net driver
port virtio PR
controlplane | | (AEEIREEENEEEN @00 f--oo--o-ee- o
PCliransport i
virtio shared i
% memory \ protocel i /
4 data path
a "
how pa "
vring virtio-net device ‘inotifications
P interrupts / T ' it
notifications € " vCPUrg
what BIICESS i
E—— control path :
how pa
Host virtio data

User path interface P
gemu 3 o
Space readmsgy) / writemsgy) S

/" Host v * ™\

Kernel :
space Kym
TAP

A

- /

The VIRTIO network device is a virtual ethernet card, and it supports multiqueue for TX/RX. Empty buffers are placed in
N virtqueues for receiving packets, and outgoing packets are enqueued into another N virtqueues for transmission.

Another virtqueue is used for driver-device communication outside of the data plane, like to control advanced filtering
features, settings like the mac address, or the number of active queues. As a physical NIC, the VIRTIO device supports
features such as many offloadings, and can let the real host's device do them.

To send a packet, the driver sends to the device a buffer that includes metadata information such as desired
offloadings for the packet, followed by the packet frame to transmit. The driver can also split the buffer into multiple
gather entries, e.g. it can split the metadata header from the packet frame.

These buffers are managed by the driver and mapped by the device. In this case the device is "inside" the hypervisor.
Since the hypervisor (QEMU) has access to all the guests’ memory it is capable of locating the buffers and reading or
writing them.

The following flow diagram shows the virtio-net device configuration and the sending of a packet using virtio-net
driver, that communicates with the virtio-net device over PCI. After filling the packet to be sent, it triggers an "available
buffer notification", returning the control to QEMU so it can send the packet through the TAP device.

QEMU then notifies the guest that the buffer operation (reading or writing) is done, and it does that by placing the
data in the virtqueue and sending a used notification event, triggering an interruption in the guest vCPU.

The process of receiving a packet is similar to that of sending it. The only difference is that, in this case, empty buffers
are pre-allocated by the guest and made available to the device so it can write the incoming data to them.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image22.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image22.png

Process Host Kernel Qemu Guest kernel
Component virtio-net virtio-net
[library device driver

operation
protocol / channel

gemu starts]

device discovery

‘ PClscan/mmap PCI BARs

{ virtio driver is bound 1o pei |
< 1 device :

< i Status i virtio configuration - T Tt
e | feature bit negotiation Vifquee allconNon
! virtqueue configuration .
i ! virtio / PCI virtio
| control
! plane
| Do data plane is
i . | Guest send pachket
| T available buffers bL?f{fjgrs
] | notification
| i to send
! send packets 2. \rtin] PCL
: virtio
sendmsgi)/ vmexit s o
syscall IRperpt virtio
dataplane

- » used buffer
| - notification
! vIRQ fioctl
) | : virtio / :
i : vCPU interrupt

2.d-) Vhost protocol

The vhost-net is a kernel driver that implements the handler side of the vhost protocol. In this implementation, QEMU
and the vhost-net kernel driver (handler) use ioctls to exchange vhost messages and a couple of eventfd-like file
descriptors called irgfd and ioeventfd are used to exchange notifications with the guest.

When vhost-net kernel driver is loaded, it exposes a character device on /dev/vhost-net. When QEMU is launched with
vhost-net support it opens it and initializes the vhost-net instance with several ioctl(2) calls. These are necessary to
associate the hypervisor process with the vhost-net instance, prepare for VIRTIO feature negotiation and pass the
guest physical memory mapping to the vhost-net driver.

During the initialization the vhost-net kernel driver creates a kernel thread called vhost-$pid, where $pid is the
hypervisor process pid. This thread is called the "vhost worker thread". A tap device is still used to communicate the
VM with the host, but now the worker thread handles the 1/0 events: it polls for driver notifications or tap events, and
forwards data.

QEMU allocates one eventfd and registers it to both vhost and KVM in order to achieve the notification bypass. The
vhost-$pid kernel thread polls it, and KVM writes to it when the guest writes in a specific address. This mechanism is
named ioeventfd (warns host). This way, a simple read/write operation to a specific guest memory address does not
need to go through the expensive QEMU process wakeup (a context-switch) and can be routed to the vhost worker
kernel thread directly. This also has the advantage of being asynchronous, no need for the vCPU to stop (so no need to
do an immediate context switch).

On the other hand, QEMU allocates another eventfd (warns guest) and registers it to both KVM and vhost for direct
vCPU interruption injection. This mechanism is called irgfd, and it allows any process in the host to inject vCPU
interrupts to the guest by writing to it, with the same advantages (asynchronous, no need for immediate context
switching, etc).

Note: changes in the VIRTIO packet processing backend are completely transparent to the guest who still uses the
standard VIRTIO interface.

2.d.1-) The vhost-user protocol

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image23.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image23.png

As we've seen, the vhost protocol is a set of messages and mechanisms designed to offload the VIRTIO datapath
processing from QEMU (the primary, that wants to offload packet processing) to an external element (the handler, that
configures the VIRTIO rings and does the actual packet processing.).

After talking about the vhost-net approach, we can now explore the vhost-user library. This library, built in DPDK, is a
userspace implementation of the vhost protocol that allows QEMU to offload the VIRTIO device packet processing to
any DPDK application (such as Open vSwitch).

The main difference between the vhost-user library and the vhost-net kernel driver is the communication channel.
While the vhost-net kernel driver implements this channel using ioctls, the vhost-user library defines the structure of
messages that are sent over a unix socket.

Symbol Meaning / \
virtio data path / \
element
non-virtio data
path element
virtio control path
element Host i k.
irtio shared user ; !
vl virtio share ; : i
.i memory space E | virtio-net driver Guest
what \ : : PCI BAR Al
— data v
how Qemu : : ' :
: virtioidata path | virtio-device '
interrupts / process ! ' model !
- o I [}
notifications ' 0
what : : A : ;
— control { + vhost-user !
how . . protocol ; :
1 unix : :
[J call (used buffer 1,
F notification) 1y
DPDK ST Tigld T T T [
APP o
: : kick (available buffer : i :
vhost-user _ _ notification) .0
. P [[
library ioeventid | : X :
! 1
! "L
' —
N 1 L
T 1 T
[[
Host 1 * |*
kernel ' !
. ==l KvmM
space e mmm = -

A few points to mention on this diagram:

The VIRTIO memory region is initially allocated by the guest. Corresponding VIRTIO driver interacts with the VIRTIO
device normally (through the PCl BARs interface defined in the VIRTIO specification.). The virtio-device-model (inside
QEMU) uses the vhost-user protocol to configure the vhost-user library, as well as setting the irgfd and ioeventfd file
descriptors. The VIRTIO memory region that was allocated by the guest is mapped (using mmap syscall) by the vhost-
user library, i.e: the DPDK application.

The result is that the DPDK application can read and write packets directly to and from guest memory and use the
irgfd and the ioeventfd mechanisms to notify with the guest directly.

Like explained at "VFIO assignments: vIOMMU support" session, this approach requires viIOMMU to be enabled in
the virtual machine and this will be explored further in "QEMU securiRemy Lacroixty" session.

3-) QEMU security surface

To better understand the nature of possible vulnerabilities, escapes and/or security matters in QEMU/KVM execution,
we first need to put all the information given so far together.

3.a-) QEMU and OS intersection

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image24.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image24.png

This item will be talking about all possible entry/exit points during a QEMU execution. The idea here is not to explicitly
talk about vulnerabilities in each of them, but first to create a list of all entry/exit points so we can dedicate to security
related observations in next sessions.

As we've seen previously, QEMU running with KVM acceleration will continue to emulate some devices and/or chipsets.
For all subsequent comments this document will be considering the following Virtual Machine being executed:

<domstatus state="running' reason='unpaused' pid='60547"> ©
<monitor path="/var/lib/libvirt/QEMU/domain-18-k8s_749f10a2540344d5/monitor.sock' type='unix'/>
<vcpus>
<vcpu id='0' pid='60568'/>
<vcpu id='1" pid='60569'/>
<vcpu id='2' pid='60570'/>
<vcpu id='3' pid='60571'/>
</vcpus>
<QEMUCaps>
<flag name='KVM'/>
<flag name='no-hpet'/>
<flag name='virtio-tx-alg'/>
<flag name='virtio-blk-pci.ioeventfd'/>
<flag name='virtio-blk-pci.event_idx'/>
<flag name='virtio-net-pci.event_idx'/>
<flag name="piix3-usb-uhci'/>
<flag name="piix4-usb-uhci'/>
<flag name='vt82c686b-usb-uhci'/>
<flag name='usb-hub'/>
<flag name='no-acpi'/>
<flag name='virtio-blk-pci.scsi'/>
<flag name="scsi-disk.channel'/>
<flag name='scsi-block'/>
<flag name='dump-guest-memory'/>
<flag name='virtio-scsi-pci'/>
<flag name='blockio'/>
<flag name='disable-s3'/>
<flag name='disable-s4'/>
<flag name='ide-drive.wwn'/>
<flag name="scsi-disk.wwn'/>
<flag name='seccomp-sandbox'/>
<flag name="reboot-timeout'/>
<flag name='vnc'/>
<flag name='cirrus-vga'/>
<flag name='device-video-primary'/>
<flag name='nbd-server'/>
<flag name='virtio-rng'/>
<flag name="rng-random'/>
<flag name='rng-egd'/>
<flag name="pci-bridge'/>
<flag name='mem-merge'/>
<flag name='drive-discard'/>
<flag name="i440fx-pci-hole64-size'/>
<flag name='KVM-pit-lost-tick-policy'/>
<flag name='boot-strict'/>
<flag name='usb-kbd'/>
<flag name='msg-timestamp'/>
<flag name="active-commit'/>
<flag name='change-backing-file'/>
<flag name='memory-backend-ram'/>
<flag name="numa'/>
<flag name='memory-backend-file'/>
<flag name="rtc-reset-reinjection'/>

<flag name='splash-timeout'/>

<flag name='iothread'/>

<flag name='migrate-rdma'/>

<flag name='drive-iotune-max'/>

<flag name='pc-dimm'/>

<flag name='machine-vmport-opt'/>
<flag name='aes-key-wrap'/>

<flag name='dea-key-wrap'/>

<flag name="'vhost-user-multiqueue'/>
<flag name='migration-event'/>

<flag name='virtio-net'/>

<flag name='gic-version'/>

<flag name='incoming-defer'/>

<flag name='chardev-file-append'/>
<flag name='vserport-change-event'/>
<flag name='virtio-balloon-pci.deflate-on-oom'/>
<flag name='chardev-logfile'/>

<flag name='debug-threads'/>

<flag name='secret'/>

<flag name='virtio-scsi-pci.iothread'/>
<flag name='name-guest'/>

<flag name='drive-detect-zeroes'/>
<flag name="tIs-creds-x509'/>

<flag name='smm'/>

<flag name='virtio-pci-disable-legacy'/>
<flag name='query-hotpluggable-cpus'/>
<flag name='virtio-net.rx_queue_size'/>
<flag name='drive-iotune-max-length'/>
<flag name='query-gmp-schema'/>
<flag name='gluster.debug_level'/>
<flag name='vhost-scsi'/>

<flag name='drive-iotune-group'/>
<flag name='query-cpu-model-expansion'/>
<flag name='virtio-net.host_mtu'/>
<flag name='query-cpu-definitions'/>
<flag name='block-write-threshold'/>
<flag name='query-named-block-nodes'/>
<flag name='cpu-cache'/>

<flag name="kernel-irqchip'/>

<flag name='kernel-irqchip.split'/>
<flag name='virtio.iommu_platform'/>
<flag name='virtio.ats'/>

<flag name='loadparm'/>

<flag name="'vnc-multi-servers'/>

<flag name='virtio-net.tx_queue_size'/>
<flag name='chardev-reconnect'/>
<flag name='vxhs'/>

<flag name='virtio-blk.num-queues'/>
<flag name='vmcoreinfo'/>

<flag name='numa.dist'/>

<flag name='disk-share-rw'/>

<flag name='iscsi.password-secret'/>
<flag name='isa-serial'/>

<flag name='dump-completed'/>

<flag name='qcow2-luks'/>

<flag name='seccomp-blacklist'/>

<flag name='query-cpus-fast'/>

<flag name='disk-write-cache'/>

<flag name='nbd-tls'/>

<flag name='pr-manager-helper'/>

<flag name='qom-list-properties'/>
<flag name='memory-backend-file.discard-data'/>
<flag name='sdl-gl'/>
<flag name='screendump_device'/>
<flag name='blockdev-del'/>
<flag name='vmgenid'/>
<flag name='vhost-vsock'/>
<flag name='chardev-fd-pass'/>
<flag name='egl-headless'/>
<flag name='blockdev'/>
<flag name="memory-backend-memfd'/>
<flag name='memory-backend-memfd.hugetlb'/>
<flag name='iothread.poll-max-ns'/>
<flag name='egl-headless.rendernode'/>
<flag name="'memory-backend-file.align'/>
<flag name='memory-backend-file.pmem'/>
<flag name='scsi-disk.device_id'/>
<flag name='virtio-pci-non-transitional'/>
<flag name='overcommit'/>
<flag name='query-current-machine'/>
<flag name='bitmap-merge'/>
<flag name='nbd-bitmap'/>
<flag name='x86-max-cpu'/>
<flag name='cpu-unavailable-features'/>
<flag name='canonical-cpu-features'/>
<flag name="migration-file-drop-cache'/>
<flag name="ramfb'/>
<flag name='blockdev-file-dynamic-auto-read-only'/>
<flag name='savevm-monitor-nodes'/>
<flag name='drive-nvme'/>
</QEMUCaps>
<devices>
<device alias="rng0'/>
<device alias='virtio-disk2'/>
<device alias="virtio-disk1'/>
<device alias='virtio-disk0'/>
<device alias='videoQ'/>
<device alias='serial0'/>
<device alias="net0'/>
<device alias="balloon0'/>
<device alias='usb'/>
</devices>
<libDir path='/var/lib/libvirt/QEMU/domain-18-k8s_749f10a2540344d5'/>
<channelTargetDir path="'/var/lib/libvirt/QEMU/channel/target/domain-18-k8s_749f10a2540344d5'/>
<chardevStdioLogd/>
<rememberOwner/>
<allowReboot value='yes'/>
<nodename index='4'/>
<blockjobs active="no'/>
<agentTimeout>-2</agentTimeout>
<domain type='KVM' id="18">
<name>k8s_749f10a2540344d58acde50791adb38e_7212_34a072e8-219b-4482-b70f-ab4ade4c58f3</name>
<uuid>6814edd9-cd66-4256-a603-6f6591841c8c</uuid>
<memory unit='KiB'>16781312</memory>
<currentMemory unit='KiB'>16781312</currentMemory>
<vcpu placement='static' cpuset='17,19,49,51'>4</vcpu>
<cputune>
<vcpupin vepu='0' cpuset="'17,49'/>
<vcpupin vcpu="1"' cpuset='17,49'/>
<vcpupin vcpu="'2' cpuset='19,51'/>

<vcpupin vcpu='3' cpuset='19,51'/>
<emulatorpin cpuset='17,19,49,51'/>
</cputune>
<numatune>
<memory mode='strict' nodeset='1'/>
<memnode cellid='0" mode='strict' nodeset="1'/>
</numatune>
<resource>
<partition>/machine</partition>
</resource>
<sysinfo type='smbios'>
<system>
<entry name='family'>7212_34a072e8-219b-4482-b70f-ab4ade4c58f3</entry>
</system>
<baseBoard>
<entry name="manufacturer'>KVM:2dcee5e5e43726c4fc99fb8db99e2b7b76bcab13</entry>
<entry name='asset'>34a072e8-219b-4482-b70f-ab4ade4c58f3</entry>
</baseBoard>
<chassis>
<entry name='manufacturer'></entry>
<entry name='asset'></entry>
</chassis>
</sysinfo>
<0S>
<type arch='x86_64' machine='pc-i440fx-4.2'>hvm</type>
<boot dev="hd'/>
<smbios mode='sysinfo'/>
</os>
<features>
<acpi/>
</features>
<cpu mode='custom' match='exact' check="full'>
<model fallback='forbid'>Broadwell-IBRS</model>
<vendor>Intel</vendor>
<topology sockets="1" cores="2' threads="2'/>
<feature policy="require' name='vme'/>
<feature policy="require' name='ss'/>
<feature policy="require' name='vmx'/>
<feature policy="require' name='f16c'/>
<feature policy="require' name="rdrand'/>
<feature policy="require' name="'hypervisor'/>
<feature policy="require' name='arat'/>
<feature policy="require' name='tsc_adjust'/>
<feature policy="require' name='stibp'/>
<feature policy="require' name='ssbd'/>
<feature policy="require' name="xsaveopt'/>
<feature policy="require' name="'pdpeigb'/>
<feature policy="require' name='abm'/>
<numa>
<cell id='0" cpus='0-3" memory='16781312" unit="KiB'/>
</numa>
</cpu>
<clock offset='utc'>
<timer name="rtc' tickpolicy="catchup'/>
</clock>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>
<emulator>/usr/bin/gemu-system-x86_64</emulator>

<disk type="file' device='disk">
<driver name='QEMU' type='qcow?2' cache='writethrough' error_policy="report'/>
<source file="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.qCcow2' index='3">
<privateData>
<nodenames>
<nodename type='storage' name='libvirt-3-storage'/>
<nodename type='format' name='libvirt-3-format'/>
</nodenames>
</privateData>
</source>
<backingStore type='file' index='4">
<format type='qcow?2'/>
<source file="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.(COW2">
<privateData>
<nodenames>
<nodename type='storage' name='libvirt-4-storage'/>
<nodename type='format' name='libvirt-4-format'/>
</nodenames>
</privateData>
</source>
<backingStore/>
</backingStore>
<target dev='vda' bus='virtio'/>
<iotune>
<total_bytes_sec>49152000</total_bytes_sec>
<total_iops_sec>3000</total_iops_sec>
<total_bytes_sec_max>49152000</total_bytes_sec_max>
<total_iops_sec_max>3000</total_iops_sec_max>
</iotune>
<serial>7212-66536caf-30c4-4f8c-984f-c41749ae3f9e-pzgpn</serial>
<alias name='virtio-disk0'/>
<address type="pci' domain='0x0000' bus='0x00" slot='0x04' function='0x0'/>
<privateData>
<gom name='/machine/peripheral/virtio-disk0/virtio-backend'/>
</privateData>
</disk>
<disk type="file' device='disk'>
<driver name='QEMU' type="raw' cache='writethrough' error_policy="report'/>
<source file="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXxX/init-disk' index='2">
<privateData>
<nodenames>
<nodename type='storage' name='libvirt-2-storage'/>
<nodename type='format' name='libvirt-2-format'/>
</nodenames>
</privateData>
</source>
<backingStore/>
<target dev='vdb' bus='virtio'/>
<iotune>
<total_bytes_sec>16384000</total_bytes_sec>
<total_iops_sec>1000</total_iops_sec>
<total_bytes_sec_max>16384000</total_bytes_sec_max>
<total_iops_sec_max>1000</total_iops_sec_max>
</iotune>
<serial>cloud-init-7212_34a072e8-219b-4482-b70f-ab4ade4c58f3-bphhv</serial>
<alias name='virtio-disk1'/>
<address type="pci' domain='0x0000' bus='0x00" slot="0x05' function="'0x0"/>
<privateData>
<gom name='/machine/peripheral/virtio-disk1/virtio-backend'/>
</privateData>

</disk>
<disk type="file' device='disk'>
<driver name="QEMU' type="raw' cache='writethrough' error_policy="report'/>
<source file="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/swap' index="1">
<privateData>
<nodenames>
<nodename type='storage' name='libvirt-1-storage'/>
<nodename type='format' name='libvirt-1-format'/>
</nodenames>
</privateData>
</source>
<backingStore/>
<target dev='vdc' bus='virtio'/>
<iotune>
<total_bytes_sec>16384000</total_bytes_sec>
<total_iops_sec>1000</total_iops_sec>
<total_bytes_sec_max>16384000</total_bytes_sec_max>
<total_iops_sec_max>1000</total_iops_sec_max>
</iotune>
<serial>cloud-init-</serial>
<alias name='virtio-disk2'/>
<address type="pci' domain='0x0000' bus='0x00" slot='0x06' function='0x0"/>
<privateData>
<gom name='/machine/peripheral/virtio-disk2/virtio-backend'/>
</privateData>
</disk>
<controller type='usb' index='0" model="piix3-uhci>
<alias name='usb'/>
<address type="pci' domain='0x0000' bus='0x00" slot="0x01" function="'0x2'/>
</controller>
<controller type='pci' index='0' model='pci-root">
<alias name='pci.0'/>
</controller>
<interface type='direct’>
<mac address='aa:bb:cc:dd:ee:ff'/>
<source dev='if0aabbccaabbc' mode="passthrough'/>
<bandwidth>
<inbound average='1000000' peak='1000000'/>
</bandwidth>
<target dev="macvtap0'/>
<model type='virtio'/>
<driver queues='3'/>
<alias name="net0'/>
<address type="pci' domain='0x0000' bus='0x00" slot="0x03' function='0x0"/>
</interface>
<serial type="pty'>
<source path='/dev/pts/0'/>
<target type='isa-serial' port='0">
<model name='isa-serial'/>
</target>
<alias name='serial0'/>
</serial>
<console type='pty' tty='/dev/pts/0'>
<source path='/dev/pts/0'/>
<target type='serial' port="0'/>
<alias name='serial0'/>
</console>
<input type='mouse' bus='ps2'>
<alias name='input0'/>
</input>

<input type='keyboard' bus='ps2'>
<alias name='input1'/>
</input>
<graphics type='vnc' port='5900" autoport="yes' websocketGenerated='no' listen='0.0.0.0' passwd="***#*%">
<listen type='address' address='0.0.0.0' fromConfig='0' autoGenerated="no'/>
</graphics>
<video>
<model type='cirrus' vram='16384" heads="1" primary='yes'/>
<alias name='video0Q'/>
<address type='pci' domain='0x0000' bus='0x00' slot='"0x02' function='0x0"/>
</video>
<memballoon model='virtio">
<stats period='30'/>
<alias name='balloon0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='"0x07' function='0x0"/>
</memballoon>
<rng model='virtio'>
<rate bytes='1234' period='2000'/>
<backend model="random'>/dev/urandom</backend>
<alias name="rng0'/>
<address type="pci' domain='0x0000' bus='0x00" slot="0x08' function='0x0"/>
</rng>
</devices>
<seclabel type='dynamic' model="apparmor’ relabel="yes'>
<label>libvirt-6814edd9-cd66-4256-a603-616591841c8c</label>
<imagelabel>libvirt-6814edd9-cd66-4256-a603-6f6591841c8c</imagelabel>
</seclabel>
<seclabel type='dynamic' model='dac' relabel="yes'>
<label>+64055:+116</label>
<imagelabel>+64055:+116</imagelabel>
</seclabel>
</domain>
</domstatus>

3.b-) QEMU vCPU assignment & side-channel observations

This document won't concentrate many efforts in explaining side channel attacks and its mitigations, as those are HW
related and would require, perhaps, many documents to be explained. Nevertheless, some explanation might be
worth, specially regarding why avoiding vCPUs being scheduled in the same real HW cores/threads could be a good
idea.

You will find more information about this topic HERE and in all documents listed there as references.

For now, all you need to know is: a side-channel attack is any attack based on information gained from the
implementation of a computer system, rather than weaknesses in the implemented algorithm itself. Timing
information, power consumption, electromagnetic leaks or even sound can provide an extra source of information,
which can be exploited.

General classes of side channel attack do exist, including power-monitoring, electromagnetic and acoustic analysis,
etc. For our case, virtualization world, the important classes are the ones related to CPU internals observations.

The following CVEs (and more) have been discovered on this topic:
Side Channel Attacks - Spectre and Meltdown

e CVE-2017-5753 - Bounds Check Bypass (Variant 1 / Spectre)
e CVE-2017-5715 - Branch Target Injection (Variant 2 / Spectre)
e CVE-2017-5754 - Rogue Data Cache Load (Variant 3 / Meltdown)

Side Channel Attacks - Others

https://rafaeldtinoco.github.io/howtos/KVM-vulnerabilities-and-mitigations.html

e (CVE-2018-3665 - Lazy FP Save/Restore (LazyFP)

e (CVE-2018-3693 - Bounds Check Bypass Store (Variant (or Spectre) 1.1 and 1.2 / BCBS)
e CVE-2018-3640 - Rogue System Register Read (RSRE / Variant 3a)

e (CVE-2018-3639 - Speculative Store Bypass (SSB / Variant 4 / Spectre-NG)

L1 Terminal Fault (L1TF)

e CVE-2018-3615 - Intel SGX (Software Guard Extensions) (Foreshadow / L1TF)
e (CVE-2018-3620 - Operating Systems and System Management Mode (Fault-OS / SMM) (L1TF)
e CVE-2018-3646 - Virtualization Extensions (L1TF)

Microarchitectural Data Sampling (MDS)

e CVE-2018-12126 - Microarchitectural Store Buffer Data Sampling (MSBDS / Fallout)

e CVE-2018-12127 - Microarchitectural Load Port Data Sampling (MLPDS / RIDL)

e CVE-2018-12130 - Microarchitectural Fill Buffer Data Sampling (MFBDS / ZombielLoad)
e CVE-2019-11091 - Microarchitectural Data Sampling Uncacheable Memory (MDSUM)

I This list isn't fully updated to the latest, check official sources for updated information
And this is why it's important to understand risks and mitigations for this class of security vulnerabilities.

If we take as an example the following domain XML definition:

<vcpu placement='static' cpuset='17,19,49,51'>4</vcpu> ©
<cputune>

<vcpupin vcpu='0' cpuset='17,49'/>

<vcpupin vepu="1' cpuset="'17,49'/>

<vcpupin vcpu="'2' cpuset='19,51'/>

<vcpupin vcpu='3' cpuset='19,51'/>

<emulatorpin cpuset='17,19,49,51'/>
</cputune>
<numatune>

<memory mode='strict' nodeset='1'/>

<memnode cellid="'0" mode='strict' nodeset="1'/>
</numatune>

<cpu mode='custom' match='exact' check="full'>
<model fallback='forbid">Broadwell-IBRS</model>
<vendor>Intel</vendor>
<topology sockets="1" cores="2' threads="2'/>
<feature policy="require' name='vme'/>
<feature policy="require' name='ss'/>
<feature policy="require' name='vmx'/>
<feature policy="require' name='f16c'/>
<feature policy="require' name="rdrand'/>
<feature policy="require' name='hypervisor'/>
<feature policy="require' name='arat'/>
<feature policy="require' name="tsc_adjust'/>
<feature policy="require' name='stibp'/>
<feature policy="require' name='ssbhd'/>
<feature policy="require' name="xsaveopt'/>
<feature policy="require' name="'pdpeigb'/>
<feature policy="require' name='abm'/>
<numa>

<cell id="0" cpus='0-3" memory='16781312"' unit='KiB'/>

</numa>

</cpu>

We can see that libvirt & QEMU will operate together in order to create 4 x OS processes acting as vCPUs for the virtual
machine being created. This can also be seen at the top of the descriptive XML file (after machine is already running):

<vcpus> ©
<vcpu id='0" pid='60568'/>
<vcpu id="1" pid='60569'/>
<vcpu id="2' pid='60570'/>
<vcpu id='3' pid='60571'/>
</vcpus>

Without entering the performance world, trying to stay only in the security effectiveness of this setup, we have to
understand why each of those PIDs were placed in specific CPUs. If we take a look at the 'Iscpu' output we will
understand how NUMA architecture was designed for the host chipset:

NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,6 ©
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,6

We still don't know how memory displacement is set within the NUMA domains, but this is already enough for to
understand that this machine has 2 x NUMA domains, each one with 1 x socket with 16 x cores (and 2 x threads) each.
That will give enough information about CPU sharing among different virtual machines and that information is
imperative for us to understand side-channel attack techniques (and how they could affect the environment).

By creating processor sets:

<cputune> &
<vcpupin vcpu='0' cpuset='17,49'/>
<vcpupin vcpu="1" cpuset='17,49'/>
<vcpupin vepu='2' cpuset="'19,51'/>
<vcpupin vcpu='3' cpuset='19,51'/>
<emulatorpin cpuset='17,19,49,51'/>
</cputune>

and placing QEMU vCPU and emulation processes (at least 5 x OS processes in this example) in the same processor set
(placed in real CPUs #17, #49, #19, #51), libvirt uses the host kernel cgroup facility to provide isolation for these vCPUs:
they will only migrate in between the real CPUs defined int the XML.

e vCPUs 0 & 1 will migrate between real CPUs 17 and 49
e VvCPUs 2 & 3 will migrate between real CPUs 19 and 51

e QEMU emulation thread will migrate in between the 4 real CPUs

Having only 2 real CPUs available to each vCPU, and those 2 real CPUs shared among the 2 vCPUs as well, tell us
something: there is clearly an intent to keep the vCPU scheduled within the same real CPU core. It is likely working as a
"2 threads" per 2 vCPUs virtual machine.

We can confirm that by checking topology in sysfs:

/sys/devices/system/cpu/cpul7/topology: B
$ cat thread_siblings_list

17,49

/sys/devices/system/cpu/cpu19/topology:

$ cat thread_siblings_list

19,51

This means that this virtual machine has 4 vCPUs (2 cores and 2 threads) and both of its cores are placed in the same
NUMA domain (anything different from this could cause performance problems because of memory latency being
bigger in between the NUMA domains).

Why is it important to understand the CPU pinning and sharing concepts ?

Side channel attacks are related to CPU sharing: an attacker tries to discover information from internal (to CPU) cached
data by executing other instructions in the CPU right after a task migration (in-off the CPU) happened. Some
vulnerabilities are related to boundaries on branch instructions (Spectre / Variant 1), others are related to CPU indirect
branches (Spectre / Variant 2).

Particularly for Spectre Variant 2, there are some mitigations that we can mention here that is worth. CPU firmware
might have mitigations for this side channel attack type: IBRS, STIBP and IPBP. Some of those terms can be found in
the virtual machine definition XML from our example:

<cpu mode='custom' match='exact' check="full'> ©
<model fallback='forbid'>Broadwell-IBRS</model>
<vendor>Intel</vendor>
<topology sockets='1" cores="2' threads="'2'/>
<feature policy="require' name='stibp'/>
<feature policy="require' name='ssbhd'/>

</cpu>

This XML is telling that any CPU not containing the mitigation STIBP will not satisfy the VM needs to be started: The
Single Thread Indirect Branch Predictors (STIBP) prevents indirect branch predictions from being controlled by the
sibling HW thread. This might also explain why a 1:1 relationship between the CPU HW threads and the vCPU pinnings
exist:

<cputune> =
<vcpupin vcpu='0' cpuset='17,49'/>
<vcpupin vcpu="1" cpuset='17,49'/>

By not sharing CPUs #17 and #49 (HW siblings threads) with any workload (just this VM) you could be mitigating risks
for this side channel technique. By having the STIBP firmware mitigation you reduce risks of sharing the CPU HW
thread between different workloads.

This was just 1 example, for 1 specific CVE and its mitigation. There are many other side channel attacks reported and
mitigated already, for multiple architectures, and the intent of this document is only to instruct reader how to better
understand the correlation between the mitigation technique, mitigation nomenclature and how QEMU deals with it.

I More details can be found at this place

A quick observation about side channel attacks logging and introspection: it is very hard, if not impossible, to see if a
user is targeting a system with those types of techniques. For some cases a CPU instruction introspection would be
needed - to realize that a particular CPU part is being speculated - as the workload would not differentiate much from
the regular CPU workloads. That is why most of these mitigations are better handled by CPU firmware changes and
those also try to cope with performance penalties the mitigations will cause.

Note: There are also some software only mitigations, like Kernel Page-Table Isolation - KPTI, or just PTI - which is
software-only technique that helped in the Meltdown vulnerability.

3.c-) QEMU devices emulation

Whenever QEMU is using KVM as its VMM (virtual machine manager) it does not have to emulate (or intercept)
instructions unless some emulation is required. Without entering in too many technical details on how this is done,
the important part to understand is this:

https://wiki.ubuntu.com/rafaeldtinoco?action=AttachFile&do=view&target=QEMU_vuln_and_mit_explained.html

QEMU Ermulated Machine Model Guest

Whixroot Platfarm WhiXNonroot
Ring 3 Ring 3
_______________ G :ESI:_
YhiXNon root
— Ring 0
-
CF|3
l wCPU | | woPU
H/W EPTTLE
10 Thread main loop VM Entry
Kemel
th‘:gl.'g I VM Exit EPT Yiolate HFE &

enter
guest mode

CPU CPU

Paying special attention to the right side of the picture above, you can see "VM Entry" and "VM Exist" signs. The main
idea is this: the KVM module sets the logical vCPU states registers into a specific area and, using an OS process (in
name of a vCPU) it calls a "enter virtualization" instruction, that will start running code pointed by the logical vCPU
registers (and the vCPU assumes control). The QEMU OS vCPU process will be waiting for this call to return meanwhile
the vCPU process is running guest OS instructions.

Now, imagining the guest as a machine, it will be running its kernel and all its user-land code inside those 4 vCPUs -
let's say - and causing its OS processes to enter and leave the vCPUs. This won't affect QEMU vCPU processes (4 of
them), that will stay waiting the "enter virtualization" instruction to end. If, for any reason, the guest touches memory
addresses of an area that was described in the logical vCPU registes as an area that needs emulation... it will cause a
VM_EXIT and the QEMU vCPU process will return from the "enter virtualization" call.

QEMU will have to understand the reason for the VM_EXIT to happen - and there is a specific reason for EMULATED 1/0
need - and deal with the emulation for the memory address change before returning control to the vCPU again, doing
another "enter virtualization" call for the same vCPU OS process.

This process can be seen when using tracing tools like systemtap (ebpf, ftrace, etc). Those traces allows you to do
something on a software break point (QEMU). With systemtap, a simple script such as:

probe process("QEMU-system-x86_64").function("KVM_arch_post_run")
{
try {
reason = $cpu->KVM_run->exit_reason;
if (reason !=2){
printf("EXIT reason: %u\n", reason);
}
if (reason == 2) {
port = $cpu->KVM_run->io->port;
printf("1/O port: %x\n", port)
}
} catch (msg) {
printin("error\n", msg)

will tell you the reason for a vCPU to have exited the 'virtualization function' (Intel VT-x). In the code above, we are
focusing in an exist through 10 emulation, like being discussed in this topic.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image25.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image25.png

As you might already have thought by now, security issues for emulated devices rise from the fact that the guest OS
kernel driver communicates to hypervisor through this emulation. Vulnerabilities here are tightly coupled to QEMU
emulation code and could case QEMU to run arbitrary instructions on behalf of a guest, for example.

From the example we are using in this document, the emulation would come from the follow devices being defined to
this virtual machine:

<devices> ©
<controller type='usb' index='0" model="piix3-uhci>
<alias name='usb'/>
<address type="pci' domain='0x0000' bus='0x00" slot="0x01' function="'0x2'/>
</controller>
<controller type="pci' index='0" model="pci-root'>
<alias name="pci.0'/>
</controller>
<serial type="pty"'>
<source path='/dev/pts/0'/>
<target type='isa-serial' port='0">
<model name='isa-serial'/>
</target>
<alias name='serial0'/>
</serial>
<console type='pty' tty='/dev/pts/0'>
<source path="/dev/pts/0'/>
<target type='serial' port="0'/>
<alias name='serial0'/>
</console>
<input type='mouse' bus='ps2'>
<alias name='input0'/>
</input>
<input type='keyboard' bus='ps2'>
<alias name='input1'/>
</input>
<video>
<model type='cirrus' vram='16384"' heads="1" primary='yes'/>
<alias name='video0Q'/>
<address type='pci' domain='0x0000' bus='0x00' slot='"0x02' function='0x0"/>
</video>
</devices>

From the current list we have the following emulated devices:

e |ISA controller

e PS2 controller (mouse and keyboard)
e PCl controller

e USB controller in PCl bus

e |SA Serial Controller

e Cirrus PCI VGA Adapter

The security surface here relies in how the devices are emulated inside the QEMU code and potential CVEs
targeting the device emulation code within QEMU.

If we take the QEMU serial emulation by an example of vulnerability surface:
[0.750547] Serial: 8250/16550 driver, 32 ports, IRQ sharing enabled

Anytime the guest writes to its internal ISA address 0x3ff - the old 16-bit internal BUS, being emulated by QEMU as well
- using the following instructions:

__asm("movw $0x3ff, %dx"); //ttys0 isai/o address @
_asm("movb $0x1f, %al"); // moves ascii unit sep. char to %al
__asm("outb %al, (%dx)"); // writes the char to scratch register (0x3ff)

the vCPU (inside guest) responsible for the execution of the I/0 instruction will exit the virtualization function
(VM_EXIT) on the host so QEMU can emulate the 8250 serial controller HW (the virtualized memory registers) and, right
after, return control to the guest vCPU.

If, again, using systemtap, we create a script like:

probe process("QEMU-system-x86_64").function("KVM_arch_post_run") &
{
try {
reason = $cpu->KVM_run->exit_reason;
if (reason ==2) {

port = $cpu->KVM_run->io->port;
dir = $cpu->KVM_run->jo->direction;
size = $cpu->KVM_run->io->size;
count = $cpu->KVM_run->io->count;

if (port == 0x3ff) {
ptr = $cpu->KVM_run;
offset = $cpu->KVM_run->io->data_offset;
data = ptr + offset;
// do something

}
} catch {

systemtap is capable of probing QEMU-system-x86_64 process internal functions and executing code described
above, whenever described probe (function KVM_arch_post_run) is called (similarly to a debugger break point).

We will be able to monitor (trace / debug) each time a single character is written to device "/dev/ttyS0" inside the
virtual machine. Each character written to an ISA 8250 controller causes a VM_EXIT of exec'ing vCPU: it gives the real
CPU back to the QEMU process and it will emulate the 8250 controller (internal registers and behavior) for the guest
BEFORE returning the real CPU back to the vCPU by executing the virtualization function.

An example of this scenario - for an emulation that is not being used in our virtual machine example - is
described in CVE-2019-6778 subtopic of QEMU CVEs session bellow

3.e-) QEMU devices acceleration

Virtio specification has been extensively described so far and you will find all information described at the SR-IOV
assignments: HW virtual functions.

Idea of this session is to highlight the intersection between the Host OS and the Guest OS, where a security
vulnerability could probably raise: the virtio-devices security surface.

From the same virtual machine XML description file we've been using so far, we can isolate the non-disk VIRTIO
devices:

<devices> ©
<memballoon model='virtio'>
<stats period='30'/>
<alias name='balloon0'/>
<address type="pci' domain='0x0000' bus='0x00" slot="0x07' function='0x0"/>

</memballoon>

<rng model='virtio'>
<rate bytes='1234' period='2000'/>
<backend model="random'>/dev/urandom</backend>
<alias name="rng0'/>
<address type="pci' domain='0x0000' bus='0x00" slot="0x08' function='0x0"/>

</rng>

</devices>
I There is a specific VIRTIO disk session next (not being considered now)

And there aren't many para-paravirtualized devices configured (other than disks):

e memballoon: allows virtual machine memory to be reclaimed by the Host OS in order to better control its
resources.

e random number generator: fills guest with entropy to its entropy pools.
Attack surface for this session is either one device or another:
1. SECURITY: virtio rng

Most of the security CVEs related to entropy is due to insufficient randomness (entropy) in a particular device that
should act as a generator. QEMU implements some different rng implementations internally.

By using a VIRTIO rng device, GUEST requests entropy from QEMU process through the VIRTIO ring data structures,
just like explained at session How does VIRTIO devices work ?. By default, QEMU provides entropy to a VIRTIO rng
device by reading /dev/urandom of the Host OS (it could also be through gathering daemon: egd).

The HostOS kernel might be able to get entropy from different HW (or software) sources, most commonly:

e Intel RDRAND CPU instruction (pseudo-random number generator).

e Intel RDSEED instruction (better entropy based on thermal events).

This attack surface has MUCH TO DO with the side channel attack techniques called Microarchitectural Data
Sampling, described in item QEMU vCPU assignment & side-channel attacks previously, but they are tightly related to
a recent side-channel type vulnerability:

e Special Register Buffer Data Sampling

On affected processors, Intel has released microcode updates whose default behavior is to modify the RDRAND,
RDSEED, and EGETKEY instructions to overwrite stale special register data in the shared staging buffer before the stale
data can be accessed by any other logical processor on the same core or on a different core.

During execution of the RDRAND, RDSEED, or EGETKEY instructions, off-core accesses from other logical processors
will be delayed until the special register read is complete and the stale data in the shared staging buffer is overwritten.

I Obviously this mitigation has performance impacts for overall RAND/SEED CPU instructions
2. SECURITY: memory ballooning

Attack surface here would be related to how the guest inflates or deflates its memory to force the HostOS to either
provide it more memory, or reclaim memory being used by it. There is no automatic ballooning being done but there
is an interface configured (device) to make it available if requested by the VMM administrator.

CVE-2021-28039 is an example of ballooning CVE (although is for Xen hypervisor) trying to harm HostOS by
exploring the ballooning configuration interface (in between hypervisor and guest).

3.f-) QEMU virtual disk devices

In previous item we've seen all accelerated (or sometimes called virtio) devices other than disks. Now it is time to
concentrate a bit in the security surface of disks and how they can be accessed by virtual machines.

With our initial virtual machine definition example:

<devices> &

<disk type="file' device='disk'>
<driver name='QEMU' type='qcow?2' cache='writethrough' error_policy="report'/>
<source file="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.QCow?2' index='3'/>
<backingStore type='file' index='4">

<format type='qcow2'/>
<source file="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.QCOW2'/>

</backingStore>
<target dev='vda' bus='virtio'/>
<alias name='virtio-disk0'/>

</disk>

<disk type="file' device='disk'>
<driver name='QEMU' type="raw' cache='writethrough' error_policy="report'/>
<source file="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXxXX/init-disk' index="'2"/>
<backingStore/>
<target dev='vdb' bus='virtio'/>
<alias name='virtio-disk1'/>

</disk>

<disk type="file' device='disk'>
<driver name='QEMU' type="raw' cache='writethrough' error_policy="report'/>
<source file="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/swap' index="1"/>
<backingStore/>
<target dev='vdc' bus='virtio'/>
<alias name='virtio-disk2'/>

</disk>

</devices>

we have the following vdisks:

e virtio-disk0: vda virtio-blk device with a qcow2 backing device (root disk)
e virtio-disk1: vdb virtio-blk device with a raw backing device (swap disk)

e virtio-disk2: vdc virtio-blk device with a raw backing device (cloud-init)

As described earlier, there are many, many, ways to either emulate or accelerate a disk device, just like a network
device. In this particular session we're only focusing in the virtio-blk approach (not virtio-scsi with other backing
device/library). Thus, the security surface being described here is only related to virtio-blk devices (and not complete).

If you remember how the VIRTIO transport layer worked, with its vring buffers shared between the virtual machine
and the QEMU process (or the kernel vhost thread on behalf of a virtual machine), you will also remember that this
'‘buffer intersection' is just one attack surface that exists when it comes to vdisks subject.

By also checking how vdisks can be cached by the HostOS:

&] 8
3 =
% Guest OS Pagecache %
E + 0.5. flush E:
uga‘ - Virtual Disk device o :%‘
Guest T
Host l
Qemu [vdisk image

- Host OS Pagecache

L= Physical Disk platters -

W Nocache (direct /O) B Writeback
W Writethough B Barier passing
ON

Note: assuming that write barriers are enabled on both guest and host OS

It is clear that vdisk's security depends on the type of I/0 being used by the virtual machine (sync, async, buffered,
direct) and the HostOS pagecache exposure as well.

Historically, the virtio-blk driver/interface has always been very stable, with almost no CVEs. There were some old CVEs
related to HEAP memory overflows because of bad memory alignment: CVE-2011-1750, but nothing recent.

I virtio-blk devices security surface depends on backing storage driver (Ceph, Gluster, Local File) internals.

I virtio-scsi devices security surface depends on backing storage driver (QEMU, LIO and libISCSI targets) internals.

3.g-) QEMU storage backends

QEMU can use different storage backing technologies to support the virtual machine virtio-block device. Just like
showed in the virtio-scsi case, in session Block Devices, LUNs and Disks, virtio-blk devices can be backed by
technologies such as Ceph or Gluster.

Talking specifically about Ceph, Ceph's software libraries provide client applications with direct access to the reliable
autonomic distributed object store (RADOS) object-based storage system, and also provide a foundation for some of
Ceph's features, including RADOS Block Device (RBD), RADOS Gateway, and the Ceph File System.

Ceph's object storage system allows users to mount Ceph as a thin-provisioned block device. When an application
writes data to Ceph using a block device, Ceph automatically stripes and replicates the data across the cluster. Ceph's
RADOS Block Device (RBD) also integrates with Kernel-based Virtual Machines (KVMs).

This is how QEMU uses librbd as a storage backend engine:

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image26.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image26.png
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1750

Ceph Cluster

and, obviously, each different backing storage mechanism increases or decreases the security surface depending on
the resources that are shared with the HostOS and the mechanisms needed for it to operate (such as authentication,
communication, and so).

3.h-) QEMU vNIC AND SR-IOV
Most of the network possible scenarios have been explained in the two previous sessions:

e Device Para-Virtualization: explaining VIRTIO acceleration

¢ QEMU Internals: explaining Virtio Implementation and Protocol

As described earlier, there are many different ways you can have a vNIC declared in a virtual machine and backed by
either the QEMU process or the Host OS kernel (or some other off load user-land tool such as DPDK and/or
OpenVswitch):

e virtio-net <=> tun/tap device (driven by QEMU)

e virtio-net <=> vhost-net (driven by kernel)

e Virtio-net <=> openvswitch

e virtio-net <=> SR-I0V (backed by macvtap/vhost-user)

e virtio-net <=> SR-IOV (with VF directly assigned to guest)

As in other parts, this document is narrowing the scope to a specific virtual machine declaration and that is where we
get the following vNIC from:

<interface type='direct"> =

<mac address="aa:bb:cc:aa:bb:cc'/>
<source dev='if0aabbccaabbc' mode="passthrough'/>
<target dev="macvtap0'/>
<model type='virtio'/>
<driver queues='3'/>
<alias name='net0'/>
</interface>

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image27.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image27.png

As you can see this is not a typical VIRTIO <=> tun/tap scenario, nor a virtio-net <=> vhost-net typical scenario. This is a
virtio-net <=> SR-IOV configuration in what we call 'indirect mode' (where the host OS kernel still has some role in
packet processing, with macvtap driver). The SR-IOV configuration can be done in different ways:

e pass-through device access as SR-IOV VF PCl device (direct mode)
e use a pool of virtual function devices (direct mode)

e use a macvtap as the SR-IOV network adapter (indirect mode)

The indirect mode approach - of using a macvtap driver in the Host, letting the HostOS kernel to manage the virtual
function network interfaces - makes the SR-IOV easier to be configured to virtual machines and allows live migrations
to happen: you don't have to rely on PCl bus information to spin up a VM, you can simply tell the HostOS to use a free
virtual function it already has configured.

Unfortunately the indirect mode adds some burden to the HostOS kernel, as it will have vhost kernel-threads
coordinating data - shared memory - between the vm's VIRTIO buffers and the kernel threads, AND the macvtap driver
responsible to transfer packets in and out to HW virtual functions.

This can also be seen by, like explained before, checking the existence of specific kernel threads in charge of the Vhost
part of the interface for the QEMU process of the virtual machine in question:

17 060564 220 0 0O Ovhost S ? 0:01 [vhost-60547] 5
17 060565 220 0 0O Ovhost S ? 0:01 [vhost-60547]
1 060566 220 0 O Ovhost. S ? 0:01 [vhost-60547]

By choosing different methods to deliver the SR-IOV virtual function to the guest you are also growing, or shrinking,
the security surface of the system: If, instead of using macvtap, the SR-IOV virtual function was bound directly to the
virtual machine, by using Intel VTd and IOMMU virtualization, virtio-net <=> vhost-net communication would be
happening among the guest vm kernel memory and HW internal buffers only.

With the macvtap approach, showed here, the HostOS kernel also has tasks manipulating/coordinating VIRTIO
memory buffers (on behalf of the virtual machine).

3.i-) QEMU monitor (QMP and HMP)

There is a communication channel used for an external tool - like libvirt - to communicate with QEMU and operate its
instances from external world:

e The QEMU Machine Protocol (QMP).
QMP is JSON based and features the following:

e Lightweight, text-based, easy to parse data format
e Asynchronous messages support (events)
e Capabilities negotiation

e API/ABI stability guarantees

Through QMP (or its Human read-able version: HMP) one can communicate with a QEMU instance and do many
different tasks. A simple example checking the current status of a virtual machine is:

C: { "execute": "query-status" } @
Si{
"return": {
"status™: "running",
"singlestep": false,
"running": true

}

You can get all supported commands through the following command:

$ virsh gemu-monitor-command --domain <vm.name> --hmp --cmd "help info"

info balloon -- show balloon information

info block [-n] [-v] [device] -- show info of one block device or all block devices (-n: show named nodes; -v: show
info block-jobs -- show progress of ongoing block device operations

info blockstats -- show block device statistics

info capture -- show capture information

info chardev -- show the character devices

info cpus -- show infos for each CPU

info cpustats -- show CPU statistics

info dump -- Display the latest dump status

info history -- show the command line history

info hotpluggable-cpus -- Show information about hotpluggable CPUs

info ioapic -- show io apic state

info iothreads -- show iothreads

info irg -- show the interrupts statistics (if available)

info jit -- show dynamic compiler info

info KVYM -- show KVM information

info lapic [apic-id] -- show local apic state (apic-id: local apic to read, default is which of current CPU)
info mem -- show the active virtual memory mappings

info memdev -- show memory backends

info memory-devices -- show memory devices

info memory_size_summary -- show the amount of initially allocated and present hotpluggable (if enabled) me
info mice -- show which guest mouse is receiving events

info migrate -- show migration status

info migrate_cache_size -- show current migration xbzrle cache size

info migrate_capabilities -- show current migration capabilities

info migrate_parameters -- show current migration parameters

info mtree [-f][-d][-0] -- show memory tree (-f: dump flat view for address spaces;-d: dump dispatch tree, valid v
info name -- show the current VM name

info network -- show the network state

info numa -- show NUMA information

info opcount -- show dynamic compiler opcode counters

info pci -- show PCl info

info pic -- show PIC state

info profile -- show profiling information

info gdm -- show gdev device model list

info gom-tree [path] -- show QOM composition tree

info gtree -- show device tree

info ramblock -- Display system ramblock information

info rdma -- show RDMA state

info registers [-a] -- show the cpu registers (-a: all - show register info for all cpus)

info rocker name -- Show rocker switch

info rocker-of-dpa-flows name [tbl_id] -- Show rocker OF-DPA flow tables

info rocker-of-dpa-groups name [type] -- Show rocker OF-DPA groups

info rocker-ports name -- Show rocker ports

info roms -- show roms

info sev -- show SEV information

info snapshots -- show the currently saved VM snapshots

info spice -- show the spice server status

info status -- show the current VM status (running | paused)

info sync-profile [-m] [-n] [max] -- show synchronization profiling info, up to max entries (default: 10), sorted by
info tlb -- show virtual to physical memory mappings

info tpm -- show the TPM device

info trace-events [name] [vcpu] -- show available trace-events & their state (name: event name pattern; vcpu: v(
info usb -- show guest USB devices

info usbhost -- show host USB devices

info usernet -- show user network stack connection states

info uuid -- show the current VM UUID

info version -- show the version of QEMU

info vm-generation-id -- Show Virtual Machine Generation ID
info vnc -- show the vnc server status

This command 'talks' in HMP format with the QEMU monitor device, giving it commands, or querying status of specific
internal structures/emulations. Another example would be:

$ virsh gemu-monitor-command --domain <vm.name> --hmp --cmd info block -v &

libvirt-1-format: /var/lib/libvirt/images/vm.name-disk01.qcow2 (qcow?2)
Attached to: /machine/peripheral/virtio-diskO/virtio-backend
Cache mode: writeback

Images:
image: /var/lib/libvirt/images/vm.name-disk01.qcow2
file format: qcow2
virtual size: 30 GiB (32212254720 bytes)
disk size: 19.3 GiB
cluster_size: 65536
Format specific information:
compat: 0.10
refcount bits: 16

to get information from a particular VM block device backend.

As you might have already guessed, this is an important feature to be secured as it allows anyone with permissions to
read/write to this interface to change practically anything in the virtual machine.

It is so important that one can get all internal - to the virtual machine - virtual address space of drivers mappings:

$ virsh gemu-monitor-command --domain <vm.name> --hmp --cmd info mtree -f -o 5

FlatView #0

AS "memory", root: system

AS "cpu-memory-0", root: system

AS "cpu-memory-1", root: system

AS "cpu-memory-2", root: system

AS "cpu-memory-3", root: system

AS "cpu-memory-4", root: system

AS "cpu-memory-5", root: system

AS "cpu-memory-6", root: system

AS "cpu-memory-7", root: system

AS "piix3-ide", root: bus master container

AS "piix3-usb-uhci", root: bus master container

AS "virtio-serial-pci", root: bus master container

AS "virtio-blk-pci", root: bus master container

AS "virtio-net-pci", root: bus master container

AS "virtio-balloon-pci", root: bus master container

Root memory region: system

0000000000000000-00000000000bffff (prio O, ram): pc.ram owner:{obj path=/objects/pc.ram} KVM
00000000000c0000-00000000000c0fff (prio 0, rom): pc.ram @00000000000c0000 owner:{obj path=/objects/p«
00000000000c1000-00000000000c3fff (prio 0, ram): pc.ram @00000000000c1000 owner:{obj path=/objects/p«
00000000000c4000-00000000000e7fff (prio 0, rom): pc.ram @00000000000c4000 owner:{obj path=/objects/p:
00000000000e8000-00000000000effff (prio 0, ram): pc.ram @00000000000e8000 owner:{obj path=/objects/p«
00000000000f0000-00000000000fffff (prio O, rom): pc.ram @00000000000f0000 owner:{obj path=/objects/pc.
0000000000100000-00000000bfffffff (prio 0, ram): pc.ram @0000000000100000 owner:{obj path=/objects/pc.
00000000feb80000-00000000feb8002f (prio 0, i/0): msix-table owner:{dev id=net0}
00000000feb80800-00000000feb80807 (prio 0, i/0): msix-pba owner:{dev id=net0}
00000000feb81000-00000000feb8101f (prio 0, i/0): msix-table owner:{dev id=virtio-serial0}
00000000feb81800-00000000feb81807 (prio 0O, i/0): msix-pba owner:{dev id=virtio-serial0}

00000000feb82000-00000000feb8201f (prio 0, i/0): msix-table owner:{dev id=virtio-disk0}
00000000feb82800-00000000feb82807 (prio 0O, i/0): msix-pba owner:{dev id=virtio-disk0}
00000000feb83000-00000000feb8300f (prio 1, i/0): iI6300esb owner:{dev id=watchdog0}
00000000febf0000-00000000febfOfff (prio 0, i/0): virtio-pci-common owner:{dev id=net0}
00000000febf1000-00000000febf1fff (prio 0, i/0): virtio-pci-isr owner:{dev id=net0}
00000000febf2000-00000000febf2fff (prio 0, i/0): virtio-pci-device owner:{dev id=net0}
00000000febf3000-00000000febf3fff (prio 0, i/0): virtio-pci-notify owner:{dev id=net0}

00000000febf4000-00000000febf4fff (prio 0, i/0): virtio-pci-common owner:{dev id=virtio-serialO}

00000000febf6000-00000000febf6fff (prio 0, i/0): virtio-pci-device owner:{dev id=virtio-serialO}
00000000febf7000-00000000febf7fff (prio 0, i/0): virtio-pci-notify owner:{dev id=virtio-serial0}
00000000febf8000-00000000febf8fff (prio 0, i/0): virtio-pci-common owner:{dev id=virtio-disk0}
00000000febf9000-00000000febfofff (prio 0, i/0): virtio-pci-isr owner:{dev id=virtio-disk0}
00000000febfa000-00000000febfafff (prio O, i/0): virtio-pci-device owner:{dev id=virtio-disk0}
00000000febfb000-00000000febfbfff (prio O, i/0): virtio-pci-notify owner:{dev id=virtio-disk0}
00000000febfc000-00000000febfcfff (prio 0, i/0): virtio-pci-common owner:{dev id=balloon0}
00000000febfd000-00000000febfdfff (prio O, i/0): virtio-pci-isr owner:{dev id=balloon0}
00000000febfe000-00000000febfefff (prio O, i/0): virtio-pci-device owner:{dev id=balloon0}
00000000febff000-00000000febfffff (prio O, i/0): virtio-pci-notify owner:{dev id=balloon0}

):
):
):
):
00000000febf5000-00000000febf5fff (prio 0, i/0): virtio-pci-isr owner:{dev id=virtio-serial0}
):
):
):
):

00000000fec00000-00000000fecOOfff (prio 0, i/0): KVM-ioapic owner:{dev path=/machine/i440fx/ioapic}
00000000fed00000-00000000fed003ff (prio 0, i/0): hpet owner:{dev path=/machine/unattached/device[14]}

Security surface related to this communication channel is either a file or a file descriptor, opened by either libvirt or

QEMU with that intent. From the QEMU instance command line:

libvirt+ 3660 0.0 1.6 6357284 32504487 S| May19 144:53 /bin/QEMU-system-x86_64 -name guest=_dropk ©

we have:

chardev socket,id=charmonitor,fd=29,server,nowait -mon chardev=charmonitor,id=monitor,mode=control

which means libvirt has a file descriptor pointing to a unix socket that has likely being unlinked already - so it will
vanish after the socket is closed - and it passed the file descriptor to QEMU process after exec'ing it.

@

If one is executing QEMU directly, it is possible to have different files/sockets opened to QEMU/HMP by having QEMU

cmdline with the following arguments:

-chardev socket,id=monitor,path=/tmp/guest.monitor,server,nowait \
-monitor chardev:monitor \

-chardev socket,id=serial,path=/tmp/guest.serial,server,nowait \
-serial chardev:serial \

-gmp unix:/tmp/guest.sock,server,nowait \

and then using either screen (or minicom) to open the unix socket:

sudo minicom -D unix\#/tmp/kguest.monitor # HMP (Human Monitor) - txt
sudo minicom -D unix\#/tmp/kguest.socket # QMP (Machine Monitor) - json
sudo minicom -D unix\#/tmp/kguest.serial # Guest Serial Console

and communicate with the QEMU instance by using QMP/HMP commands.

This session shows that, despite not being obvious, the QEMU instance security surface might be extended to

many different things such as internal (to libvirt and QEMU) communication channels.

3.j-) QEMU confinement

@

As we've seen, QEMU supports many different use cases, some of which have stricter security requirements than
others. The community has agreed on the overall security requirements that users may depend on. These
requirements define what is considered supported from a security perspective.

3.j.1-) Guest isolation

Guest isolation is the confinement of guest code to the virtual machine. When guest code gains control of execution
on the host this is called escaping the virtual machine. Isolation also includes resource limits such as throttling of CPU,
memory, disk, or network. Guests must be unable to exceed their resource limits.

QEMU presents an attack surface to the guest in the form of emulated devices. The guest must not be able to gain
control of QEMU. Bugs in emulated devices could allow malicious guests to gain code execution in QEMU. At this point
the guest has escaped the virtual machine and is able to act in the context of the QEMU process on the host.

Guests often interact with other guests and share resources with them. A malicious guest must not gain control of
other guests or access their data. Disk image files and network traffic must be protected from other guests unless
explicitly shared between them by the user.

3.j.2-) Principle of Least Privilege

The principle of least privilege states that each component only has access to the privileges necessary for its function.
In the case of QEMU this means that each process only has access to resources belonging to the guest.

The QEMU process should not have access to any resources that are inaccessible to the guest. This way the guest does
not gain anything by escaping into the QEMU process since it already has access to those same resources from within
the guest.

Following the principle of least privilege immediately fulfills guest isolation requirements. For example, guest A only
has access to its own disk image file a.img and not guest B's disk image file b.img.

In reality certain resources are inaccessible to the guest but must be available to QEMU to perform its function. For
example, host system calls are necessary for QEMU but are not exposed to guests. A guest that escapes into the
QEMU process can then begin invoking host system calls.

New features must be designed to follow the principle of least privilege. Should this not be possible for technical
reasons, the security risk must be clearly documented so users are aware of the trade-off of enabling the feature.

3.j.3-) Isolation Mechanisms

Several isolation mechanisms are available to realize this architecture of guest isolation and the principle of least
privilege. With the exception of Linux seccomp, these mechanisms are all deployed by management tools that launch
QEMU, such as libvirt.

The fundamental isolation mechanism is that QEMU processes must run as unprivileged users. Sometimes it seems
more convenient to launch QEMU as root to give it access to host devices (e.g. /dev/net/tun) but this poses a huge
security risk. File descriptor passing can be used to give an otherwise unprivileged QEMU process access to host
devices without running QEMU as root. It is also possible to launch QEMU as a non-root user and configure UNIX
groups for access to /dev/KVM, /dev/net/tun, and other device nodes. Some Linux distros already ship with UNIX
groups for these devices by default.

e SELinux and AppArmor make it possible to confine processes beyond the traditional UNIX process and file
permissions model. They restrict the QEMU process from accessing processes and files on the host system that
are not needed by QEMU.

e Resource limits and cgroup controllers provide throughput and utilization limits on key resources such as CPU
time, memory, and I/0 bandwidth.

e Linux namespaces can be used to make process, file system, and other system resources unavailable to QEMU. A
namespaced QEMU process is restricted to only those resources that were granted to it.

e Linux seccomp is available via the QEMU --sandbox option. It disables system calls that are not needed by QEMU,
thereby reducing the host kernel attack surface.

IMPORTANT IDEA HERE IS that, by having an isolation mechanism, one escape due to a security vulnerability, for
example, would also have to break the isolation mechanism in order to be fully prejudicial to other OS resources
(most of the times).

Some important isolation mechanisms:

3.j.4-) Isolation: apparmor

AppArmor ("Application Armor") is a Linux kernel security module that allows the system administrator to restrict
programs' capabilities with per-program profiles. Profiles can allow capabilities like network access, raw socket access,
and the permission to read, write, or execute files on matching paths. AppArmor supplements the traditional Unix
discretionary access control (DAC) model by providing mandatory access control (MAC).

First, the libvirtd process is considered trusted and is therefore confined with a lenient profile that allows the libvirt
daemon to launch VMs or containers, change into another AppArmor profile and use virt-aa-helper to manipulate
AppArmor profiles. virt-aa-helper is a helper application that can add, remove, modify, load and unload AppArmor
profiles in a limited and restricted way. libvirtd is not allowed to adjust anything in /sys/kernel/security directly, or
modify the profiles for the virtual machines directly. Instead, libvirtd must use virt-aa-helper, which is itself run under a
very restrictive AppArmor profile. Using this architecture helps prevent any opportunities for a subverted libvirtd to
change its own profile (especially useful if the libvirtd profile is adjusted to be restrictive) or modify other AppArmor
profiles on the system.

libvirt apparmor important files:

e /etc/apparmor.d/usr.sbin.libvirtd : profile for libvirtd

e /etc/apparmor.d/usr.lib.virt-aa-helper : profile for virt-aa-helper

e /etc/apparmor.d/libvirt/ TEMPLATE.QEMU : consulted to create new profile
e /etc/apparmor.d/abstractions/libvirt-gemu : shared among all VMs

e /etc/apparmor.d/libvirt/libvirt- unique base profile for a VM

e /etc/apparmor.d/libvirt/libvirt-.files guest-specific files required
The confinement process is as follows (assume the VM has a libvirt UUID of 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX'):

If libvirtd is both, confined by AppArmor and configured to use it in /etc/libvirt/QEMU.conf, it will use the AppArmor
security driver. When a VM is started, libvirtd decides whether to ask virt-aa-helper to create a new profile or modify
an existing one. If no profile exists, libvirtd asks virt-aa-helper to generate the new base profile, in this case
/etc/apparmor.d/libvirt/libvirt-XXxxxxxx-XXxXX-XXXX-XXXX-XXXXXXXXXXXX, Which it does based on
/etc/apparmor.d/libvirt/ TEMPLATE.QEMU.

Notice, the new profile has a profile name that is based on the guest's UUID. Once the base profile is created, virt-aa-
helper works the same for create and modify: virt-aa-helper will determine what files are required for the guest to run
(eg kernel, initrd, disk, serial, etc), updates /etc/apparmor.d/libvirt/libvirt-XXXxxXxXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.files,
then loads the profile into the kernel.

libvirtd will proceed as normal at this point, until just before it forks a QEMU/KVM/container process, it will call
aa_change_profile() to transition into the profile ‘libvirt-XXxxXXXxX-XXXX-XXXX-XXXX-XXXXXXXXXXXX' (the one virt-aa-helper
loaded into the kernel in the previous step).

When the VM is shutdown, libvirtd asks virt-aa-helper to remove the profile, and virt-aa-helper unloads the profile
from the kernel.

From the examples being used in this document, you will see the process just described by executing:

$Is -a1 /etc/apparmor.d/libvirt/ =

TEMPLATE.Ixc

TEMPLATE.QEMU
libvirt-6814edd9-cd66-4256-a603-6f6591841c8c
libvirt-6814edd9-cd66-4256-a603-6f6591841c8c.files

$ sudo aa-status

apparmor module is loaded.
17 profiles are loaded.
17 profiles are in enforce mode.

/sbin/capause
/sbin/computeproxy
/sbin/dhclient
/usr/lib/ipsec/stroke
/usr/sbin/swanctl
/usr/sbin/tcpdump
docker-default
fluentd-logs
fluentd-gradar
libvirt-6814edd9-cd66-4256-a603-6f6591841c8c
libvirtd
libvirtd/QEMU_bridge_helper
virt-aa-helper
0 profiles are in complain mode.
133 processes have profiles defined.
132 processes are in enforce mode.
/sbin/computeproxy (12410)
docker-default (722)

docker-default (65128)
libvirt-6814edd9-cd66-4256-a603-6f6591841c8c (60547)
libvirtd (12355)

0 processes are in complain mode.

1 processes are unconfined but have a profile defined.
/usr/lib/ipsec/charon (6245)

Considering all the new VM profiles will be based on:

e /etc/apparmor.d/libvirt/TEMPLATE.QEMU : consulted to create new profile

and seeing its contents:

#include <tunables/global> =

profile LIBVIRT_TEMPLATE flags=(attach_disconnected) {
#include <abstractions/libvirt-gemu>

}

$ cat /etc/apparmor.d/abstractions/libvirt-gemu B

You will realize there is room for maneuvers for more or less confinement based on the type of network and storage
backends you're using to support the virtio-net / virtio-blk and/or virtio-xxx devices you're delivering to the virtual
machines.

#include <abstractions/base> @
#include <abstractions/consoles>
#include <abstractions/nameservice>

required for reading disk images
capability dac_override,

capability dac_read_search,
capability chown,

needed to drop privileges
capability setgid,
capability setuid,

for 9p
capability fsetid,
capability fowner,

network inet stream,
network inet6 stream,

ptrace (readby, tracedby) peer=libvirtd,
ptrace (readby, tracedby) peer=/usr/sbin/libvirtd,

signal (receive) peer=libvirtd,
signal (receive) peer=/usr/shin/libvirtd,

/dev/KVM rw,

/dev/net/tun rw,

/dev/ptmx rw,

@{PROC}/*/status r,

When QEMU is signaled to terminate, it will read cmdline of signaling
process for reporting purposes. Allowing read access to a process
cmdline may leak sensitive information embedded in the cmdline.
@{PROC}@{pid}/cmdline r,

Per man(5) prog, the kernel enforces that a thread may

only modify its comm value or those in its thread group.

owner @{PROC}/@{pid}/task/@{tid}/comm rw,
@{PROC}/sys/kernel/cap_last_capr,

owner @{PROC}/*/auxv r,

@{PROC}/sys/vm/overcommit_memory r,

For hostdev access. The actual devices will be added dynamically
/sys/bus/usb/devices/ r,

/sys/devices/**/usb[0-9]*/** r,

libusb needs udev data about usb devices (~equal to content of Isusb -v)
/run/udev/data/+usb* r,

/run/udev/data/c16[6,7]1* r,

/run/udev/data/c18[0,8,91* r,

WARNING: this gives the guest direct access to host hardware and specific

portions of shared memory. This is required for sound using ALSA with KVM,
but may constitute a security risk. If your environment does not require

the use of sound in your VMs, feel free to comment out or prepend 'deny' to
the rules for files in /dev.

/dev/snd/* rw,

/{dev,run}/shmr,

/{dev,run}/shmpulse-shm*r,

/{dev,run}/shmpulse-shm* rwk,

capability ipc_lock,

spice

owner /{dev,run}/shm/spice.* rw,

'kill" is not required for sound and is a security risk. Do not enable

unless you absolutely need it.

deny capability kill,

Uncomment the following if you need access to /dev/fb*
#/dev/fb* rw,

/etc/pulse/client.confr,

@{HOME}/.pulse-cookie rwk,
owner /root/.pulse-cookie rwk,
owner /root/.pulse/ rw,

owner /root/.pulse/* rw,
/usr/share/alsa/** r,

owner /tmp/pulse-*/ rw,
owner /tmp/pulse-*/* rw,
/var/lib/dbus/machine-id r,

access to firmware's etc
/usr/share/AAVMF/** r,
/usr/share/bochs/** r,
/usr/share/edk2-ovmf/** r,
/usr/share/KVM/** r,
/usr/share/misc/sgabios.binr,
/usr/share/openbios/**r,
/usr/share/openhackware/** r,
/usr/share/OVMF/** r,
/usr/share/ovmf/** r,
/usr/share/proll/** r,
/usr/share/QEMU-efi/** r,
/usr/share/QEMU-KVM/** r,
/usr/share/QEMU/** r,
/usr/share/seabios/** r,
/usr/share/sgabios/** r,
/usr/share/slof/** r,
/usr/share/vgabios/**r,

pki for libvirt-vnc and libvirt-spice (LP: #901272, #1690140)
/etc/pki/CA/ T,

/etc/pki/CA/* 1,

/etc/pki/libvirt{,-spice,-vnc}/ r,

/etc/pki/libvirt{,-spice,-vnc}/** r,

/etc/pki/QEMU/ r,

/etc/pki/QEMU/** r,

the various binaries
/usr/bin/KVM rmix,
/usr/bin/gemu rmix,
/usr/bin/gemu-aarch64 rmix,
/usr/bin/gemu-alpha rmix,
/usr/bin/gemu-arm rmix,
/usr/bin/gemu-armeb rmix,
/usr/bin/gemu-cris rmix,
/usr/bin/gemu-i386 rmix,
/usr/bin/gemu-KVM rmix,
/usr/bin/gemu-m68k rmix,
/usr/bin/gemu-microblaze rmix,
/usr/bin/gemu-microblazeel rmix,
/usr/bin/gemu-mips rmix,
/usr/bin/gemu-mips64 rmix,
/usr/bin/gemu-mips64el rmix,
/usr/bin/gemu-mipsel rmix,
/usr/bin/gemu-mipsn32 rmix,
/usr/bin/gemu-mipsn32el rmix,
/usr/bin/gemu-or32 rmix,
/usr/bin/gemu-ppc rmix,
/usr/bin/gemu-ppc64 rmix,
/usr/bin/gemu-ppc64abi32 rmix,
/usr/bin/gemu-ppc64le rmix,

/usr/bin/gemu-s390x rmix,
/usr/bin/gemu-sh4 rmix,
/usr/bin/gemu-sh4eb rmix,
/usr/bin/gemu-sparc rmix,
/usr/bin/gemu-sparc32plus rmix,
/usr/bin/gemu-sparc64 rmix,
/usr/bin/gemu-system-aarch64 rmix,
/usr/bin/gemu-system-alpha rmix,
/usr/bin/gemu-system-arm rmix,
/usr/bin/gemu-system-cris rmix,
/usr/bin/gemu-system-hppa rmix,
/usr/bin/gemu-system-i386 rmix,
/usr/bin/gemu-system-Im32 rmix,
/usr/bin/gemu-system-m68k rmix,
/usr/bin/gemu-system-microblaze rmix,
/usr/bin/gemu-system-microblazeel rmix,
/usr/bin/gemu-system-mips rmix,
/usr/bin/gemu-system-mips64 rmix,
/usr/bin/gemu-system-mips64el rmix,
/usr/bin/gemu-system-mipsel rmix,
/usr/bin/gemu-system-moxie rmix,
/usr/bin/gemu-system-nios2 rmix,
/usr/bin/gemu-system-or1k rmix,
/usr/bin/gemu-system-or32 rmix,
/usr/bin/gemu-system-ppc rmix,
/usr/bin/gemu-system-ppc64 rmix,
/usr/bin/gemu-system-ppcemb rmix,
/usr/bin/gemu-system-riscv32 rmix,
/usr/bin/gemu-system-riscve4 rmix,
/usr/bin/gemu-system-s390x rmix,
/usr/bin/gemu-system-sh4 rmix,
/usr/bin/gemu-system-sh4eb rmix,
/usr/bin/gemu-system-sparc rmix,
/usr/bin/gemu-system-sparc64 rmix,
/usr/bin/gemu-system-tricore rmix,
/usr/bin/gemu-system-unicore32 rmix,
/usr/bin/gemu-system-x86_64 rmix,
/usr/bin/gemu-system-xtensa rmix,
/usr/bin/gemu-system-xtensaeb rmix,
/usr/bin/gemu-unicore32 rmix,
/usr/bin/gemu-x86_64 rmikx,

for Debian/Ubuntu QEMU-block-extra / RPMs QEMU-block-* (LP: #1554761)
/usr/{lib,lib64}/QEMU/*.so mr,
/usr/lib/@{multiarch}QEMU/*.s0 mr,

let QEMU load old shared objects after upgrades (LP: #1847361)
/{var/,}run/QEMU/*/*.s0 mr,

but explicitly deny with auditing writing to these files

audit deny /{var/,}run/QEMU/*/*.s0 w,

swtpm

/{usr/,}bin/swtpm rmix,
/usr/{lib,libé4}/libswtpm_libtpms.so mr,
/usr/lib/@{multiarch}/libswtpm_libtpms.so mr,

for save and resume
/{usr/,}bin/dash rmix,
/{usr/,}bin/dd rmix,
/{usr/,}bin/cat rmix,

for restore
/{usr/,}bin/bash rmix,

for usb access
/dev/bus/usb/ r,
/etc/udev/udev.confr,
/sys/bus/r,
/sys/class/ r,

for rbd
/etc/ceph/ceph.confr,

Various functions will need to enumerate /tmp (e.g. ceph), allow the base
dir and a few known functions like samba support.

We want to avoid to give blanket rw permission to everything under /tmp,
users are expected to add site specific addons for more uncommon cases.
QEMU processes usually all run as the same users, so the "owner"

restriction prevents access to other services files, but not across

different instances.

This is a tradeoff between usability and security - if paths would be more
predictable that would be preferred - at least for write rules we would

want more unique paths per rule.

{,var/ytmp/r,

owner /{,var/}tmp/**/r,

for file-posix getting limits since 9103f1ce
/sys/devices/**/block/*/queue/max_segments r,

for ppc device-tree access
@{PROC}/device-tree/ r,
@{PROC}/device-tree/**r,
/sys/firmware/devicetree/** r,

allow connect with openGraphicsFD to work
unix (send, receive) type=stream addr=none peer=(label=libvirtd),
unix (send, receive) type=stream addr=none peer=(label=/usr/sbin/libvirtd),

allow access to charm-specific ceph config (LP: #1403648).

No more silencing spurious denials as it can more critically hide other issues (LP: #1719579)
Also allow the optional asok key that might be enabled by the charm (LP: #1779674)
/var/lib/charm/*/ceph.confr,

/run/ceph/rbd-client-*.asok rw,

KVM.powerpc executes/accesses this
/{usr/,}bin/uname rmix,
/{usr/,}sbin/ppc64_cpu rmix,

/{usr/}bin/grep rmix,
/sys/devices/system/cpu/subcores_per_core r,
/sys/devices/system/cpu/cpu*/onliner,

for gathering information about available host resources
/sys/devices/system/cpu/r,

/sys/devices/system/node/ r,
/sys/devices/system/node/node[0-9]*/meminfo r,
/sys/module/vhost/parameters/max_mem_regions r,

silence refusals to open Ittng files (see LP: #1432644)
deny /dev/shm/Ittng-ust-wait-*r,
deny /run/shm/Ittng-ust-wait-* r,

for vfio hotplug on systems without static vfio (LP: #1775777)
/dev/vfio/vfio rw,

for vhost-net/vsock/scsi hotplug (LP: #1815910)
/dev/vhost-net rw,

/dev/vhost-vsock rw,

/dev/vhost-scsi rw,

required for sasl GSSAPI plugin
/etc/gss/mech.d/r,
/etc/gss/mech.d/* r,

required by libpmem init to fts_open()/fts_read() the symlinks in
/sys/bus/nd/devices

/r, # harmless on any Isb compliant system
/sys/bus/nd/devices/{,**/} r,

Site-specific additions and overrides. See local/README for details.
#include <local/abstractions/libvirt-gemu>

Just ONE quick example, that could be discussed here - in order to minimize chances of an escaped QEMU process to
execute something else in the Host OS, could be:

for save and resume i
/{usr/,}bin/dash rmix,

/{usr/,}bin/dd rmix,

/{usr/,}bin/cat rmix,

for restore
/{usr/,}bin/bash rmix,

rules allowing QEMU process to execute shells (a typical security scenario where bytecodes executing /bin/bash are
executed because of memory addressing exploits). Many other mitigation scenarios could be discussed here, making
sure the TEMPLATE for any new QEMU profile.

@ - PROPOSITION 1

THIS IS THE FIRST PROPOSITION OF THIS DOCUMENT

It is virtually impossible to cover all attack surface of QEMU and its para-virtualization techniques (shown in this
document exhaustively). by cover we mean predict and remediate. >

Instead of logging/introspecting erratic behaviors, that could indicate a security breakage attempt, it is better to
concentrate efforts in isolating QEMU resources so, if a escape ever happens, it wouldn't be able to deeply affect
other resources.

Some observations:

1. Yes, this is already implemented through existing apparmor profiles/templates. We would have to review the
1:1 mapping of each needed resource and the existing profiles, discarding rules that aren't needed and
making sure all needed rules exist. Summary: to get rid of default apparmor profiles/templates and create a
specific set.

2. All access pattern deviations from the existing QEMU infrastructure would have to be considered when
developing a new features. One example could be... changing the virtio-blk backing device from a QCOW?2 file,
from a libvirt disk pool backend, to making it a RBD device, through the librbd storage backend.

Summary: profiles would have to be changed according to new features.

3. Some of the attack surface won't be covered by that and should, continue, be mitigated by other techniques,
specially all the HW side-channel attack techniques: regarding vCPUs placement, cache

I invalidation/observation and such.

3.j.5-) Isolation: cgroups (as resources manager)

The QEMU and LXC drivers make use of the Linux "Control Groups" facility for applying resource management to their
virtual machines and containers.

e Required controllers

The control groups filesystem supports multiple "controllers". By default systemd should mount all controllers
compiled into the kernel at /sys/fs/cgroup/controller. Libvirt will never attempt to mount any controllers itself, merely
detect where they are mounted.

The QEMU driver is capable of using the cpuset, cpu, cpuacct, memory, blkio and devices controllers. None of them
are compulsory. If any controller is NOT MOUNTED, the resource management APIs which use it will CEASE TO
OPERATE.

e Current cgroups layout The layout is based on the concepts of partitions and consumers. A "consumer" is a
cgroup which holds the processes for a single virtual machine. A "partition" is a cgroup which does not contain any
processes, but can have resource controls applied. A "partition" will have zero or more child directories which may
be either "consumer" or "partition".

e Systemd cgroups integration Each consumer maps to a systemd scope unit, while partitions map to a system
slice unit.

e Systemd scope naming The systemd convention is for the scope name of virtual machines to be of the general
format machine-$NAME.scope. Libvirt forms the $NAME part of this by concatenating the driver type with the id
and truncated name of the guest, and then escaping any systemd reserved characters.

e Systemd slice naming systemd convention for slice naming is that a slice should include the name of all of its
parents prepended on its own name. So for a libvirt partition /machine/engineering/testing, the slice name will be
machine-engineering-testing.slice. The slice names map directly to the cgroup directory names. Systemd creates
three top level slices by default, system.slice user.slice and machine.slice. All virtual machines or containers
created by libvirt will be associated with machine.slice by default.

e Systemd cgroup layout example

$ROOT (i
|

+- system.slice

+- libvirtd.service

|
|
+- machine.slice

machine-QEMU\x2d1\x2dvm1.scope
|
+

m
|

+-

|

| +-libvirt

[

| +- emulator

| +- vcpuO

| +-vcpul

|

+- machine-QEMU\x2d2\x2dvm2.scope
||

| +

|

|

|

|

|
+-

- libvirt
|
+- emulator
+- vcpuO
+-vcpul

machine-QEMU\x2d3\x2dvm3.scope

|

+- libvirt
|
+- emulator
+- vcpuO
+-vcpul

machine-engineering.slice
machine-engineering-testing.slice
+

|
+-
|

| +- machine-Ixc\x2d11111\x2dcontainer1.scope
|

+- machine-engineering-production.slice

+- machine-Ixc\x2d22222\x2dcontainer2.scope

|
|
|
|
|
|
|
+-
|
|
|
|
|
|
|
|
|
+-

machine-marketing.slice

+- machine-Ixc\x2d33333\x2dcontainer3.scope

e Using custom partitions A single default partition /machine setup may not be sufficiently flexible to apply
resource constraints to groups of VMs. The administrator may wish to sub-divide the default partition, for
example into "testing" and "production” partitions, and then assign each guest to a specific sub-partition. This is
achieved via a small element addition to the guest domain XML config, just below the main domain element

<resource> ©

<partition>/machine/production</partition>

</resource>

3.j.6-) Isolation: namespaces

Namespaces are a feature of the Linux kernel that partitions kernel resources such that one set of processes sees one
set of resources while another set of processes sees a different set of resources. The feature works by having the
same namespace for a set of resources and processes, but those namespaces refer to distinct resources. Resources
may exist in multiple spaces. Examples of such resources are process IDs, hostnames, user IDs, file names, and some
names associated with network access, and interprocess communication.

namespace kinds

Namespace functionality is the same across all kinds: each process is associated with a namespace and can only see
or use the resources associated with that namespace, and descendant namespaces where applicable. This way each
process (or process group thereof) can have a unique view on the resources. Which resource is isolated depends on
the kind of namespace that has been created for a given process group.

I Namespace feature can either be seen as a virtualization OR isolation feature.
e Mount (mnt)

Mount namespaces control mount points. Upon creation the mounts from the current mount namespace are copied
to the new namespace, but mount points created afterwards do not propagate between namespaces (using shared
subtrees, it is possible to propagate mount points between namespaces).

e Process ID (pid)

The PID namespace provides processes with an independent set of process IDs (PIDs) from other namespaces. PID
namespaces are nested, meaning when a new process is created it will have a PID for each namespace from its current
namespace up to the initial PID namespace. Hence the initial PID namespace is able to see all processes, albeit with
different PIDs than other namespaces will see processes with.

The first process created in a PID namespace is assigned the process id number 1 and receives most of the same
special treatment as the normal init process, most notably that orphaned processes within the namespace are
attached to it. This also means that the termination of this PID 1 process will immediately terminate all processes in its
PID namespace and any descendants.

e Network (net)

Network namespaces virtualize the network stack. On creation a network namespace contains only a loopback
interface.

Each network interface (physical or virtual) is present in exactly 1 namespace and can be moved between namespaces.

Each namespace will have a private set of IP addresses, its own routing table, socket listing, connection tracking table,
firewall, and other network-related resources.

Destroying a network namespace destroys any virtual interfaces within it and moves any physical interfaces within it
back to the initial network namespace.

e Interprocess Communication (ipc)

IPC namespaces isolate processes from SysV style inter-process communication. This prevents processes in different
IPC namespaces from using, for example, the SHM family of functions to establish a range of shared memory between
the two processes. Instead each process will be able to use the same identifiers for a shared memory region and
produce two such distinct regions.

e UTS

UTS (UNIX Time-Sharing) namespaces allow a single system to appear to have different host and domain names to
different processes.

o User ID (user)

User namespaces are a feature to provide both privilege isolation and user identification segregation across multiple
sets of processes available.

With administrative assistance it is possible to build a container with seeming administrative rights without actually
giving elevated privileges to user processes. Like the PID namespace, user namespaces are nested and each new user
namespace is considered to be a child of the user namespace that created it.

A user namespace contains a mapping table converting user IDs from the container's point of view to the system's
point of view. This allows, for example, the root user to have user id 0 in the container but is actually treated as user id
1,400,000 by the system for ownership checks. A similar table is used for group id mappings and ownership checks.

To facilitate privilege isolation of administrative actions, each namespace type is considered owned by a user
namespace based on the active user namespace at the moment of creation. A user with administrative privileges in
the appropriate user namespace will be allowed to perform administrative actions within that other namespace type.
For example, if a process has administrative permission to change the IP address of a network interface, it may do so
as long as its own user namespace is the same as (or ancestor of) the user namespace that owns the network
namespace. Hence the initial user namespace has administrative control over all namespace types in the system.

e Control group (cgroup) Namespace

The cgroup namespace type hides the identity of the control group of which process is a member. A process in such a
namespace, checking which control group any process is part of, would see a path that is actually relative to the
control group set at creation time, hiding its true control group position and identity.

e Time Namespace

The time namespace allows processes to see different system times in a way similar to the UTS namespace.

@ - PROPOSITION 2

THIS IS THE SECOND PROPOSITION OF THIS DOCUMENT STEP

To confine QEMU processes in different namespaces (or even containers) in order to guarantee OS level isolation
to different virtual machine tenants as libvirt runs all QEMU processes with the same OS user 'libvirt-gemu'.

In case there is a escape from QEMU, from any security surface described in this document, confining the
processes at least in different two namespaces: process id and user id, might mitigate all other virtual machines
being compromised.

OBS: You can see this is the tendency in QEMU as virtio-fs, a relatively new feature for sharing filesystems among
the Host and the Guests, has sandbox support and it does use different PID, MOUNT and NETWORK namespaces
for the feature.

3.j.7-) Isolation: seccomp (sandbox)

seccomp (short for secure computing mode): is a computer security facility in the Linux kernel. seccomp allows a
process to make a one-way transition into a "secure" state where it cannot make any system calls except exit(),
sigreturn(), read() and write() to already-open file descriptors. Should it attempt any other system calls, the kernel will
terminate the process with SIGKILL or SIGSYS.In this sense, it does not virtualize the system's resources but ISOLATES
the process from them entirely.

QEMU seccomp

Linux seccomp is available, and being used in the example being used for this document, via the QEMU --sandbox
option. It disables system calls that are not needed by QEMU, reducing the host kernel attack surface.

Our example has the following cmdline argument in QEMU:
-sandbox on,obsolete=deny,elevateprivileges=deny,spawn=deny,resourcecontrol=deny i

e on: enables seccomp for filtering system calls mode
e elevatedprivileges: disable setuid and seggid (escalation)
e spawn: denies fork() and execve()

e resourcecontrol: disables process affinity and sched priority

@ - PROPOSITION 2' (comments)
Note on QEMU escapes and Sandbox:

Note that in the SECOND PROPOSITION being given in this document, we talk about having different PID and
USER ID namespaces. The reason behind that is the sandbox feature still allows the QEMU processes to coexist
the same USER ID namespace as other QEMU processes and, by having a different namespace, we would reduce
the attack surface.

Nevertheless, the fact that our example being used at this document already enables seccomp, disallows QEMU
process to elevate privileges (become root), disallows QEMU process to fork/exec - so executing commands after
an escalation is virtually impossible - and disallows QEMU to change scheduler decisions - trying to place the VM
in a different CPU - is already a good measure to avoid QEMU escapes.

3.1-) QEMU logging: tracing execution not a good idea
The QEMU Machine Protocol (QMP) allows applications to operate a QEMU instance.
QMP is JSON based and features the following:

e Lightweight, text-based, easy to parse data format
e Asynchronous messages support (ie. events)

e Capabilities Negotiation

The HMP is the simple interactive monitor on QEMU, designed primarily for debugging and simple human use. Higher
level tools should connect to the QMP which offers a stable interface with JSON to make it easy to parse reliably.

3.1.1-) QEMU Machine Protocol

$ virsh gemu-monitor-command --domain bionic --hmp --cmd help info

info balloon -- show balloon information

info block [-n] [-v] [device] -- show info of one block device or all block devices (-n: show named nodes; -v: show
info block-jobs -- show progress of ongoing block device operations

info blockstats -- show block device statistics

info capture -- show capture information

info chardev -- show the character devices

info cpus -- show infos for each CPU

info cpustats -- show CPU statistics

info dump -- Display the latest dump status

info history -- show the command line history

info hotpluggable-cpus -- Show information about hotpluggable CPUs

info ioapic -- show io apic state

info iothreads -- show iothreads

info irg -- show the interrupts statistics (if available)

info jit -- show dynamic compiler info

info KVM -- show KVM information

info lapic [apic-id] -- show local apic state (apic-id: local apic to read, default is which of current CPU)
info mem -- show the active virtual memory mappings

info memdev -- show memory backends

info memory-devices -- show memory devices

info memory_size_summary -- show the amount of initially allocated and present hotpluggable (if enabled) me
info mice -- show which guest mouse is receiving events

info migrate -- show migration status

info migrate_cache_size -- show current migration xbzrle cache size

info migrate_capabilities -- show current migration capabilities

info migrate_parameters -- show current migration parameters

info mtree [-f][-d][-0] -- show memory tree (-f: dump flat view for address spaces;-d: dump dispatch tree, valid v
info name -- show the current VM name

info network -- show the network state

info numa -- show NUMA information

info opcount -- show dynamic compiler opcode counters

info pci -- show PCl info

info pic -- show PIC state

info profile -- show profiling information

info gdm -- show gdev device model list

info gom-tree [path] -- show QOM composition tree

info gtree -- show device tree

info ramblock -- Display system ramblock information

info rdma -- show RDMA state

info registers [-a] -- show the cpu registers (-a: all - show register info for all cpus)

info rocker name -- Show rocker switch

info rocker-of-dpa-flows name [tbl_id] -- Show rocker OF-DPA flow tables

info rocker-of-dpa-groups name [type] -- Show rocker OF-DPA groups

info rocker-ports name -- Show rocker ports

info roms -- show roms

info sev -- show SEV information

info snapshots -- show the currently saved VM snapshots

info spice -- show the spice server status

info status -- show the current VM status (running | paused)

info sync-profile [-m] [-n] [max] -- show synchronization profiling info, up to max entries (default: 10), sorted by
info tlb -- show virtual to physical memory mappings

info tpm -- show the TPM device

info trace-events [name] [vcpu] -- show available trace-events & their state (name: event name pattern; vcpu: v(
info usb -- show guest USB devices

info usbhost -- show host USB devices

info usernet -- show user network stack connection states

info uuid -- show the current VM UUID

info version -- show the version of QEMU

info vm-generation-id -- Show Virtual Machine Generation ID
info vnc -- show the vnc server status

Example: getting information from a VM block device:

$ virsh gemu-monitor-command --domain bionic --hmp --cmd info block -v
libvirt-1-format: /var/lib/libvirt/images/bionic-disk01.qcow2 (qcow?2)
Attached to: /machine/peripheral/virtio-diskO/virtio-backend
Cache mode: writeback

Images:
image: /var/lib/libvirt/images/bionic-disk01.qcow2
file format: qcow?2
virtual size: 30 GiB (32212254720 bytes)
disk size: 19.3 GiB
cluster_size: 65536
Format specific information:
compat: 0.10
refcount bits: 16

Example: getting the VM memory tree information

$ virsh gemu-monitor-command --domain bionic --hmp --cmd info mtree -f -0

FlatView #0

AS "memory", root: system

AS "cpu-memory-0", root: system

AS "cpu-memory-1", root: system

AS "cpu-memory-2", root: system

AS "cpu-memory-3", root: system

AS "cpu-memory-4", root: system

AS "cpu-memory-5", root: system

AS "cpu-memory-6", root: system

AS "cpu-memory-7", root: system

AS "piix3-ide", root: bus master container

AS "piix3-usb-uhci", root: bus master container

AS "virtio-serial-pci", root: bus master container

AS "virtio-blk-pci", root: bus master container

AS "virtio-net-pci", root: bus master container

AS "virtio-balloon-pci", root: bus master container

Root memory region: system

0000000000000000-00000000000bffff (prio 0, ram): pc.ram owner:{obj path=/objects/pc.ram} KVM
00000000000c0000-00000000000c0fff (prio O, rom): pc.ram @00000000000c0000 owner:{obj path=/objects/pt
00000000000¢1000-00000000000c3fff (prio O, ram): pc.ram @00000000000c1000 owner:{obj path=/objects/p¢
00000000000c4000-00000000000e7fff (prio O, rom): pc.ram @00000000000c4000 owner:{obj path=/objects/p
00000000000e8000-00000000000effff (prio 0, ram): pc.ram @00000000000e8000 owner:{obj path=/objects/p«
00000000000f0000-00000000000fffff (prio O, rom): pc.ram @00000000000f0000 owner:{obj path=/objects/pc.
0000000000100000-00000000bfffffff (prio O, ram): pc.ram @0000000000100000 owner:{obj path=/objects/pc.
00000000feb80000-00000000feb8002f (prio 0, i/0): msix-table owner:{dev id=net0}
00000000feb80800-00000000feb80807 (prio O, i/0): msix-pba owner:{dev id=net0}
00000000feb81000-00000000feb8101f (prio 0, i/0): msix-table owner:{dev id=virtio-serial0}
00000000feb81800-00000000feb81807 (prio 0O, i/0): msix-pba owner:{dev id=virtio-serial0}
00000000feb82000-00000000feb8201f (prio 0, i/0): msix-table owner:{dev id=virtio-disk0}
00000000feb82800-00000000feb82807 (prio 0, i/0): msix-pba owner:{dev id=virtio-disk0}
00000000feb83000-00000000feb8300f (prio 1, i/0): iI6300esb owner:{dev id=watchdog0}
00000000febf0000-00000000febfOfff (prio 0, i/0): virtio-pci-common owner:{dev id=net0}
00000000febf1000-00000000febf1fff (prio 0, i/0): virtio-pci-isr owner:{dev id=net0}
00000000febf2000-00000000febf2fff (prio 0, i/0): virtio-pci-device owner:{dev id=net0}
00000000febf3000-00000000febf3fff (prio O, i/0): virtio-pci-notify owner:{dev id=net0}
00000000febf4000-00000000febf4fff (prio 0, i/0): virtio-pci-common owner:{dev id=virtio-serialO}

):
):

00000000febf5000-00000000febf5fff (prio 0, i/0): virtio-pci-isr owner:{dev id=virtio-serialO}
00000000febf6000-00000000febf6fff (prio 0, i/0): virtio-pci-device owner:{dev id=virtio-serial0}
00000000febf7000-00000000febf7fff (prio O, i/0): virtio-pci-notify owner:{dev id=virtio-serial0}
00000000febf8000-00000000febf8fff (prio 0, i/0): virtio-pci-common owner:{dev id=virtio-disk0}
00000000febf9000-00000000febfofff (prio O, i/0): virtio-pci-isr owner:{dev id=virtio-disk0}
00000000febfa000-00000000febfafff (prio 0O, i/0): virtio-pci-device owner:{dev id=virtio-disk0}
00000000febfb000-00000000febfbfff (prio 0O, i/0): virtio-pci-notify owner:{dev id=virtio-disk0}
00000000febfc000-00000000febfcfff (prio 0, i/0): virtio-pci-common owner:{dev id=balloon0}
00000000febfd000-00000000febfdfff (prio O, i/0): virtio-pci-isr owner:{dev id=balloon0}
00000000febfe000-00000000febfefff (prio O, i/0): virtio-pci-device owner:{dev id=balloon0}
00000000febff000-00000000febfffff (prio O, i/0): virtio-pci-notify owner:{dev id=balloon0}
00000000fec00000-00000000fecO0fff (prio 0, i/0): KVM-ioapic owner:{dev path=/machine/i440fx/ioapic}
00000000fed00000-00000000fed003ff (prio O, i/0): hpet owner:{dev path=/machine/unattached/device[14]}
00000000fee00000-00000000feefffff (prio 4096, i/0): KVM-apic-msi owner:{dev path=/machine/unattached/de
00000000fffc0000-00000000ffffffff (prio O, rom): pc.bios parent:{obj path=/machine/unattached} KVM
0000000100000000-000000023fffffff (prio 0, ram): pc.ram @00000000c0000000 owner:{obj path=/objects/pc.

):
):
):
):

Example: getting the QEMU virtual devices tree

$ virsh gemu-monitor-command --domain bionic --hmp --cmd info gtree
bus: main-system-bus
type System
dev: hpet, id "
gpio-in"" 2
gpio-out "" 1
gpio-out "sysbus-irq" 32
timers = 3 (0x3)
msi = false
hpet-intcap = 4 (0x4)
hpet-offset-saved = true
mmio 00000000fed00000/0000000000000400
dev: KVM-ioapic, id ""
gpio-in "" 24
gsi_base = 0 (0x0)
mmio 00000000fec00000/0000000000001000
dev: i440FX-pcihost, id ""
pci-hole64-size = 2147483648 (2 GiB)
short_root_bus = 0 (0x0)
x-pci-hole64-fix = true
bus: pci.0
type PCI
dev: virtio-balloon-pci, id "balloon0"
disable-legacy = "off"
disable-modern = false
class = 255 (0xff)
virtio-pci-bus-master-bug-migration = false
migrate-extra = true
modern-pio-notify = false
x-disable-pcie = false
page-per-vq = false
x-ignore-backend-features = false
ats = false
x-pcie-deverr-init = true
x-pcie-Inkctl-init = true
X-pcie-pm-init = true
x-pcie-flr-init = true
addr =05.0
romfile =""

rombar =1 (0x1)
multifunction = false
x-pcie-Inksta-dllla = true
X-pcie-extcap-init = true
failover_pair_id = ""
class Class 00ff, addr 00:05.0, pci id 1af4:1002 (sub 1af4:0005)
bar 0: i/0 at 0xc100 [0xc11f]
bar 4: mem at Oxfebfc000 [0xfebfffff]
bus: virtio-bus
type virtio-pci-bus
dev: virtio-balloon-device, id ""
deflate-on-oom = false
free-page-hint = false
QEMU-4-0-config-size = false
indirect_desc = true
event_idx = true
notify_on_empty = true
any_layout = true
iommu_platform = false
packed = false
use-started = true
use-disabled-flag = true
dev: i6300esb, id "watchdog0"
addr =06.0
romfile =""
rombar =1 (0x1)
multifunction = false
x-pcie-Inksta-dllla = true
X-pcie-extcap-init = true
failover_pair_id = ""
class Class 0880, addr 00:06.0, pci id 8086:25ab (sub 1af4:1100)
bar 0: mem at 0xfeb83000 [Oxfeb8300f]
dev: virtio-net-pci, id "net0"
disable-legacy = "off"
disable-modern = false
ioeventfd = true
vectors = 3 (0x3)
virtio-pci-bus-master-bug-migration = false
migrate-extra = true
modern-pio-notify = false
x-disable-pcie = false
page-per-vq = false
x-ignore-backend-features = false
ats = false
x-pcie-deverr-init = true
x-pcie-Inkctl-init = true
X-pcie-pm-init = true
x-pcie-flr-init = true
addr =02.0
romfile = "efi-virtio.rom"
rombar =1 (0x1)
multifunction = false

3.1.2-) QEMU QMP commands to change VM disks

This session shows how access to QMP HAS TO BE SECURED. By having access to VM QMP interface you can do pretty
much anything regarding a VM administration lifecycle.

Example creating a QCOW?2 file and adding to the VM:

$ sudo gemu-img create -f qcow?2 /var/lib/libvirt/images/bionic-disk02.qcow2 5G 5
Formatting '/var/lib/libvirt/images/bionic-disk02.qcow2', fmt=qcow?2 size=5368709120 cluster_size=65536 lazy_|

$ sudo chown -R libvirt-gemu: /var/lib/libvirt/images/bionic-disk02.qcow2
Adding a block device drive to the instance:

$ sudo virsh gemu-monitor-command --domain bionic --hmp --cmd drive_add 0 if=none,file=/var/lib/libvirt/ima ©
OK

Checking block device was added:

$ virsh gemu-monitor-command --domain bionic --hmp --cmd info block &

libvirt-1-format: /var/lib/libvirt/images/bionic-disk01.qcow2 (qcow2)
Attached to: /machine/peripheral/virtio-diskO/virtio-backend
Cache mode: writeback

noneO (#block786): /var/lib/libvirt/images/bionic-disk02.qcow?2 (gcow?2)
Removable device: not locked, tray closed
Cache mode: writeback

Adding a QEMU para-virtualized device to the guest:

$ virsh gemu-monitor-command --domain bionic --hmp --cmd device_add virtio-blk-pci,drive=none0,id=mydisk @

$ virsh gemu-monitor-command --domain bionic --hmp --cmd info block

libvirt-1-format: /var/lib/libvirt/images/bionic-disk01.qcow?2 (qcow?2)
Attached to: /machine/peripheral/virtio-diskO/virtio-backend
Cache mode: writeback

noneO (#block786): /var/lib/libvirt/images/bionic-disk02.qcow2 (qcow2)
Attached to: /machine/peripheral/mydisk/virtio-backend
Cache mode: writeback

3.1.3-) QEMU Monitor Event Loop

Through the QMP interface, one is able to get SOME VM events (described HERE) such as:

SHUTDOWN @
POWERDOWN

RESET

STOP

RESUME

SUSPEND

SUSPEND_DISK

WAKEUP

WATCHDOG
GUEST_PANICKED
GUEST_CRASHLOADED
MEMORY_FAILURE
JOB_STATUS_CHANGE
BLOCK_IMAGE_CORRUPTED
BLOCK_IO_ERROR
BLOCK_JOB_COMPLETED
BLOCK_JOB_CANCELLED

https://qemu-project.gitlab.io/QEMU/interop/QEMU-qmp-ref.html

BLOCK_JOB_ERROR
BLOCK_JOB_READY
BLOCK_JOB_PENDING
BLOCK_WRITE_THRESHOLD
QUORUM_FAILURE
QUORUM_REPORT_BAD
DEVICE_TRAY_MOVED

PR_MANAGER_STATUS_CHANGED

BLOCK_EXPORT_DELETED
VSERPORT_CHANGE
DUMP_COMPLETED
NIC_RX_FILTER_CHANGED
FAILOVER_NEGOTIATED
RDMA_GID_STATUS_CHANGED
SPICE_CONNECTED
SPICE_INITIALIZED
SPICE_DISCONNECTED
SPICE_MIGRATE_COMPLETED
VNC_CONNECTED
VNC_INITIALIZED
VNC_DISCONNECTED
MIGRATION
MIGRATION_PASS
COLO_EXIT
UNPLUG_PRIMARY
DEVICE_DELETED
BALLOON_CHANGE

MEMORY_DEVICE_SIZE_CHANGE

MEM_UNPLUG_ERROR
RTC_CHANGE
ACPI_DEVICE_OST

Like the example bellow:

$ virsh gemu-monitor-event --loop --timestamp

2021-04-19 18:33:39.593+0000:
2021-04-19 18:33:40.512+0000:
2021-04-19 18:33:41.367+0000:
2021-04-19 18:33:41.370+0000:
2021-04-19 18:33:41.370+0000:
2021-04-19 18:33:57.659+0000:
2021-04-19 18:33:59.314+0000:
2021-04-19 18:33:59.319+0000:
2021-04-19 18:33:59.319+0000:
2021-04-19 18:34:07.182+0000:
2021-04-19 18:34:08.844+0000:
2021-04-19 18:34:08.849+0000:
2021-04-19 18:34:08.849+0000:
2021-04-19 18:34:18.350+0000:
2021-04-19 18:34:19.891+0000:
2021-04-19 18:34:19.910+0000:
2021-04-19 18:34:19.913+0000:
2021-04-19 18:34:19.913+0000:
2021-04-19 18:34:19.913+0000:
2021-04-19 18:34:19.913+0000:
2021-04-19 18:34:19.913+0000:
2021-04-19 18:34:19.913+0000:
2021-04-19 18:34:19.921+0000:

event POWERDOWN for domain groovy: <null>

event RTC_CHANGE for domain _router: {"offset":1}

event SHUTDOWN for domain groovy: {"guest":true,"reason":"guest-shutdown"
event STOP for domain groovy: <null>

event SHUTDOWN for domain groovy: {"guest":false,"reason":"host-signal"}
event POWERDOWN for domain hirsute: <null>

event SHUTDOWN for domain hirsute: {"guest":true,"reason":"guest-shutdown'
event STOP for domain hirsute: <null>

event SHUTDOWN for domain hirsute: {"guest":false,"reason":"host-signal"}
event POWERDOWN for domain focal: <null>

event SHUTDOWN for domain focal: {"guest":true,"reason":"guest-shutdown"}
event STOP for domain focal: <null>

event SHUTDOWN for domain focal: {"guest":false,"reason":"host-signal"}
event POWERDOWN for domain bionic: <null>

event SHUTDOWN for domain bionic: {"guest":true,"reason":"guest-shutdown"}
event STOP for domain bionic: <null>

event VSERPORT_CHANGE for domain bionic: {"open":false,"id":"console1"}
event VSERPORT_CHANGE for domain bionic: {"open":false,"id":"console2"}
event VSERPORT_CHANGE for domain bionic: {"open":false,"id":"console3"}
event VSERPORT_CHANGE for domain bionic: {"open":false,"id":"console4"}
event VSERPORT_CHANGE for domain bionic: {"open":false,"id":"console5"}
event VSERPORT_CHANGE for domain bionic: {"open":false,"id":"console6"}
event RESET for domain bionic: {"guest":false,"reason":"host-qmp-system-reset

2021-04-19 18:34:19.922+0000:
2021-04-19 18:34:19.950+0000:
2021-04-19 18:34:24.964+0000:
2021-04-19 18:34:24.964+0000:
2021-04-19 18:34:24.964+0000:
2021-04-19 18:34:24.964+0000:
2021-04-19 18:34:24.965+0000:
2021-04-19 18:34:24.965+0000:
2021-04-19 18:34:57.517+0000:
2021-04-19 18:44:53.526+0000:
2021-04-19 18:46:13.509+0000:
2021-04-19 18:56:05.527+0000:
2021-04-19 18:57:25.522+0000:
2021-04-19 19:07:17.527+0000:
2021-04-19 19:08:37.527+0000:
2021-04-19 19:18:16.901+0000:
2021-04-19 19:18:18.429+0000:
2021-04-19 19:18:18.435+0000:
2021-04-19 19:18:18.435+0000:

event RESUME for domain bionic: <null>

event RESET for domain bionic: {"guest":true,"reason":"guest-reset"}

event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console1"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console2"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console3"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console4"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console5"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console6"}
event RTC_CHANGE for domain bionic: {"offset":1}

event RTC_CHANGE for domain _router: {"offset":1}

event RTC_CHANGE for domain bionic: {"offset":1}

event RTC_CHANGE for domain _router: {"offset":1}

event RTC_CHANGE for domain bionic: {"offset":1}

event RTC_CHANGE for domain _router: {"offset":1}

event RTC_CHANGE for domain bionic: {"offset":1}

event POWERDOWN for domain bionic: <null>

event SHUTDOWN for domain bionic: {"guest":true,"reason":"guest-shutdown"}
event STOP for domain bionic: <null>

event SHUTDOWN for domain bionic: {"guest":false,"reason":"host-signal"}

2021-04-19 19:18:27.515+0000:
2021-04-19 19:18:47.875+0000:
2021-04-19 19:18:52.389+0000:
2021-04-19 19:18:52.389+0000:
2021-04-19 19:18:52.389+0000:
2021-04-19 19:18:52.389+0000:
2021-04-19 19:18:52.389+0000:
2021-04-19 19:18:52.389+0000:
2021-04-19 19:18:54.511+0000:
2021-04-19 19:19:25.518+0000:
2021-04-19 19:29:41.523+0000:
event loop interrupted

events received: xxx

event RTC_CHANGE for domain _router: {"offset":1}

event RESUME for domain bionic: <null>

event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console1"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console2"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console3"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console4"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console5"}
event VSERPORT_CHANGE for domain bionic: {"open":true,"id":"console6"}
event NIC_RX_FILTER_CHANGED for domain bionic: {"name":"net0","path":"/ma
event RTC_CHANGE for domain bionic: {"offset":1}

event RTC_CHANGE for domain _router: {"offset":1}

3.1.4-) QEMU LOGGING

Unfortunately logging QEMU is not a simple task. It is IMPOSSIBLE to try to log something useful if you don't know
what to look for. Like the previous examople showed, despite the default EVENTS being sent through QMP interface,
logging what is happening with a VM is not an easy task.

All the QEMU logging feature was more focused in its development side: If you know what QEMU internal subsystem
to introspect it can be a VERY POWERFUL tool.

We will be focusing here how the TRACE feature can be used in order to LOG virtually ANYTHING from a QEMU VM
instance running:

$ QEMU-system-x86_64 -d help 5
Log items (comma separated):

out_asm show generated host assembly code for each compiled TB (translation block)
in_asm show target assembly code for each compiled TB

op show micro ops for each compiled TB

op_opt show micro ops after optimization

op_ind show micro ops before indirect lowering

int show interrupts/exceptions in short format

exec show trace before each executed TB (lots of logs)

cpu show CPU registers before entering a TB (lots of logs)

fpu include FPU registers in the 'cpu' logging

mmu log MMU-related activities

pcall x86 only: show protected mode far calls/returns/exceptions
cpu_reset show CPU state before CPU resets

unimp log unimplemented functionality

guest_errors log when the guest OS does something invalid (eg accessing a non-existent register)

page dump pages at beginning of user mode emulation
nochain do not chain compiled TBs so that "exec" and "cpu" show complete traces
strace log every user-mode syscall, its input, and its result

trace:PATTERN enable trace events

Use "-d trace:help" to get a list of trace events.

Let's list all the available tracing events QEMU binary has (I'm grepping for ONLY the KVM related internal
function/traces):

$ virsh gemu-monitor-command --domain bionic --hmp --cmd info trace-events | grep KVM_
KVM_sev_launch_finish : state 0
KVM_sev_launch_measurement : state 0O
KVM_sev_launch_update_data : state O
KVM_sev_launch_start : state O
KVM_sev_change_state : state O
KVM_memcrypt_unregister_region : state 0
KVM_memcrypt_register_region : state O
KVM_sev_init : state O
KVM_x86_update_msi_routes : state 0
KVM_x86_remove_msi_route : state 0
KVM_x86_add_msi_route : state 0
KVM_x86_fixup_msi_error : state 0
KVM_clear_dirty_log : state O
KVM_set_user_memory : state O
KVM_set_ioeventfd_pio : state O
KVM_set_ioeventfd_mmio : state O
KVM_irqchip_release_virq : state O
KVM_irgchip_update_msi_route : state O
KVM_irqchip_add_msi_route : state 0
KVM_irgchip_commit_routes : state 0
KVM_failed_reg_set : state O
KVM_failed_reg_get : state O
KVM_device_ioctl : state 0

KVM_run_exit : state 0

KVM_vcpu_ioctl : state O

KVM_vm_ioctl : state O

KVM _ioctl : state O

Let's enable a single trace: KYM_RUN_EXIT. This function always run whenever a VM vCPU leaves the virtualization
context and gives the CPU control back to the QEMU vCPU thread.

$ virsh gemu-monitor-command --domain bionic --hmp --cmd trace-event KVM_run_exit on

And check it was enabled:

$ virsh gemu-monitor-command --domain bionic --hmp --cmd info trace-events | grep KVM_
KVM_sev_launch_finish : state 0
KVM_sev_launch_measurement : state O
KVM_sev_launch_update_data : state O
KVM_sev_launch_start : state O
KVM_sev_change_state : state 0
KVM_memcrypt_unregister_region : state 0
KVM_memcrypt_register_region : state O
KVM_sev_init : state O
KVM_x86_update_msi_routes : state 0
KVM_x86_remove_msi_route : state 0

KVM_x86_add_msi_route : state 0
KVM_x86_fixup_msi_error : state 0
KVM_clear_dirty_log : state O
KVM_set_user_memory : state O
KVM_set_ioeventfd_pio : state O
KVM_set_ioeventfd_mmio : state O
KVM_irqchip_release_virq : state O
KVM_irqchip_update_msi_route : state O
KVM_irqchip_add_msi_route : state 0
KVM_irgchip_commit_routes : state 0
KVM_failed_reg_set : state O
KVM_failed_reg_get : state O
KVM_device_ioctl : state O
KVM_run_exit : state 1
KVM_vcpu_ioctl : state O
KVM_vm_ioctl : state O

KVM _ioctl : state O

Now we are able to instruct QEMU, through the QMP interface, to LOG all times the traced event (of KYM_RUN_EXIT)
happened. This will tell me all the times the vCPU "exited". It could have happened because of an DEVICE EMULATION
need, or because an unhandled (during the virtualization context) interrupt has happened.

$ virsh gemu-monitor-command --domain bionic --hmp --cmd log trace:KVM_run_exit &
And voila, the QEMU log file will start showing, after the QEMU cmdline being used, the information we asked for:

2021-04-19 19:18:47.385+0000: starting up libvirt version: 6.6.0, package: 1ubuntu3.4 (Victor Manuel Tapia King B
LC_ALL=C\

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin \
HOME=/var/lib/libvirt/QEMU/domain-14-bionic \
XDG_DATA_HOME=/var/lib/libvirt/QEMU/domain-14-bionic/.local/share \
XDG_CACHE_HOME=/var/lib/libvirt/QEMU/domain-14-bionic/.cache \
XDG_CONFIG_HOME=/var/lib/libvirt/QEMU/domain-14-bionic/.config \

QEMU_AUDIO_DRV=none \

/bin/QEMU-system-x86_64 \

-name guest=bionic,debug-threads=on \

-SA\

-object secret,id=masterKey0,format=raw,file=/var/lib/libvirt/QEMU/domain-14-bionic/master-key.aes \
-machine pc-i440fx-5.0,accel=KVM,usb=0off,dump-guest-core=off \

-cpu host,migratable=on \

-m 8192\

-overcommit mem-lock=off \

-smp 8,sockets=8,cores=1,threads=1\

-uuid 0cd4db6a-fcd0-4408-b271-61cd00155219 \

-display none \

-no-user-config \

-nodefaults \

-chardev socket,id=charmonitor,fd=36,server,nowait \

-mon chardev=charmonitor,id=monitor,mode=control \

-rtc base=utc,driftfix=slew \

-global KVM-pit.lost_tick_policy=delay \

-no-shutdown \

-global PIIX4_PM.disable_s3=1\

-global PlIX4_PM.disable_s4=1\

-boot strict=on \

-device piix3-usb-uhci,id=usb,bus=pci.0,addr=0x1.0x2 \

-device virtio-serial-pci,id=virtio-serial0,bus=pci.0,addr=0x3 \

-blockdev '{"driver":"file","filename":"/var/lib/libvirt/images/bionic-disk01.qcow2","node-name":"libvirt-1-storage
-blockdev '{"node-name":"libvirt-1-format","read-only":false,"driver":"qcow2","file":"libvirt-1-storage","backing":r

-device virtio-blk-pci,bus=pci.0,addr=0x4,drive=libvirt-1-format,id=virtio-diskO,bootindex=1 \
-netdev tap,fd=38,id=hostnet0,vhost=on,vhostfd=39 \

-device virtio-net-pci,netdev=hostnet0,id=net0,mac=52:54:00:4f:21:0a,bus=pci.0,addr=0x2 \
-chardev pty,id=charserialO \

-device isa-serial,chardev=charserial0,id=serial0 \

-chardev pty,id=charconsole1 \

-device virtconsole,chardev=charconsole1,id=console1 \

-chardev pty,id=charconsole2 \

-device virtconsole,chardev=charconsole2,id=console2 \

-chardev pty,id=charconsole3\

-device virtconsole,chardev=charconsole3,id=console3 \

-chardev pty,id=charconsole4 \

-device virtconsole,chardev=charconsole4,id=console4 \

-chardev pty,id=charconsole5\

-device virtconsole,chardev=charconsole5,id=console5 \

-chardev pty,id=charconsole6 \

-device virtconsole,chardev=charconsole6,id=console6 \

-device i6300esb,id=watchdog0,bus=pci.0,addr=0x6 \

-watchdog-action inject-nmi \

-device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x5 \

-sandbox on,obsolete=deny,elevateprivileges=deny,spawn=deny,resourcecontrol=deny \
-msg timestamp=on

2021-04-19 19:18:47.385+0000: Domain id=14 is tainted: host-cpu

char device redirected to /dev/pts/23 (label charserial0)
char device redirected to /dev/pts/24 (label charconsole
char device redirected to /dev/pts/25 (label charconsole2
char device redirected to /dev/pts/28 (label charconsole3
char device redirected to /dev/pts/29 (label charconsole4
char device redirected to /dev/pts/30 (label charconsole5
char device redirected to /dev/pts/31 (label charconsole6
2021-04-20 03:47:50.625+0000: Domain id=14 is tainted: custom-monitor
3572073@1618892213.515023:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515194:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515210:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515251:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515265:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515277:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515289:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515301:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515312:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515324:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515336:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515347:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515360:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515680:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515902:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515938:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515965:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515978:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.515990:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.516002:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.516014:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.516043:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.516066:KVM_run_exit cpu_index 4, reason 2
3572073@1618892213.516140:KVM_run_exit cpu_index 4, reason 6
3572073@1618892213.516224:KVM_run_exit cpu_index 4, reason 6
3572073@1618892213.516270:KVM_run_exit cpu_index 4, reason 2

o o ~— ~—

And the reason why the vCPU has exited the virtualization context (reason 2 == 10 emulation).

As demonstrated in this session, QEMU logs can log pretty much anything happening in a virtual machine. The
problem is not the data but what data, and what to do with the data. A more approachable way to logging could
be to select some key variables from the tracing events and isolate them in a LOG (and consume this by some
external tool if needed)

3.1.5-) LIBVIRT LOGGING

Libvirt provides logging - to QEMU VM instances - very similar to the QEMU QMP events described in previous item. It
has also a fine-tuned logging mechanism that serves more for debug purposes.

Differently than with QEMU, no trace events need to be enabled. Instead, libvirt config file does specify what types of
'code sections' need to be enabled - to log - and the verbosity level of this logging.

You can also split different code sections logging into different log mechanisms - syslog, file, stderr - simultaneously.

log_filters="3:remote 4:event 3:util.json 3:rpc 1:*" i
log_outputs="1:file:/var/log/libvirt/libvirtd.log"

If you target QEMU VMs debugging logging:

1:libvirt 1:QEMU 1:conf 1:security 3:event 3:json 3:file 3:0bject 1:util i
If you want less verbose logging for QEMU VMs:

1:libvirt 1:QEMU 1:conf 1:security 3:event 3:json 3:file 3:0bject 1:util i
or if you want a minimalistic QEMU QMP monitor logging:

2:QEMU.QEMU_monitor 3:* i

As demonstrated in this session, as well as in previous session, Libvirt logs, just like QEMU logs, can log pretty
much all there is. Again, the problem is not the data to extract from libvirt but what data, and what to do with the
data. A more approachable way to logging could be to select some key variables from different internal libvirt
sub-systems and isolate them in a LOG (and consume this by some external tool if needed)

4-) Learning with history: QEMU CVEs: study case

4.a-) CVE-2019-6778 - heap buffer overflow in SLIRP

Device emulation handled in slirp_subr.c:tcp_emu. Two important structures compromised: mbuf (store data from IP
layer) and sbuf (store data frmo TCP layer).

If someone keeps sending data to an emulated SLIRP device at port 113 there might be a heap overflow:

CVE-2019-6778

* |f one keeps sending data to port 113
* Heap overflow !

s = socket(AF_INET, SOCK_STREAM, 0);
ip_addr.sin_family = AF_INET;
ip_addr.sin_addr.s_addr = inet_addr("xxx");
ip_addr.sin_port = htons(113);
ret = connect(s, (struct sockaddr *)&ip_addr, sizeof(struct sockaddr_in));
memset(buf, 'A', 0x500);
while(1) {
write(s, buf, 0x500);
}

wimage29

w.iimage30

This CVE shows a real possible attack to emulated devices - as long as you're using the SLIRP emulated device
(also known as User Networking). Check User Networking (SLIRP) section in this same document.

I A proof-of-concept of this bug, resulting in host's kernel crash, can be seen HERE

Because the nature of vhost-kernel, like explained in session QEMU Internals => Vhost protocol, all the techniques
of confining the QEMU processes would have failed for this CVE, as part of the packet processing was offloaded to
a specific kernel thread being executed on behalf of that particular guest.

https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image28.png
https://github.com/rafaeldtinoco/howtos/blob/main/IMAGES/qemu-security-image28.png
https://github.com/rafaeldtinoco/howtos/blob/main/DUMP/Published/qemu-security-image29.png
https://github.com/rafaeldtinoco/howtos/blob/main/DUMP/Published/qemu-security-image29.png
https://github.com/rafaeldtinoco/howtos/blob/main/DUMP/Published/qemu-security-image30.png
https://github.com/rafaeldtinoco/howtos/blob/main/DUMP/Published/qemu-security-image30.png
https://www.openwall.com/lists/oss-security/2019/09/24/1

While attacks aiming the QEMU process might be mitigated by the sand-boxing features of seccomp and apparmor (or
any other LSM), techniques being used by para-virtualization such as VIRTIO ring buffers shared with HostOS, or SR-
IOV capabilities using IOMMU, might expose things out of the escope of the emulation layer (done by QEMU).

With that said, during the course of this document you will find items entitled: PROPOSITION 1, 2 and 3. Those items
try to address different levels of attack surface in a way of what is needed for the environment used as example and a
possible future environment.

1. PROPOSITION (1): Improve current LSM (apparmor) rules for the emulation layer (QEMU).

2. PROPOSITION (2): QEMU processes running with same user privileges: isolation levels to avoid other resources
being jeopardized. This item was considered 'done' by the seccomp feature entirely as you may read in previous
sections.

3. PROPOSITION (3): HostOS instrumentation for identifying, logging and blocking bloody-minded tenants. This topic
will be described in the next section.

5.b-) Introspection tools: avoid overhead

Apart from confinement, a good strategy might be runtime security detection based on known pattern behaviors
(from previous CVEs OR known security exploits techniques).

For example: knowing what to look for could turn a detection system into something better than just logging OS
blocked resources which could be, most of the time, false-positive alerts.

Introspection is a relatively new methodology for securing OSes and cloud-environments. As the time has passed,
different tools allowed Operating Systems code to be probed and analyzed without - or with very little - overhead.

The different mechanisms to probe and introspect a running OS kernel always targeted tracing & profiling only. This
has significantly changed lately.

Some of the observability, tracing and profiling tools are:

e Dtrace (born in Solaris 10)

e FreeBSD Dtrace (ported from Solaris)

e Systemtap (Linux version of a 'Dtrace-like' engine)

e Ftrace (Linux Function Tracing)

e Perf (Performance Counters Tool - Linux profiler tool)

e Valgrind (Instrumentation framework for dynamic analysis)

Without going into details about all them, instead, this document will try explain some of the key concepts that are
currently being used for the security introspection subject.

Now, to the basics:

events

For the "Perf" tool, there are multiple hardware events - provided by latest architectures - to be used as data sources:
cpu-cycles, instructions, cache-references, cache-misses, branch-instructions, branch-misses, bus-cycles, L1 data cache
loads and stores, L1 instruction cache loads and stores, TLB loads and stores for data and instructions, etc. There are
also multiple software events to be used: OS cpu-clock, task-clock, page-faults, minor-faults, major-faults, number of
context seitches, cpu-migrations, etc.

Apart from that, within the kernel there are multiple specifically created tracing points to be used by either perf or
ftrace-like tools. The tracing points are placed at scheduling events, interrupt handlers, memory-mapped I/0 handlers,
CPU power state transitions handlers, file-systems operators, virtualization handlers, and so.

Some of the times, the already existing kernel events are not enough for a tool to collect needed data for a business
logic: events might not exist in the kernel parts of where you need to collect data from OR they don't provide the data
you need. For that you may have to work with probes.

kprobes & uprobes

e Kprobes

Enables you to dynamically break into any kernel routine and collect debugging and performance information non-
disruptively. You can trap at almost any kernel code address, specifying a handler routine to be invoked when the
breakpoint is hit. There are currently two types of probes: kprobes, and kretprobes (also called return probes). A
kprobe can be inserted on virtually any instruction in the kernel. A return probe fires when a specified function
returns.

In the typical case, Kprobes-based instrumentation is packaged as a kernel module. The module's init function
registers one or more probes, and the exit function unregisters them. A registration function such as register_kprobe()
specifies where the probe is to be inserted and what handler is to be called when the probe is hit.

e Uprobes

Uprobes enables you to dynamically break into any routine in a user application and collect debugging and
performance information non-disruptively. You can trap at any code address, specifying a kernel handler routine to be
invoked when the breakpoint is hit.

There are currently two types of user-space probes: uprobes and uretprobes (also called return probes). A uprobe can
be inserted on any instruction in the application's virtual address space. A return probe fires when a specified user
function returns. A registration function such as register_uprobe() specifies which process is to be probed, where the
probe is to be inserted, and what handler is to be called when the probe is hit.

Typically, Uprobes-based instrumentation is packaged as a kernel module. In the simplest case, the module's init
function registers one or more probes, and the exit function unregisters them. However, probes can be registered or
unregistered in response to other events as well.

eBPF

Finally this is where this session headed to. The eBPF technology is the technology that allows security
introspection to happen in a modern way.

The Linux kernel has always been an ideal place to implement observability, networking, and security. Unfortunately
this was often impractical as it required changing kernel source code or loading kernel modules, and resulted in layers
of abstractions stacked on top of each other.

eBPF is a revolutionary technology that can run sandboxed programs in the Linux kernel without changing
kernel source code or loading kernel modules.

By making the Linux kernel programmable, infrastructure software can leverage existing layers, making them more
intelligent and feature-rich without continuing to add additional layers of complexity to the system or compromising
execution efficiency and safety.

eBPF has resulted in the development of a completely new generation of software able to reprogram the behavior of
the Linux kernel and even apply logic across multiple subsystems which were traditionally completely independent.

What is eBPF being used for:
e Security

Building on the foundation of seeing and understanding all system calls and combining that with a packet and socket-
level view of all networking operations allows for revolutionary new approaches to securing systems. While aspects of
system call filtering, network-level filtering, and process context tracing have typically been handled by completely
independent systems, eBPF allows for combining the visibility and control of all aspects to create security systems
operating on more context with better level of control.

e Networking

The combination of programmability and efficiency makes eBPF a natural fit for all packet processing requirements of
networking solutions. The programmability of eBPF enables adding additional protocol parsers and easily program
any forwarding logic to meet changing requirements without ever leaving the packet processing context of the Linux
kernel. The efficiency provided by the eBPF JIT compiler provides execution performance close to that of natively
compiled in-kernel code.

e Tracing and Profiling

The ability to attach eBPF programs to trace points - explained previously - as well as kernel and user application probe
points - also explained previously - allows unprecedented visibility into the runtime behavior of applications and the
system itself. By giving introspection abilities to both the application and system side, both views can be combined,
allowing powerful and unique insights to troubleshoot system performance problems. Advanced statistical data
structures allow to extract meaningful visibility data in an efficient manner, without requiring the export of vast
amounts of sampling data as typically done by similar systems.

e Observability & Monitoring

Instead of relying on static counters and gauges exposed by the operating system, eBPF enables the collection & in-
kernel aggregation of custom metrics and generation of visibility events based on a wide range of possible sources.
This extends the depth of visibility that can be achieved as well as reduces the overall system overhead significantly by
only collecting the visibility data required and by generating histograms and similar data structures at the source of
the event instead of relying on the export of samples.

I An example of portable eBPF code can be found HERE

5.c-) Near future: predict/log unwanted known behavior
Considering the 2 CVEs we described earlier:

e CVE-2019-6778 - heap buffer overflow in SLIRP
e CVE-2019-14835 - V-gHost escape in virtio-net / vhost-net

And what we have read so far about eBPF and introspection tools, the idea of this session is to explain how, by
knowing the CVEs 'modus operandi', the HostOS could be monitored in a way that any attempt to exploit those
vulnerabilities would be at least logged.

First we need to step back and talk about how the eBPF security tools work. I'll concentrate my efforts in a specific tool
called tracee, just because it is an open-source tool and has a company, aquasecurity, providing support behind. This is
also true for the tool falcosecurity, with the company sysdig behind, and similar functionality.

Please do note that there are other security tools with similar functionality and that this document is tool-
agnostic. Intent here is to demonstrate those tools purposes for introspection and NOT to be an advisor for which
tool to be used.

Falco Security
Falco uses system calls to secure and monitor a system, by:

e Parsing the Linux system calls from the kernel at runtime
e Asserting the stream against a powerful rules engine

e Alerting when a rule is violated
it checks for:

e Privilege escalation using privileged containers

e Namespace changes using tools like setns

e Read/Writes to well-known directories

e Creating symlinks

e Ownership and Mode changes

e Unexpected network connections or socket mutations
e Spawned processes using execve

e Executing shell binaries such as sh, bash, csh, zsh, etc
e Executing SSH binaries such as ssh, scp, sftp, etc

e Mutating Linux coreutils executables

e Mutating login binaries

https://github.com/rafaeldtinoco/portablebpf/
https://github.com/aquasecurity/tracee
https://github.com/falcosecurity/falco

e Mutating shadowutil or passwd executables such as shadowconfig, pwck, chpasswd, getpasswd, change, useradd,
etc, and others.

Falco rules:

Alerts are configurable downstream actions that can be as simple as logging to STDOUT or as complex as delivering a
gRPC call to a client. Falco can send alerts to:

e stdout

o file

e Syslog

e spawned program

e HTTP[s] end point

e client through the gRPC API

Falco components:

e Userspace program: is the CLI tool falco that you can use to interact with Falco. The userspace program handles
signals, parses information from a Falco driver, and sends alerts.

e Configuration: defines how Falco is run, what rules to assert, and how to perform alerts. For more information,
see Configuration.

e Driver: is a software that adheres to the Falco driver specification and sends a stream of system call information.
You cannot run Falco without installing a driver. Supported drivers:

o (Default) Kernel module built on libscap and libsinsp C++ libraries
o BPF probe built from the same modules

o Userspace instrumentation
A falco rules example:

- list: my_programs &
items: [Is, cat, pwd]

- rule: my_programs_opened_file
desc: track whenever a set of programs opens a file
condition: proc.name in (my_programs) and evt.type=open
output: a tracked program opened a file (user=%user.name command=%proc.cmdline file=%fd.name)
priority: INFO

to detect when programs (Is, cat and pwd) have opened a file.

I Obviously example shown here is very simple. You will find some more examples HERE.

Indeed much of the functionality in falcosecurity can be achieved by apparmor and other LSM modules (like
SELinux) but in an easier, more dynamic and configurable way.

Despite being a more mature project, I'll explain more about 'tracee project' as the falco event sources are mostly
related to syscalls only, and interpretation of what they're doing in the OS.

Tracee

Now the reader might understand why | have chosen the 'tracee’ tool as the one to give more details of for security
purposes: Tracee tool, even being younger, seems to be more advanced into the eBPF area, covering more than just
syscalls or specific events, it allows its own core to be extended by using eBPF libbpf based code, with its tracee-ebpf
core, and to process rules after they have been collected, with its tracee-rules engine.

The project:

https://falco.org/docs/examples/

Tracee is a Runtime Security and forensics tool for Linux. It is using Linux eBPF technology to trace your system and
applications at runtime, and analyze collected events to detect suspicious behavioral patterns. It is delivered as a
Docker image that monitors the OS and detects suspicious behavior based on a pre-defined set of behavioral
patterns.

In some cases, you might want to leverage Tracee's eBPF event collection capabilities directly, without involving the
detection engine. This might be useful for debugging / troubleshooting / analysis / research / education. In this case
you can run Tracee with the trace sub-command, which will start dumping raw data directly into standard output.
There are many configurations and options available so you can control exactly what is being collected and how.

tracee components:
Tracee is composed of the following sub-projects, which are hosted in the aquasecurity/tracee git repository:
e Tracee-eBPF - Linux Tracing and Forensics using eBPF

Apart from syscalls being traced, tracee is also able to use kernel tracing events, kprobes, LSM hooks, XDP hooks (and
possibly some other event sources). The current events that can be observed are:

Events:
System Calls: Sets: Arguments: B
read [syscalls fs fs_read_write] (int fd, void™* buf, size_t count)
write [syscalls fs fs_read_write] (int fd, void™* buf, size_t count)
open [default syscalls fs fs_file_ops] (const char* pathname, int flags, mode_t mode)
close [default syscalls fs fs_file_ops] (int fd)
stat [default syscalls fs fs_file_attr] (const char* pathname, struct stat* statbuf)
fstat [default syscalls fs fs_file_attr] (int fd, struct stat* statbuf)
Istat [default syscalls fs fs_file_attr] (const char* pathname, struct stat* statbuf)
poll [syscalls fs fs_mux_io] (struct pollfd* fds, unsigned int nfds, int timeout)
[seek [syscalls fs fs_read_write] (int fd, off_t offset, unsigned int whence)
mmap [syscalls proc proc_mem] (void* addr, size_t length, int prot, int flags, int fd, off_t off)
mprotect [syscalls proc proc_mem] (void* addr, size_t len, int prot)
munmap [syscalls proc proc_mem] (void* addr, size_t length)
brk [syscalls proc proc_mem] (void* addr)
rt_sigaction [syscalls signals] (int signum, const struct sigaction® act, struct sigaction* oldact, :
rt_sigprocmask [syscalls signals] (int how, sigset_t* set, sigset_t* oldset, size_t sigsetsize)
rt_sigreturn [syscalls signals] 0
ioctl [syscalls fs fs_fd_ops] (int fd, unsigned long request, unsigned long arg)
pread64 [syscalls fs fs_read_write] (int fd, void* buf, size_t count, off_t offset)
pwrite64 [syscalls fs fs_read_write] (int fd, const void* buf, size_t count, off_t offset)
readv [syscalls fs fs_read_write] (int fd, const struct iovec* iov, int iovcnt)
writev [syscalls fs fs_read_write] (int fd, const struct iovec™* iov, int iovcnt)
access [default syscalls fs fs_file_attr] (const char* pathname, int mode)
pipe [syscalls ipc ipc_pipe] (int[2] pipefd)
select [syscalls fs fs_mux_io] (int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds, sti
sched_yield [syscalls proc proc_sched] 0
mremap [syscalls proc proc_mem] (void* old_address, size_t old_size, size_t new_size, int flag
msync [syscalls fs fs_sync] (void* addr, size_t length, int flags)
mincore [syscalls proc proc_mem] (void* addr, size_t length, unsigned char* vec)
madvise [syscalls proc proc_mem] (void* addr, size_t length, int advice)
shmget [syscalls ipc ipc_shm] (key_t key, size_t size, int shmflg)
shmat [syscalls ipc ipc_shml] (int shmid, const void* shmaddr, int shmflg)
shmctl [syscalls ipc ipc_shm] (int shmid, int cmd, struct shmid_ds* buf)
dup [default syscalls fs fs_fd_ops] (int oldfd)
dup2 [default syscalls fs fs_fd_ops] (int oldfd, int newfd)
pause [syscalls signals] 0
nanosleep [syscalls time time_timer] (const struct timespec* req, struct timespec* rem)

getitimer [syscalls time time_timer] (int which, struct itimerval* curr_value)

alarm [syscalls time time_timer] (unsigned int seconds)

setitimer [syscalls time time_timer] (int which, struct itimerval* new_value, struct itimerval* old_
getpid [syscalls proc proc_ids] 0

sendfile [syscalls fs fs_read_write] (int out_fd, int in_fd, off_t* offset, size_t count)

socket [default syscalls net net_sock] (int domain, int type, int protocol)

connect [default syscalls net net_sock] (int sockfd, struct sockaddr* addr, int addrlen)

accept [default syscalls net net_sock] (int sockfd, struct sockaddr* addr, int* addrlen)

sendto [syscalls net net_snd_rcv] (int sockfd, void* buf, size_t len, int flags, struct sockaddr* de
recvfrom [syscalls net net_snd_rcv] (int sockfd, void* buf, size_t len, int flags, struct sockaddr* s
sendmsg [syscalls net net_snd_rcv] (int sockfd, struct msghdr* msg, int flags)

recvmsg [syscalls net net_snd_rcv] (int sockfd, struct msghdr* msg, int flags)

shutdown [syscalls net net_sock] (int sockfd, int how)

bind [default syscalls net net_sock] (int sockfd, struct sockaddr* addr, int addrlen)

listen [default syscalls net net_sock] (int sockfd, int backlog)

getsockname [default syscalls net net_sock] (int sockfd, struct sockaddr* addr, int* addrlen)
getpeername [syscalls net net_sock] (int sockfd, struct sockaddr* addr, int* addrlen)
socketpair [syscalls net net_sock] (int domain, int type, int protocol, int[2] sv)

setsockopt [syscalls net net_sock] (int sockfd, int level, int optname, const void* optval, int optl
getsockopt [syscalls net net_sock] (int sockfd, int level, int optname, char* optval, int* optlen)
clone [default syscalls proc proc_life] (unsigned long flags, void* stack, int* parent_tid, int* child_t
fork [default syscalls proc proc_life] 0

vfork [default syscalls proc proc_life] 0

execve [default syscalls proc proc_life] (const char* pathname, const char*const* argy, const char®
exit [syscalls proc proc_life] (int status)

wait4 [syscalls proc proc_life] (pid_t pid, int* wstatus, int options, struct rusage* rusage)

kill [default syscalls signals] (pid_t pid, int sig)

uname [syscalls system] (struct utsname* buf)

semget [syscalls ipcipc_sem] (key_t key, int nsems, int semflg)

semop [syscalls ipc ipc_sem] (int semid, struct sembuf* sops, size_t nsops)

semctl [syscalls ipc ipc_sem] (int semid, int semnum, int cmd, unsigned long arg)

shmdt [syscalls ipc ipc_shml] (const void* shmaddr)

msgget [syscalls ipc ipc_msgq] (key_t key, int msgflg)

msgsnd [syscalls ipc ipc_msgq] (int msqid, struct msgbuf* msgp, size_t msgsz, int msgflg)
msgrcv [syscalls ipc ipc_msgq] (int msqid, struct msgbuf* msgp, size_t msgsz, long msgtyp, ir
msgctl [syscalls ipc ipc_msgq] (int msqid, int cmd, struct msqid_ds* buf)

fentl [syscalls fs fs_fd_ops] (int fd, int cmd, unsigned long arg)

flock [syscalls fs fs_fd_ops] (int fd, int operation)

fsync [syscalls fs fs_sync] (int fd)

fdatasync [syscalls fs fs_sync] (int fd)

truncate [syscalls fs fs_file_ops] (const char* path, off_t length)

ftruncate [syscalls fs fs_file_ops] (int fd, off_t length)

getdents [default syscalls fs fs_dir_ops] (int fd, struct linux_dirent* dirp, unsigned int count)
getcwd [syscalls fs fs_dir_ops] (char* buf, size_t size)

chdir [syscalls fs fs_dir_ops] (const char* path)

fchdir [syscalls fs fs_dir_ops] (int fd)

rename [syscalls fs fs_file_ops] (const char* oldpath, const char* newpath)

mkdir [syscalls fs fs_dir_ops] (const char* pathname, mode_t mode)

rmdir [syscalls fs fs_dir_ops] (const char* pathname)

creat [default syscalls fs fs_file_ops] (const char* pathname, mode_t mode)

link [syscalls fs fs_link_ops] (const char* oldpath, const char* newpath)

unlink [default syscalls fs fs_link_ops] (const char* pathname)

symlink [default syscalls fs fs_link_ops] (const char* target, const char* linkpath)

readlink [syscalls fs fs_link_ops] (const char* pathname, char* buf, size_t bufsiz)

chmod [default syscalls fs fs_file_attr] (const char* pathname, mode_t mode)

fchmod [default syscalls fs fs_file_attr] (int fd, mode_t mode)

chown [default syscalls fs fs_file_attr] (const char* pathname, uid_t owner, gid_t group)

fchown [default syscalls fs fs_file_attr] (int fd, uid_t owner, gid_t group)

Ichown [default syscalls fs fs_file_attr] (const char* pathname, uid_t owner, gid_t group)

umask [syscalls fs fs_file_attr] (mode_t mask)

gettimeofday [syscalls time time_tod] (struct timeval* tv, struct timezone* tz)

getrlimit [syscalls proc] (int resource, struct rlimit* rlim)

getrusage [syscalls proc] (int who, struct rusage* usage)

sysinfo [syscalls system] (struct sysinfo* info)

times [syscalls proc] (struct tms* buf)

ptrace [default syscalls proc] (long request, pid_t pid, void* addr, void* data)
getuid [syscalls proc proc_ids] 0

syslog [syscalls system] (int type, char* bufp, int len)

getgid [syscalls proc proc_ids] 0

setuid [default syscalls proc proc_ids] (uid_t uid)

setgid [default syscalls proc proc_ids] (gid_t gid)

geteuid [syscalls proc proc_ids] 0

getegid [syscalls proc proc_ids] 0]

setpgid [syscalls proc proc_ids] (pid_t pid, pid_t pgid)

getppid [syscalls proc proc_ids] 0

getpgrp [syscalls proc proc_ids] 0

setsid [syscalls proc proc_ids] 0

setreuid [default syscalls proc proc_ids] (uid_t ruid, uid_t euid)

setregid [default syscalls proc proc_ids] (gid_trgid, gid_t egid)

getgroups [syscalls proc proc_ids] (int size, gid_t* list)

setgroups [syscalls proc proc_ids] (int size, gid_t* list)

setresuid [syscalls proc proc_ids] (uid_t ruid, uid_t euid, uid_t suid)

getresuid [syscalls proc proc_ids] (uid_t* ruid, uid_t* euid, uid_t* suid)

setresgid [syscalls proc proc_ids] (gid_t rgid, gid_t egid, gid_t sgid)

getresgid [syscalls proc proc_ids] (gid_t* rgid, gid_t* egid, gid_t* sgid)

getpgid [syscalls proc proc_ids] (pid_t pid)

setfsuid [default syscalls proc proc_ids] (uid_t fsuid)

setfsgid [default syscalls proc proc_ids] (gid_t fsgid)

getsid [syscalls proc proc_ids] (pid_t pid)

capget [syscalls proc] (cap_user_header_t hdrp, cap_user_data_t datap)
capset [syscalls proc] (cap_user_header_t hdrp, const cap_user_data_t datap)
rt_sigpending [syscalls signals] (sigset_t* set, size_t sigsetsize)

rt_sigtimedwait [syscalls signals] (const sigset_t* set, siginfo_t* info, const struct timespec* tim
rt_sigqueueinfo [syscalls signals] (pid_t tgid, int sig, siginfo_t* info)

rt_sigsuspend [syscalls signals] (sigset_t* mask, size_t sigsetsize)

sigaltstack [syscalls signals] (const stack_t* ss, stack_t* old_ss)

utime [syscalls fs fs_file_attr] (const char* filename, const struct utimbuf* times)
mknod [default syscalls fs fs_file_ops] (const char* pathname, mode_t mode, dev_t dev)
uselib [syscalls proc] (const char* library)

personality [syscalls system] (unsigned long persona)

ustat [syscalls fs fs_info] (dev_t dev, struct ustat* ubuf)

statfs [syscalls fs fs_info] (const char* path, struct statfs* buf)

fstatfs [syscalls fs fs_info] (int fd, struct statfs* buf)

sysfs [syscalls fs fs_info] (int option)

getpriority [syscalls proc proc_sched] (int which, int who)

setpriority [syscalls proc proc_sched] (int which, int who, int prio)

sched_setparam [syscalls proc proc_sched] (pid_t pid, struct sched_param* param)
sched_getparam [syscalls proc proc_sched] (pid_t pid, struct sched_param®* param)
sched_setscheduler [syscalls proc proc_sched] (pid_t pid, int policy, struct sched_param* param)
sched_getscheduler [syscalls proc proc_sched] (pid_t pid)

sched_get_priority_max [syscalls proc proc_sched] (int policy)

sched_get_priority_min [syscalls proc proc_sched] (int policy)

sched_rr_get_interval [syscalls proc proc_sched] (pid_t pid, struct timespec* tp)

mlock [syscalls proc proc_mem] (const void* addr, size_t len)

munlock [syscalls proc proc_mem] (const void* addr, size_t len)

mlockall [syscalls proc proc_mem] (int flags)

munlockall [syscalls proc proc_mem] 0

vhangup [syscalls system] 0

modify_ldt [syscalls proc proc_mem] (int func, void* ptr, unsigned long bytecount)
pivot_root [syscalls fs] (const char* new_root, const char* put_old)

sysctl [syscalls system] (struct __sysctl_args* args)

sched_setaffinity
sched_getaffinity

set_thread_area [syscalls proc]

io_setup [syscalls fs fs_async_io]
io_destroy [syscalls fs fs_async_io]
io_getevents [syscalls fs fs_async_io]
io_submit [syscalls fs fs_async_io]
io_cancel [syscalls fs fs_async_io]

get_thread_area
lookup_dcookie
epoll_create
epoll_ctl_old
epoll_wait_old
remap_file_pages

[syscalls proc]
[syscalls fs fs_dir_ops]
[syscalls fs fs_mux_io]
[syscalls fs fs_mux_io]
[syscalls fs fs_mux_io]
[syscalls]

[syscalls proc proc_sched]
[syscalls proc proc_sched]

(pid_t pid, size_t cpusetsize, unsigned long* mask)
(pid_t pid, size_t cpusetsize, unsigned long* mask)
(struct user_desc* u_info)
(unsigned int nr_events, io_context_t* ctx_idp)
(io_context_t ctx_id)
(io_context_t ctx_id, long min_nr, long nr, struct io_event* ev
(io_context_t ctx_id, long nr, struct iocb** iocbpp)
(io_context_t ctx_id, struct iocb* iocb, struct io_event* result)
(struct user_desc* u_info)
(ub4 cookie, char* buffer, size_t len)
(int size)
()
0

(void* addr, size_t size, int prot, size_t pgoff, int flags)

prctl [default syscalls proc] (int option, unsigned long arg2, unsigned long arg3, unsigned lor

arch_prctl [syscalls proc] (int option, unsigned long addr)

adjtimex [syscalls time time_clock] (struct timex* buf)

setrlimit [syscalls proc] (int resource, const struct rlimit* rlim)

chroot [syscalls fs fs_dir_ops] (const char* path)

sync [syscalls fs fs_sync] 0

acct [syscalls system] (const char* filename)

settimeofday [syscalls time time_tod] (const struct timeval* tv, const struct timezone* tz)

mount [default syscalls fs] (const char* source, const char* target, const char* filesystemty

LI # main ~ howtos/DUMP / Published / QEMU Security Matters.md.md ™ Top

Code Blame 4661 lines (3967 loc) - 229 KB Raw =

sethostname [syscalls net] (const char* name, size_t len)

setdomainname [syscalls net] (const char* name, size_t len)

iopl [syscalls system] (int level)

ioperm [syscalls system] (unsigned long from, unsigned long num, int turn_on)

create_module [syscalls system system_module] O

init_module [default syscalls system system_module] (void* module_image, unsigned long len, const che

delete_module [default syscalls system system_module] (const char* name, int flags)

get_kernel_syms [syscalls system system_module] 0

query_module [syscalls system system_module] 0

quotactl [syscalls system] (int cmd, const char* special, int id, void* addr)

nfsservctl [syscalls fs] 0

getpmsg [syscalls] 0

putpmsg [syscalls] 0

afs [syscalls] 0

tuxcall [syscalls] 0

security [syscalls] 0

gettid [syscalls proc proc_ids] 0

readahead [syscalls fs] (int fd, off_t offset, size_t count)

setxattr [syscalls fs fs_file_attr] (const char* path, const char* name, const void* value, size_t si:

[setxattr [syscalls fs fs_file_attr] (const char* path, const char* name, const void* value, size_t si:

fsetxattr [syscalls fs fs_file_attr] (int fd, const char* name, const void* value, size_t size, int flags)

getxattr [syscalls fs fs_file_attr] (const char* path, const char* name, void* value, size_t size)

Igetxattr [syscalls fs fs_file_attr] (const char* path, const char* name, void* value, size_t size)

fgetxattr [syscalls fs fs_file_attr] (int fd, const char* name, void* value, size_t size)

listxattr [syscalls fs fs_file_attr] (const char* path, char* list, size_t size)

llistxattr [syscalls fs fs_file_attr] (const char* path, char* list, size_t size)

flistxattr [syscalls fs fs_file_attr] (int fd, char* list, size_t size)

removexattr [syscalls fs fs_file_attr] (const char* path, const char* name)

[removexattr [syscalls fs fs_file_attr] (const char* path, const char* name)

fremovexattr [syscalls fs fs_file_attr] (int fd, const char®* name)

tkill [syscalls signals] (int tid, int sig)

time [syscalls time time_tod] (time_t* tloc)

futex [syscalls ipc ipc_futex] (int* uaddr, int futex_op, int val, const struct timespec* timeout,

https://github.com/rafaeldtinoco/howtos/tree/main
https://github.com/rafaeldtinoco/howtos/tree/main/DUMP
https://github.com/rafaeldtinoco/howtos/tree/main/DUMP/Published
https://github.com/rafaeldtinoco/howtos/raw/main/DUMP/Published/QEMU%20Security%20Matters.md.md
https://github.com/rafaeldtinoco/howtos/edit/main/DUMP/Published/QEMU%20Security%20Matters.md.md

getdents64
set_tid_addres
restart_syscall
semtimedop
fadvise64
timer_create
timer_settime
timer_gettime

timer_getoverrun

timer_delete
clock_settime
clock_gettime
clock_getres

clock_nanosleep

[default syscalls fs fs_dir_ops] (unsigned int fd, struct linux_dirent64* dirp, unsigned int |

S [syscalls proc]
[syscalls signals]

[syscalls ipc ipc_sem]

[syscalls fs]

[syscalls time time_timer]
[syscalls time time_timer]
[syscalls time time_timer]

[syscalls time time_timer] (timer_t timer_id)

[syscalls time time_timer]
[syscalls time time_clock]
[syscalls time time_clock]

[syscalls time time_clock]

[syscalls time time_clock] (const clockid_t clockid, int flags, const struct timespec®* |

(int* tidptr)
()

(int semid, struct sembuf* sops, size_t nsops, const struct ti

(int fd, off_t offset, size_t len, int advice)

(const clockid_t clockid, struct sigevent* sevp, timer_t* tim
(timer_t timer_id, int flags, const struct itimerspec* new_v
(timer_t timer_id, struct itimerspec* curr_value)

(timer_t timer_id)

(const clockid_t clockid, const struct timespec* tp)
(const clockid_t clockid, struct timespec* tp)
(const clockid_t clockid, struct timespec* res)

exit_group [syscalls proc proc_life] (int status)

epoll_wait [syscalls fs fs_mux_io] (int epfd, struct epoll_event* events, int maxevents, int timeot
epoll_ctl [syscalls fs fs_mux_io] (int epfd, int op, int fd, struct epoll_event* event)

tgkill [syscalls signals] (int tgid, int tid, int sig)

utimes [syscalls fs fs_file_attr] (char* filename, struct timeval* times)

vserver [syscalls]

mbind [syscalls system system_numa] (void* addr, unsigned long len, int mode, const unsignec
set_mempolicy [syscalls system system_numa] (int mode, const unsigned long* nodemask, unsigne

get_mempolicy

mg_open
maq_unlink

mq_timedsend

mq_timedrece
mq_notify
mq_getsetattr
kexec_load

~qitid
Ok,
request_key
keyctl
ioprio_set
ioprio_get
inotify_init

inotify_add_watch
inotify_rm_watch
migrate_pages

openat
mkdirat
mknodat
fchownat
futimesat
newfstatat
unlinkat
renameat
linkat
symlinkat
readlinkat
fchmodat
faccessat
pselect6

ppoll

unshare
set_robust_list
get_robust_list
splice

tee

[syscalls ipc ipc_msgq]
[syscalls ipc ipc_msgq]

[syscalls ipcipc_msgq]

[syscalls ipc ipc_msgq]

[syscalls system]
[syscalls proc proc_life]

[syscalls ipc ipc_msgq]
ive [syscalls ipc ipc_msgq]

[syscalls system system_numa] (int* mode, unsigned long* nodemask, unsigned lon

(const char* name, int oflag, mode_t mode, struct mq_attr*
(const char* name)
(mqgd_t mqdes, const char* msg_ptr, size_t msg_len, unsis
(mqd_t mqdes, char* msg_ptr, size_t msg_len, unsigned i
(mqgd_t mqdes, const struct sigevent* sevp)
(mqgd_t mgdes, const struct mqg_attr* newattr, struct mq_at
(unsigned long entry, unsigned long nr_segments, struct kexec,
(int idtype, pid_t id, struct siginfo* infop, int options, struct rusa

[syscalls system system_keys] (const char* type, const char* description, const void* pa
[syscalls system system_keys] (const char* type, const char* description, const char* ¢

[syscalls system system_keys]
[syscalls proc proc_sched]
[syscalls proc proc_sched]

[syscalls fs fs_monitor]

[syscalls fs fs_monitor]
[syscalls fs fs_monitor]
[syscalls system system_numal] (int pid, unsigned long maxnode, const unsigned lon;

(int operation, unsigned long arg2, unsigned long arg3, unsi
(int which, int who, int ioprio)
(int which, int who)
()
(int fd, const char* pathname, u32 mask)
(int fd, int wd)

[default syscalls fs fs_file_ops] (int dirfd, const char* pathname, int flags, mode_t mode)

[syscalls fs fs_dir_ops]

(int dirfd, const char* pathname, mode_t mode)

[default syscalls fs fs_file_ops] (int dirfd, const char* pathname, mode_t mode, dev_t dev)
[default syscalls fs fs_file_attr] (int dirfd, const char* pathname, uid_t owner, gid_t group, i

[syscalls fs fs_file_attr]
[syscalls fs fs_file_attr]

(int dirfd, const char* pathname, struct timeval* times)
(int dirfd, const char* pathname, struct stat* statbuf, int flags)

[default syscalls fs fs_link_ops] (int dirfd, const char* pathname, int flags)

[syscalls fs fs_file_ops]
[syscalls fs fs_link_ops]

(int olddirfd, const char* oldpath, int newdirfd, const char* ne
(int olddirfd, const char* oldpath, int newdirfd, const char* new

[default syscalls fs fs_link_ops] (const char* target, int newdirfd, const char®* linkpath)

[syscalls fs fs_link_ops]

(int dirfd, const char* pathname, char* buf, int bufsiz)

[default syscalls fs fs_file_attr] (int dirfd, const char* pathname, mode_t mode, int flags)
[default syscalls fs fs_file_attr] (int dirfd, const char* pathname, int mode, int flags)

[syscalls fs fs_mux_io]
[syscalls fs fs_mux_io]
[syscalls proc]
[syscalls ipc ipc_futex]
[syscalls ipc ipc_futex]
[syscalls ipc ipc_pipel]
[syscalls ipc ipc_pipel]

(int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds, s
(struct pollfd* fds, unsigned int nfds, struct timespec* tmo_p, cc
(int flags)
(struct robust_list_head™* head, size_t len)
(int pid, struct robust_list_head** head_ptr, size_t* len_ptr)
(int fd_in, off_t* off_in, int fd_out, off_t* off_out, size_t len, unsigr
(int fd_in, int fd_out, size_t len, unsigned int flags)

sync_file_range [syscalls fs fs_sync] (int fd, off_t offset, off_t nbytes, unsigned int flags)

vmsplice [syscalls ipc ipc_pipe] (int fd, const struct iovec* iov, unsigned long nr_segs, unsignec
move_pages [syscalls system system_numa] (int pid, unsigned long count, const void** pages, cor
utimensat [syscalls fs fs_file_attr] (int dirfd, const char* pathname, struct timespec* times, int flc
epoll_pwait [syscalls fs fs_mux_io] (int epfd, struct epoll_event* events, int maxevents, int timeo
signalfd [syscalls signals] (int fd, sigset_t* mask, int flags)

timerfd_create [syscalls time time_timer] (int clockid, int flags)

eventfd [syscalls signals] (unsigned int initval, int flags)

fallocate [syscalls fs fs_file_ops] (int fd, int mode, off_t offset, off_t len)

timerfd_settime [syscalls time time_timer] (int fd, int flags, const struct itimerspec* new_value, strus
timerfd_gettime [syscalls time time_timer] (int fd, struct itimerspec®* curr_value)

acceptd [default syscalls net net_sock] (int sockfd, struct sockaddr* addr, int* addrlen, int flags)
signalfd4 [syscalls signals] (int fd, const sigset_t* mask, size_t sizemask, int flags)

eventfd2 [syscalls signals] (unsigned int initval, int flags)

epoll_create [syscalls fs fs_mux_io] (int flags)

dup3 [default syscalls fs fs_fd_ops] (int oldfd, int newfd, int flags)

pipe2 [syscalls ipc ipc_pipe] (int* pipefd, int flags)

inotify_init1 [syscalls fs fs_monitor] (int flags)

preadv [syscalls fs fs_read_write] (int fd, const struct iovec* iov, unsigned long iovcnt, unsigned
pwritev [syscalls fs fs_read_write] (int fd, const struct iovec* iov, unsigned long iovcnt, unsigned
rt_tgsigqueueinfo [syscalls signals] (pid_t tgid, pid_t tid, int sig, siginfo_t* info)

perf_event_open [syscalls system] (struct perf_event_attr* attr, pid_t pid, int cpu, int group_fd,
recvmmsg [syscalls net net_snd_rcv] (int sockfd, struct mmsghdr* msgvec, unsigned int vlen, int
fanotify_init [syscalls fs fs_monitor] (unsigned int flags, unsigned int event_f_flags)

fanotify_mark [syscalls fs fs_monitor] (int fanotify_fd, unsigned int flags, u64 mask, int dirfd, cons
prlimite4 [syscalls proc] (pid_t pid, int resource, const struct rlimit64* new_limit, struct rlin
name_to_handle_at [syscalls fs fs_file_ops] (int dirfd, const char* pathname, struct file_handle* hanc
open_by_handle_at [syscalls fs fs_file_ops] (int mount_fd, struct file_handle* handle, int flags)
clock_adjtime [syscalls time time_clock] (const clockid_t clk_id, struct timex* buf)

syncfs [syscalls fs fs_sync] (int fd)

sendmmsg [syscalls net net_snd_rcv] (int sockfd, struct mmsghdr* msgvec, unsigned int vlen, ir
setns [syscalls proc] (int fd, int nstype)

getcpu [syscalls system system_numal] (unsigned int* cpu, unsigned int* node, struct getcpu_ca
process_vm_readv [default syscalls proc] (pid_t pid, const struct iovec* local_iov, unsigned long lio\
process_vm_writev [default syscalls proc] (pid_t pid, const struct iovec* local_iov, unsigned long lio\
kcmp [syscalls proc] (pid_t pid1, pid_t pid2, int type, unsigned long idx1, unsigned long
finit_module [default syscalls system system_module] (int fd, const char* param_values, int flags)
sched_setattr [syscalls proc proc_sched] (pid_t pid, struct sched_attr* attr, unsigned int flags)
sched_getattr [syscalls proc proc_sched] (pid_t pid, struct sched_attr* attr, unsigned int size, unsigl
renameat2 [syscalls fs fs_file_ops] (int olddirfd, const char* oldpath, int newdirfd, const char* n
seccomp [syscalls proc] (unsigned int operation, unsigned int flags, const void* args)
getrandom [syscalls fs] (void* buf, size_t buflen, unsigned int flags)

memfd_create [default syscalls fs fs_file_ops] (const char* name, unsigned int flags)

kexec_file_load [syscalls system] (int kernel_fd, int initrd_fd, unsigned long cmdline_len, const ¢
bpf [default syscalls system] (int cmd, union bpf_attr* attr, unsigned int size)

execveat [default syscalls proc proc_life] (int dirfd, const char* pathname, const char*const* argy, c
userfaultfd [syscalls system] (int flags)

membarrier [syscalls proc proc_mem] (int cmd, int flags)

mlock2 [syscalls proc proc_mem] (const void* addr, size_t len, int flags)

copy_file_range [syscalls fs fs_read_write] (int fd_in, off_t* off_in, int fd_out, off_t* off_out, size_t len,
preadv2 [syscalls fs fs_read_write] (int fd, const struct iovec* iov, unsigned long iovcnt, unsignec
pwritev2 [syscalls fs fs_read_write] (int fd, const struct iovec* iov, unsigned long iovcnt, unsignec
pkey_mprotect [default syscalls proc proc_mem] (void* addr, size_t len, int prot, int pkey)

pkey_alloc [syscalls proc proc_mem] (unsigned int flags, unsigned long access_rights)

pkey_free [syscalls proc proc_mem] (int pkey)

statx [syscalls fs fs_file_attr] (int dirfd, const char* pathname, int flags, unsigned int mask, strt
io_pgetevents [syscalls fs fs_async_io] (aio_context_t ctx_id, long min_nr, long nr, struct io_event* «
rseq [syscalls] (struct rseg* rseq, u32 rseq_len, int flags, u32 sig)

pidfd_send_signal [syscalls signals] (int pidfd, int sig, siginfo_t* info, unsigned int flags)

io_uring_setup [syscalls] (unsigned int entries, struct io_uring_params* p)

io_uring_enter [syscalls] (unsigned int fd, unsigned int to_submit, unsigned int min_compl

io_uring_register [syscalls] (unsigned int fd, unsigned int opcode, void* arg, unsigned int nr_
open_tree [syscalls] (int dfd, const char* filename, unsigned int flags)
move_mount [default syscalls fs] (int from_dfd, const char* from_path, int to_dfd, const char*
fsopen [syscalls fs] (const char* fsname, unsigned int flags)
fsconfig [syscalls fs] (int* fs_fd, unsigned int cmd, const char* key, const void* value, int
fsmount [syscalls fs] (int fsfd, unsigned int flags, unsigned int ms_flags)
fspick [syscalls fs] (int dirfd, const char* pathname, unsigned int flags)
pidfd_open [syscalls] (pid_t pid, unsigned int flags)
clone3 [default syscalls proc proc_life] (struct clone_args™* cl_args, size_t size)
close_range [default syscalls fs fs_file_ops] (unsigned int first, unsigned int last)
openat2 [default syscalls fs fs_file_ops] (int dirfd, const char* pathname, struct open_how* how, si:
pidfd_getfd [syscalls] (int pidfd, int targetfd, unsigned int flags)
faccessat2 [default syscalls fs fs_file_attr] (int fd, const char* path, int mode, int flag)
process_madvise [syscalls] (int pidfd, void* addr, size_t length, int advice, unsigned long fle
epoll_pwait2 [syscalls fs fs_mux_io] (int fd, struct epoll_event* events, int maxevents, const struc
Other Events: Sets: Arguments:
sys_enter 0 (int syscall)
sys_exit 0 (int syscall)
do_exit [proc proc_life] 0
cap_capable [default] (int cap, int syscall)
security_bprm_check [default Ism_hooks] (const char* pathname, dev_t dev, unsigned long inode;
security_file_open [default Ism_hooks] (const char* pathname, int flags, dev_t dev, unsigned long
security_inode_unlink [default Ism_hooks] (const char* pathname)
vfs_write 0 (const char* pathname, dev_t dev, unsigned long inode, size_t count, of
vfs_writev 0 (const char* pathname, dev_t dev, unsigned long inode, unsigned long
mem_prot_alert 0 (alert_t alert)
sched_process_exit [default proc proc_life] 0
commit_creds 0 (int old_euid, int new_euid, int old_egid, int new_egid, int old_fsuid, i
switch_task_ns [(pid_t pid, u32 new_mnt, u32 new_pid, u32 new_uts, u32 new_ipc, u:
magic_write [(const char* pathname, bytes bytes)
security_socket_create [Ism_hooks] (int family, int type, int protocol, int kern)
security_socket_listen [Ism_hooks] (int sockfd, struct sockaddr* local_addr, int backlog)
security_socket_connect [Ism_hooks] (int sockfd, struct sockaddr* remote_addr)
security_socket_accept [Ism_hooks] (int sockfd, struct sockaddr* local_addr)
security_socket_bind [Ism_hooks] (int sockfd, struct sockaddr* local_addr)
security_sb_mount [default Ism_hooks] (const char* dev_name, const char* path, const char®* tyj
security_bpf [Ism_hooks] (int cmd)
security_bpf_map [Ism_hooks] (unsigned int map_id, const char* map_name)

Tracing

You can either opt to trace all registered events or select a few ones, including filters for processes and/or specific
conditions. These options can be given directly at the command line in the 'collecting' phase.

Example:

Let's trace a'ls' command, started in the Host (not in a container), from uid 1000, only for new pids (from now on)
and all possible registered events and arguments:

$ sudo ./dist/tracee-ebpf --trace comm=ls --trace 'lcontainer’ --trace 'uid=1000' --trace pid=new &
TIME(s) UuiD COMM PID TID RET EVENT ARGS

387170.180056 1000 Is 3103403 3103403 -2 access pathname: /etc/Id.so.preload, mo
387170.180115 1000 Is 3103403 31034030 security_file_open pathname: /etc/Id.so.cache, fl
387170.180151 1000 Is 3103403 3103403 3 openat dirfd: -100, pathname: /etc/Id.so.c

387170.180171 1000 Is 3103403 3103403 0 fstat fd: 3, statbuf: Ox7FFC73471DA0

387170.180203 1000 Is 3103403 3103403 0 close fd: 3

387170.180237 1000 Is 3103403 3103403 0 security_file_open pathname: /usr/lib/x86_64-lin
387170.180261 1000 Is 3103403 3103403 3 openat dirfd: -100, pathname: /lib/x86_64
387170.180291 1000 Is 3103403 3103403 0 fstat fd: 3, statbuf: 0x7FFC73471DFO
387170.180405 1000 Is 3103403 3103403 0 close fd: 3

387170.180451 1000 s 3103403 3103403 0 security_file_open pathname: /usr/lib/x86_64-lin
387170.180490 1000 Is 3103403 3103403 3 openat dirfd: -100, pathname: /lib/x86_64
387170.180519 1000 Is 3103403 3103403 0 fstat fd: 3, statbuf: 0x7FFC73471DDO0
387170.180608 1000 Is 3103403 3103403 0 close fd: 3

387170.180632 1000 Is 3103403 3103403 0 security_file_open pathname: /usr/lib/x86_64-lin
387170.180645 1000 Is 3103403 3103403 3 openat dirfd: -100, pathname: /lib/x86_64
387170.180660 1000 Is 3103403 3103403 0 fstat fd: 3, statbuf: 0x7FFC73471DB0O
387170.180714 1000 Is 3103403 3103403 0 close fd: 3

387170.180732 1000 Is 3103403 3103403 0 security_file_open pathname: /usr/lib/x86_64-lin
387170.180745 1000 Is 3103403 3103403 3 openat dirfd: -100, pathname: /lib/x86_64
387170.180759 1000 Is 3103403 3103403 0 fstat fd: 3, statbuf: 0x7FFC73471D90
387170.180907 1000 Is 3103403 3103403 0 close fd: 3

387170.180934 1000 |Is 3103403 3103403 0 security_file_open pathname: /usr/lib/x86_64-lin
387170.180968 1000 Is 3103403 3103403 3 openat dirfd: -100, pathname: /lib/x86_64
387170.181009 1000 Is 3103403 3103403 0 fstat fd: 3, statbuf: 0x7FFC73471D50
387170.181106 1000 Is 3103403 3103403 0 close fd: 3

387170.181587 1000 Is 3103403 31034030 security_file_open pathname: /proc/filesystems,
387170.181642 1000 Is 3103403 3103403 3 openat dirfd: -100, pathname: /proc/filesy
387170.181677 1000 Is 3103403 3103403 0 fstat fd: 3, statbuf: 0x7FFC73472A50
387170.181726 1000 s 3103403 3103403 0 close fd: 3

387170.181749 1000 Is 3103403 3103403 -2 access pathname: /etc/selinux/config, mc
387170.181814 1000 Is 3103403 31034030 security_file_open pathname: /usr/lib/locale/loc:
387170.181831 1000 Is 3103403 3103403 3 openat dirfd: -100, pathname: /usr/lib/loc
387170.181841 1000 Is 3103403 3103403 0 fstat fd: 3, statbuf: 0X7FCCDA1957A0
387170.181877 1000 s 3103403 3103403 0 close fd: 3

387170.182021 1000 s 3103403 3103403 0 security_file_open pathname:/, flags: O_RDONL'
387170.182046 1000 Is 3103403 3103403 3 openat dirfd: -100, pathname: /, flags: O_|
387170.182062 1000 Is 3103403 3103403 0 fstat fd: 3, statbuf: 0x7FFC73472750
387170.182120 1000 Is 3103403 3103403 752 getdents64 fd: 3, dirp: 0x563B7EA4AA30, ¢
387170.182157 1000 Is 3103403 3103403 0 getdents64 fd: 3, dirp: 0x563B7EA4AA30, co
387170.182169 1000 Is 3103403 3103403 0 close fd: 3

387170.182238 1000 s 3103403 3103403 0 fstat fd: 1, statbuf: 0x7FFC73470620
387170.182307 1000 Is 3103403 3103403 0 close fd: 1

387170.182342 1000 Is 3103403 3103403 0 close fd: 2

387170.182558 1000

End of events stream

3103403 31034030

sched_process_exit

Stats: {eventCounter:44 errorCounter:0 lostEvCounter:0 lostWrCounter:0}

As you can see, this looks very close to what a 'strace’ output would look like. Nevertheless, the core engine for tracee
allows for customized filters, not necessarily based in syscalls, that will tell whether a set of events and arguments
happened... and THAT is what might warn you about security breakage.

Like for example a tenant trying to access a file it should not, or trying to memory map address areas it should
not, trying to create device node files it should not, etc.

One might ask what is the difference from that and apparmor, or other LSM engines. The difference is that LSM hooks
are just ONE kind of events that might be supported in tracee. Other events might be created based on SPECIFIC
needs, like internal-to-kernel access attempts, etc.

Another example, tracee is able to warn if another application has tampered itself and its internal ebpf kernel
structures, by having 2 events coming from the LSM hooks inside the kernel.

Like explained before, tracee has an eBPF core to introspect the kernel, and has maps shared among its userland
and kernel ebpf code. If aill-intentioned person tries to alter its internal structures, to remove or change the list
of events to be monitored, for example, it can monitor itself by observing kernel functions responsible for dealing
with those requests:

$ sudo ./dist/tracee-ebpf --debug --trace comm=bpftool --trace event=security_bpf_map i
found bpf object file at: /tmp/tracee/tracee.bpf.5_8_0-43-generic.v0_5_1-24-g22a3058.0

TIME(s) uib COMM PID TID RET EVENT ARGS

387505.754238 0 bpftool 3149471 3149471 0 security_bpf_map map_id: 935, map_name: ar
387505.754556 0 bpftool 3149471 3149471 0 security_bpf_map map_id: 936, map_name: bi
387505.754729 0 bpftool 3149471 31494710 security_bpf_map map_id: 937, map_name: bt
387505.754902 0 bpftool 3149471 31494710 security_bpf_map map_id: 938, map_name: bt
387505.755072 0 bpftool 3149471 3149471 0 security_bpf_map map_id: 939, map_name: ch
387505.755240 0 bpftool 3149471 31494710 security_bpf_map map_id: 940, map_name: cc
387505.755411 0 bpftool 3149471 3149471 0 security_bpf_map map_id: 941, map_name: ca
387505.755588 0 bpftool 3149471 31494710 security_bpf_map map_id: 942, map_name: ev
387505.755762 0 bpftool 3149471 31494710 security_bpf_map map_id: 943, map_name: fil
387505.755937 0 bpftool 3149471 31494710 security_bpf_map map_id: 944, map_name: fil:

Here the bpftool (userland tool) is reading all existing eBPF maps within the running kernel. Tracee was able to
realize that it read its own eBPF maps and would be able to tell you if its internal structures were 'tainted' or
'tampared' by a 3rd party program.

This is just one example.

For the an Host OS, one could create RULES based on previous CVEs behavior that would monitor the OS kernel for
security breakage attempts based on known/existent security issues (CVEs)

OR

Generic security-related 'recipes' (called 'signatures') could be created based in 'generic ways of security breakage
attempt'.

SO,

Both approaches would allow HostOS admins to be warned about bad cloud citizens to could be better investigated or
even blocked from the service.

I Okay, we've collected all this events data. And now ?
e Tracee-Rules - Runtime Security Detection Engine

Tracee supports authoring rules in Golang or in Rego (the language of Open Policy Agent). See tracee-rules rego
examples for example Rego signatures, or tracee-rules golang examples

As explained in previous section, there are some generic security 'signatures' that could be created in order to avoid
malicious code to be executed.

One good example is when attacker tries to use LD_LIBRARY_PATH ordering to hijack library calls from a binary
and execute arbitrary code. A good recipe made in 'REGO' can be found HERE.

@ - PROPOSITION 3
THIS IS THE THIRD PROPOSITION OF THIS DOCUMENT STEP

As a medium/long term approach, introspection tools should be analyzed for the HostOS environment. HostOS
kernel should provide means for the next-generation security analysis tools to be available to run in a way that no
impact is made (like eBPF support with CO.RE feature - compile once, run everywhere - and the BTF debugging
format support - available in most recent kernels).

With time, recipes (or signatures, in case of tracee) could be created in order to log security breakage attempts
based on known CVEs and known access or execution patterns.

https://github.com/aquasecurity/tracee/tree/main/tracee-rules/signatures/rego/examples
https://github.com/aquasecurity/tracee/tree/main/tracee-rules/signatures/rego/examples
https://github.com/aquasecurity/tracee/tree/main/tracee-rules/signatures/golang/examples
https://github.com/aquasecurity/tracee/blob/main/tracee-rules/signatures/rego/ld_preload.rego

This will definitely be more effective than trying to 'log' a common set of existing events in order to guarantee the
environment safety.

6-) REFERENCE

https://en.wikipedia.org/wiki/QEMU @
https://wiki.QEMU.org/Documentation/TCG

https://wiki.QEMU.org/Features/

https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://vfio.blogspot.com/2014/08/iommu-groups-inside-and-out.html
https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/deep-dive-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/achieving-network-wirespeed-open-standard-manner-introducing-vdpa
https://www.programmersought.com/article/84854610738/
https://www.slideshare.net/janghoonsim/KVM-performance-optimization-for-ubuntu
https://www.redhat.com/en/blog/journey-vhost-users-realm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_a
https://wiki.ubuntu.com/rafaeldtinoco?action=AttachFile&do=view&target=QEMU_vuln_and_mit_explained.htrr
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://www.programmersought.com/article/30564621193/
https://software.intel.com/security-software-guidance/resources/processors-affected-special-register-buffer-de
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-special-register-buffer-data-samp
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-intel-transactional-synchronizatiol
https://www.QEMU.org/2021/01/19/virtio-blk-scsi-configuration/

https://en.wikipedia.org/wiki/LIO_(SCSI_target)

https://en.wikipedia.org/wiki/Ceph_(software)

https://www.programmersought.com/article/29323748848/
https://QEMU.readthedocs.io/en/latest/system/security.htm
https://readthedocs.org/projects/QEMU/downloads/pdf/latest/

https://en.wikipedia.org/wiki/AppArmor

https://gitlab.com/apparmor/apparmor/-/wikis/Libvirt

https://blade.tencent.com/en/advisories/v-ghost/

https://github.com/0xKira/QEMU-vm-escape
Tensec2019-Vulnerability_Discovery_and_Exploitation_of_Virtualization_Solutions_for_Cloud_Computing_and_D
Intel Doc: PCI-SIG SR-IOV Primer (Introd to SR-IOV Technology)

https://libvirt.org/cgroups.html

https://en.wikipedia.org/wiki/Linux_namespaces

https://en.wikipedia.org/wiki/Seccomp

https://vmsplice.net/~stefan/stefanha-KVM-forum-2018.pdf

https://wiki.QEMU.org/Documentation/QMP

https://libvirt.org/kbase/debuglogs.html#turning-on-debug-logs
https://github.com/0xKira/QEMU-vm-escape/blob/master/Tensec2019-Vulnerability_Discovery_and_Exploitatiol
https://wiki.QEMU.org/Documentation/Networking

https://www.openwall.com/lists/oss-security/2019/09/17/1
https://www.kernel.org/doc/Documentation/kprobes.txt
https://github.com/jav/systemtap/blob/master/runtime/uprobes/uprobes.txt
https://perf.wiki.kernel.org/index.php/Tutorial

https://ebpf.io/

https://github.com/aquasecurity/libbpfgo

https://github.com/libbpf/libbpf/

https://aquasecurity.github.io/tracee/v0.5.1/rules-authoring/

https://github.com/falcosecurity/falco

