
Why is memory safety still a
concern?

Mohamed (Tarek Ibn Ziad) Hassan
https://www.cs.columbia.edu/~mtarek/

@M_TarekIbnZiad
Ph.D. Candidacy Exam

April 9th, 2020.

https://www.cs.columbia.edu/~mtarek/
https://twitter.com/M_TarekIbnZiad

Why is memory safety still a
concern?

Mohamed (Tarek Ibn Ziad) Hassan
https://www.cs.columbia.edu/~mtarek/

mtarek@cs.columbia.edu
Ph.D. Candidacy Exam

April 9th, 2020.

MEMORY SAFETY DEFINITION

A program property that guarantees memory objects can
only be accessed:

3

Virtual Memory

Memory
Object (A)Pointer (A)

MEMORY SAFETY DEFINITION

4

A program property that guarantees memory objects can
only be accessed:

Virtual Memory

Memory
Object (A)Pointer (A)

● Between their intended bounds,

MEMORY SAFETY DEFINITION

5

A program property that guarantees memory objects can
only be accessed:

Virtual Memory

Memory
Object (A)Pointer (A)

● Between their intended bounds,
● During their lifetime,

MEMORY SAFETY DEFINITION

● Between their intended bounds,
● During their lifetime, and
● Given their original

(or compatible) type.

6

Virtual Memory

Memory
Object (A)Pointer (A)

A program property that guarantees memory objects can
only be accessed:

Pointer (B)

7

MEMORY SAFETY DEFINITION VIOLATIONS

● Between their intended bounds,
● During their lifetime, and
● Given their original

(or compatible) type.

A program property that guarantees memory objects can
only be accessed:

Virtual Memory

Memory
Object (A)Pointer (A)

Pointer (B)

MEMORY SAFETY DEFINITION VIOLATIONS

8

● Between their intended bounds,
● During their lifetime, and
● Given their original

(or compatible) type.

A program property that guarantees memory objects can
only be accessed:

Buffer overflow

MEMORY SAFETY DEFINITION VIOLATIONS

9

● Between their intended bounds,
● During their lifetime, and
● Given their original

(or compatible) type.

A program property that guarantees memory objects can
only be accessed:

Use-after-free

MEMORY SAFETY DEFINITION VIOLATIONS

10

● Between their intended bounds,
● During their lifetime, and
● Given their original

(or compatible) type.

A program property that guarantees memory objects can
only be accessed:

Type confusion

MEMORY SAFETY IS A SERIOUS PROBLEM!

11

PREVALENCE OF MEMORY SAFETY VULNS

12

Microsoft Product CVEs

Source: Matt Miller, Microsoft Security Response Center (MSRC) [BlueHat 2019]

PREVALENCE OF MEMORY SAFETY VULNS

13

Microsoft Product CVEs Google OSS-Fuzz bugs from
2016-2018.

Source: https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html

14Source: Google Project Zero, 0day "In the Wild" spreadsheet. Last updated: April 3rd, 2020

ATTACKERS PREFER MEMORY SAFETY VULNS

Zero-day “in the wild” exploits
from 2014-2020

https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/view#gid=0

C/C++

15

16

C/C++ IS HERE TO STAY

● Performance.

17

● Performance.
● Communication.

C/C++ IS HERE TO STAY

18

● Performance.
● Communication.
● Completeness.

C/C++ IS HERE TO STAY

19

● Performance.
● Communication.
● Completeness.
● Maturity.

C/C++ IS HERE TO STAY

20

● Performance.
● Communication.
● Completeness.
● Maturity.
● Legacy code.

C/C++ IS HERE TO STAY

REST OF THE TALK

Memory Safety Techniques

Memory Corruption Attacks & Defenses

Future Work Map

21

Memory Corruption
Attacks & Defenses

22

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

1997

Non
Executable

Stack

1998

Heap
Overflows

2000

Format
String

2002

Info.
Leak

2004

Heap
Spraying

2007

ROP

2013

JIT-ROP

1997

Ret2Libc

2016

DOP
1996

Smashing
the stack

1998

Stack
Canaries

2000

Heap
Mitigations

2015

COOP

2001

Format
Guard

NX-bit

2003

2001

ASLR

2003

Point
Guard

2005

CFI

2007

Shadow
Stack

Instruction
Set

Random.

2003

2007

Heap
Feng Shui

2008

Code
Divers.

Code
Pointer
Integrity

2015

XnR

Vtable
Protection

Runtime
Divers.:
Shuffler

2016

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

Isomeron

2015

2016

Non-Control
Data Attacks 2008

2019

PAIRS

JOP2011 SROP2014 BOP2019

23

Timeline

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

1997

Non
Executable

Stack

1998

Heap
Overflows

2000

Format
String

2002

Info.
Leak

2004

Heap
Spraying

2007

ROP

2013

JIT-ROP

1997

Ret2Libc

2016

DOP
1996

Smashing
the stack

1998

Stack
Canaries

2000

Heap
Mitigations

2015

COOP

2001

Format
Guard

NX-bit

2003

2001

ASLR

2003

Point
Guard

2005

CFI

2007

Shadow
Stack

Instruction
Set

Random.

2003

2007

Heap
Feng Shui

2008

Code
Divers.

Code
Pointer
Integrity

2015

XnR

Vtable
Protection

Runtime
Divers.:
Shuffler

2016

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

Isomeron

2015

2016

Non-Control
Data Attacks 2008

2019

PAIRS

JOP2011 SROP2014 BOP2019

24

TimelineDisclaimer!

25

Timeline

Source: James P. Anderson, Computer Security Technology Planning Study, October 1972
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf

The First
doc.

Overflow
Attack

1972

http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf

26

Timeline

“the code performing this function does not
check the source and destination
addresses properly, permitting portions of
the monitor to be overlaid by the user.

Source: James P. Anderson, Computer Security Technology Planning Study, October 1972
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf

The First
doc.

Overflow
Attack

1972

http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf

27

Timeline

“the code performing this function does not
check the source and destination
addresses properly, permitting portions of
the monitor to be overlaid by the user.
This can be used to inject code into the
monitor that will permit the user to seize
control of the machine”

Source: James P. Anderson, Computer Security Technology Planning Study, October 1972
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf

The First
doc.

Overflow
Attack

1972

http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

28

Timeline

[4] Szekeres et. al, SoK: Eternal war in memory. [S&P 2013]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

29

Timeline

1996

Smashing
the stack

[3] Van der Veen et. al., Memory errors: The past, the present, and the future. [RAID 2012]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

30

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

[3] Van der Veen et. al., Memory errors: The past, the present, and the future. [RAID 2012]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

31

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

[3] Van der Veen et. al., Memory errors: The past, the present, and the future. [RAID 2012]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

32

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

[3] Van der Veen et. al., Memory errors: The past, the present, and the future. [RAID 2012]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

33

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

[3] Van der Veen et. al., Memory errors: The past, the present, and the future. [RAID 2012]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

34

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

35

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

36

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

37

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

38

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

[11] PaX-Team, PaX address space layout randomization. [2003]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

39

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

[4] Szekeres et. al, SoK: Eternal war in memory. [S&P 2013]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

40

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

[4] Szekeres et. al, SoK: Eternal war in memory. [S&P 2013]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

41

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

[4] Szekeres et. al, SoK: Eternal war in memory. [S&P 2013]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

42

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

43

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

44

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

[7] Hovav Shacham. The geometry of innocent flesh on the bone. [CCS 2007]

45

 RETURN ORIENTED PROGRAMMING (ROP)

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

● Attack procedures:

Stack

Text

[7] Hovav Shacham. The geometry of innocent flesh on the bone. [CCS 2007]

46

 RETURN ORIENTED PROGRAMMING (ROP)

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

● Attack procedures:
○ Locate interesting gadgets.

Stack

Text

Inst #1 #2 #3 ret

Inst #1 #2 ret

Inst #1 #2 #3 ret

[7] Hovav Shacham. The geometry of innocent flesh on the bone. [CCS 2007]

47

 RETURN ORIENTED PROGRAMMING (ROP)

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

return address

● Attack procedures:
○ Locate interesting gadgets.
○ Push sequence of gadget

addresses to the stack.
Stack

Text

Inst #1 #2 #3 ret

Inst #1 #2 ret

Inst #1 #2 #3 ret

return address
return address

[7] Hovav Shacham. The geometry of innocent flesh on the bone. [CCS 2007]

48

 RETURN ORIENTED PROGRAMMING (ROP)

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

return address

● Attack procedures:
○ Locate interesting gadgets.
○ Push sequence of gadget

addresses to the stack.
○ Run!

Stack

Text

Inst #1 #2 #3 ret

Inst #1 #2 ret

Inst #1 #2 #3 ret

return address
return address

[7] Hovav Shacham. The geometry of innocent flesh on the bone. [CCS 2007]

49

 RETURN ORIENTED PROGRAMMING (ROP)

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

return address

● Attack procedures:
○ Locate interesting gadgets.
○ Push sequence of gadget

addresses to the stack.
○ Run!

Stack

Text

Inst #1 #2 #3 ret

Inst #1 #2 ret

Inst #1 #2 #3 ret

return address
return address

[7] Hovav Shacham. The geometry of innocent flesh on the bone. [CCS 2007]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

50

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

51

 RETURN ORIENTED PROGRAMMING (ROP)

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

return address

● Attack procedures:
○ Locate interesting gadgets.
○ Push sequence of gadget

addresses to the stack.
○ Run!

● Mitigations:

Stack

Text

Inst #1 #2 #3 ret

Inst #1 #2 ret

Inst #1 #2 #3 ret

return address
return address

[7] Hovav Shacham. The geometry of innocent flesh on the bone. [CCS 2007]

52

 RETURN ORIENTED PROGRAMMING (ROP)

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

return address

● Attack procedures:
○ Locate interesting gadgets.
○ Push sequence of gadget

addresses to the stack.
○ Run!

● Mitigations:
○ Protect the return addresses.

Stack

Text

Inst #1 #2 #3 ret

Inst #1 #2 ret

Inst #1 #2 #3 ret

return address
return address

[7] Hovav Shacham. The geometry of innocent flesh on the bone. [CCS 2007]

53

 RETURN ORIENTED PROGRAMMING (ROP)

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

return address

● Attack procedures:
○ Locate interesting gadgets.
○ Push sequence of gadget

addresses to the stack.
○ Run!

● Mitigations:
○ Protect the return addresses.
○ Protect the gadgets.

Stack

Text

Inst #1 #2 #3 ret

Inst #1 #2 ret

Inst #1 #2 #3 ret

return address
return address

[7] Hovav Shacham. The geometry of innocent flesh on the bone. [CCS 2007]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

54

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

55

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

Code
Pointer
Integrity

2014

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

56

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

Code
Pointer
Integrity

2014

Cryptogra
phic-CFI2015

57

 CRYPTOGRAPHIC CONTROL FLOW INTEGRITY

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Create message authentication

code (HMAC) for code pointers.
● Store HMAC in pointer itself.
● Verify HMAC upon pointer load.

Heap

HMACCode Pointer Hash Fn

Secret Key
0

Tweak

[16] Liljestrand et. al., PAC it up: Towards pointer integrity using ARM pointer authentication. [USENIX 2019]

58

 CRYPTOGRAPHIC CONTROL FLOW INTEGRITY

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Create message authentication

code (HMAC) for code pointers.
● Store HMAC in pointer itself.
● Verify HMAC upon pointer load.

Heap
 pointer

0

[16] Liljestrand et. al., PAC it up: Towards pointer integrity using ARM pointer authentication. [USENIX 2019]

HMAC

Code Pointer Hash Fn

Tweak

Secret Key

59

 CRYPTOGRAPHIC CONTROL FLOW INTEGRITY

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Create message authentication

code (HMAC) for code pointers.
● Store HMAC in pointer itself.
● Verify HMAC upon pointer load.

Heap
 pointer

0

[16] Liljestrand et. al., PAC it up: Towards pointer integrity using ARM pointer authentication. [USENIX 2019]

HMAC

Hash Fn

Tweak

=?

Secret Key

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

60

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

Code
Pointer
Integrity

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

[16] Liljestrand et. al., PAC it up: Towards pointer integrity using ARM pointer authentication. [USENIX 2019]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

61

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

Code
Pointer
Integrity

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

2008

Code
Divers.

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

62

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

Code
Pointer
Integrity

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

2008

Code
Divers.

Runtime
Divers.:
Shuffler

2016

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

63

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

Code
Pointer
Integrity

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

2008

Code
Divers.

Runtime
Divers.:
Shuffler

2016

2013

JIT-ROP

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

64

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

Code
Pointer
Integrity

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

2008

Code
Divers.

Runtime
Divers.:
Shuffler

2016

2013

JIT-ROP

2015

XnR

Isomeron

2015

65

 ISOMERON

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Main Idea:

○ Create two diversified variants
of each function.

Text

0

Func.
A Func.

A
Func.

A’

66

 ISOMERON

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Main Idea:

○ Create two diversified variants
of each function.

○ Pick which variant to execute
randomly at runtime. Text

0

Func.
A

Diversifier

Func.
A

Func.
A’

67

 ISOMERON

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Main Idea:

○ Create two diversified variants
of each function.

○ Pick which variant to execute
randomly at runtime.

● Goal:
○ Prevent JIT-ROP from reliably

building a gadget chain.

Text

0

Func.
A

Diversifier

Func.
A

Func.
A’

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

68

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

Code
Pointer
Integrity

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

2008

Code
Divers.

Runtime
Divers.:
Shuffler

2016

2013

JIT-ROP

Isomeron

2015

2019

PAIRS

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019]

2015

XnR

69

 PAIRS
● Main Idea:

○ Insert TRAP instructions in the
beginning of code basic blocks.

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019]

70

 PAIRS
● Main Idea:

○ Insert TRAP instructions in the
beginning of code basic blocks.

○ Create two (or more) program
copies in virtual memory.

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019]

71

 PAIRS
● Main Idea:

○ Insert TRAP instructions in the
beginning of code basic blocks.

○ Create two (or more) program
copies in virtual memory.

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019]

72

 PAIRS
● Main Idea:

○ Insert TRAP instructions in the
beginning of code basic blocks.

○ Create two (or more) program
copies in virtual memory.

○ Randomize the execution
between the copies in runtime.

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019]

73

 PAIRS
● Main Idea:

○ Insert TRAP instructions in the
beginning of code basic blocks.

○ Create two (or more) program
copies in virtual memory.

○ Randomize the execution
between the copies in runtime.

● Pros and Cons:
○ Negligible perf. overheads. Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

+

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019]

74

 PAIRS
● Main Idea:

○ Insert TRAP instructions in the
beginning of code basic blocks.

○ Create two (or more) program
copies in virtual memory.

○ Randomize the execution
between the copies in runtime.

● Pros and Cons:
○ Negligible perf. overheads.
○ No code pointers protection.

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

+
-

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019]

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

75

Timeline

1996

Smashing
the stack

1997

Non
Executable

Stack

NX-bit

2003

Ret2Libc

1997

1998

Stack
Canaries

1998

Heap
Overflows

2000

Heap
Mitigations

2000

Format
String

2001

Format
Guard

2001

ASLR

2002

Info.
Leak

2003

Point
Guard

Instruction
Set

Random.

2003

2004

Heap
Spraying

2007

Heap
Feng Shui

2005

CFI

2007

ROP

JOP2011 SROP2014 BOP2019

2007

Shadow
Stack

Code
Pointer
Integrity

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

2015

COOP

Vtable
Protection

20162008

Code
Divers.

Runtime
Divers.:
Shuffler

2016

2013

JIT-ROP

2015

XnR

Isomeron

2015

2016

DOPNon-Control
Data Attacks 2008

[10] Cheng et. al., Exploitation techniques and defenses for data-oriented attacks. [SecDev 2019]

2019

PAIRS

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

1997

Non
Executable

Stack

1998

Heap
Overflows

2000

Format
String

2002

Info.
Leak

2004

Heap
Spraying

2007

ROP

2013

JIT-ROP

1997 2016

DOP
1996

Smashing
the stack

1998

Stack
Canaries

2000

Heap
Mitigations

2001

Format
Guard

NX-bit

2003

2001

ASLR

2003

Point
Guard

2005

CFI

2007

Shadow
Stack

Instruction
Set

Random.

2003

2007

Heap
Feng Shui

2008

Code
Divers.

Code
Pointer
Integrity

2015

XnR

Vtable
Protection

Runtime
Divers.:
Shuffler

2016

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

Isomeron

2015

2016

Non-Control
Data Attacks 2008

2019

PAIRS

JOP SROP2014 BOP2019

76

2011

2015

COOP

Timeline

Ret2Libc

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

1997

Non
Executable

Stack

1998

Heap
Overflows

2000

Format
String

2002

Info.
Leak

2004

Heap
Spraying

2007

ROP

2013

JIT-ROP

1997

Ret2Libc

2016

DOP
1996

Smashing
the stack

1998

Stack
Canaries

2000

Heap
Mitigations

2001

Format
Guard

NX-bit

2003

2001

ASLR

2003

Point
Guard

2005

CFI

2007

Shadow
Stack

Instruction
Set

Random.

2003

2007

Heap
Feng Shui

2008

Code
Divers.

Code
Pointer
Integrity

2015

XnR

Vtable
Protection

Runtime
Divers.:
Shuffler

2016

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

Isomeron

2015

2016

Non-Control
Data Attacks 2008

2019

PAIRS

JOP SROP2014 BOP2019

77

2011

2015

COOP

Randomization

Timeline

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

1997

Non
Executable

Stack

1998

Heap
Overflows

2000

Format
String

2002

Info.
Leak

2004

Heap
Spraying

2007

ROP

2013

JIT-ROP

1997

Ret2Libc

2016

DOP
1996

Smashing
the stack

1998

Stack
Canaries

2000

Heap
Mitigations

2001

Format
Guard

NX-bit

2003

2001

ASLR

2003

Point
Guard

2005

CFI

2007

Shadow
Stack

Instruction
Set

Random.

2003

2007

Heap
Feng Shui

2008

Code
Divers.

Code
Pointer
Integrity

2015

XnR

Vtable
Protection

Runtime
Divers.:
Shuffler

2016

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

Isomeron

2015

2016

Non-Control
Data Attacks 2008

2019

PAIRS

JOP SROP2014 BOP2019

78

2011

2015

COOP

Integrity

Timeline

1988

Code
Injection

The First
doc.

Overflow
Attack

1972

1997

Non
Executable

Stack

1998

Heap
Overflows

2000

Format
String

2002

Info.
Leak

2004

Heap
Spraying

2007

ROP

2013

JIT-ROP

1997

Ret2Libc

2016

DOP
1996

Smashing
the stack

1998

Stack
Canaries

2000

Heap
Mitigations

2001

Format
Guard

NX-bit

2003

2001

ASLR

2003

Point
Guard

2005

CFI

2007

Shadow
Stack

Instruction
Set

Random.

2003

2007

Heap
Feng Shui

2008

Code
Divers.

Code
Pointer
Integrity

2015

XnR

Vtable
Protection

Runtime
Divers.:
Shuffler

2016

2014

Cryptogra
phic-CFI2015

ARM
PAC2018

Isomeron

2015

2016

Non-Control
Data Attacks 2008

2019

PAIRS

JOP SROP2014 BOP2019

79

2011

2015

COOP

Actually Deployed!

Timeline

Memory Safety
Techniques

80

Temporal Memory Safety

Spatial Memory Safety

81

 MEMORY SAFETY TECHNIQUES

82

Memory Whitelisting Memory Blacklisting

Virtual Memory

Allocated
Object

Allocated
Object

Virtual Memory

Allocated
Object

Allocated
Object

Pointer

Pointer

Pointer

Pointer

 SPATIAL MEMORY SAFETY

83

Memory Whitelisting Memory Blacklisting

Virtual Memory

Allocated
ObjectPointer

Allocated
ObjectPointer

Virtual Memory

Allocated
Object

Allocated
Object

Pointer

Pointer

 SPATIAL MEMORY SAFETY

84

Memory Whitelisting Memory Blacklisting

Virtual Memory

Allocated
ObjectPointer

Allocated
ObjectPointer

Virtual Memory

Allocated
ObjectPointer

Allocated
ObjectPointer

 SPATIAL MEMORY SAFETY

85

Memory Whitelisting Memory Blacklisting

Virtual Memory

Allocated
ObjectPointer

Allocated
ObjectPointer

Virtual Memory

Allocated
ObjectPointer

Allocated
ObjectPointer

 SPATIAL MEMORY SAFETY

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
86

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
87

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
88

89

 WHITELISTING: PER-OBJECT DISJOINT METADATA

● Main Idea:
○ Record bounds information for

each object in a bounds table.
○ Check on pointer arithmetic.

Virtual Memory

Allocated
ObjectPointer

Bounds Table

[19] Jones and Kelly. Backwards-compatible bounds checking for arrays and pointers. [DEBUG 1997]

90

 WHITELISTING: PER-OBJECT DISJOINT METADATA

● Main Idea:
○ Record bounds information for

each object in a bounds table.
○ Check on pointer arithmetic.

● Pros and Cons:
○ Good binary compatibility.

Virtual Memory

Allocated
ObjectPointer

Bounds Table
+

[19] Jones and Kelly. Backwards-compatible bounds checking for arrays and pointers. [DEBUG 1997]

91

 WHITELISTING: PER-OBJECT DISJOINT METADATA

● Main Idea:
○ Record bounds information for

each object in a bounds table.
○ Check on pointer arithmetic.

● Pros and Cons:
○ Good binary compatibility.
○ Costly range lookups.

Virtual Memory

Allocated
ObjectPointer

Bounds Table-
+

[19] Jones and Kelly. Backwards-compatible bounds checking for arrays and pointers. [DEBUG 1997]

92

 WHITELISTING: PER-OBJECT DISJOINT METADATA

● Main Idea:
○ Record bounds information for

each object in a bounds table.
○ Check on pointer arithmetic.

● Pros and Cons:
○ Good binary compatibility.
○ Costly range lookups.
○ No intra-object protection.

Virtual Memory

Allocated
ObjectPointer

Bounds Table-
+

-

[19] Jones and Kelly. Backwards-compatible bounds checking for arrays and pointers. [DEBUG 1997]

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
93

94

 WHITELISTING: PER-POINTER DISJOINT METADATA

● Main Idea:
○ Record bounds information for

each pointer in a bounds table.
○ Propagate metadata on pointer

arithmetic.
○ Check on pointer dereference.

Virtual Memory

Allocated
ObjectPointer

Bounds Table

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012]

95

 WHITELISTING: PER-POINTER DISJOINT METADATA

● Main Idea:
○ Record bounds information for

each pointer in a bounds table.
○ Propagate metadata on pointer

arithmetic.
○ Check on pointer dereference.

● Pros and Cons:
○ Lower number of checks.

Virtual Memory

Allocated
ObjectPointer

Bounds Table

+

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012]

96

 WHITELISTING: PER-POINTER DISJOINT METADATA

● Main Idea:
○ Record bounds information for

each pointer in a bounds table.
○ Propagate metadata on pointer

arithmetic.
○ Check on pointer dereference.

● Pros and Cons:
○ Lower number of checks.
○ Good binary compatibility.
○ Problematic for multi-threading. Virtual Memory

Allocated
ObjectPointer

Bounds Table

+
-

+

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012]

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
97[18] Alexandre Joannou. Optimizing the CHERI capability machine. [PhD Thesis 2019]

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
98

99

 WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.

Virtual Memory

Allocated
Object PointerTAG

T
A
G

[34] Serebryany et. al., Memory tagging and how it improves C/C++ memory safety. [arXiv 2018]

100

 WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.
○ Compare tags on pointer

dereference.

Virtual Memory

Allocated
Object Pointer

T
A
G

Allocated
Object Pointer

T
A
G

TAG

[34] Serebryany et. al., Memory tagging and how it improves C/C++ memory safety. [arXiv 2018]

TAG

101

 WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.
○ Compare tags on pointer

dereference.
○ E.g., SPARC ADI and ARM MTE.

Virtual Memory

Allocated
Object Pointer

T
A
G

Allocated
Object Pointer

T
A
G

TAG

[34] Serebryany et. al., Memory tagging and how it improves C/C++ memory safety. [arXiv 2018]

TAG

102

 WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.
○ Compare tags on pointer

dereference.
○ E.g., SPARC ADI and ARM MTE.

● Pros and Cons:
○ Efficient check in hardware.
○ Limited entropy.

Virtual Memory

Allocated
Object Pointer

+
-

T
A
G

Allocated
Object Pointer

T
A
G

TAG

[33] Bialek et. al., Security analysis of memory tagging. [Microsoft Research 2020]

TAG

103

 WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.
○ Compare tags on pointer

dereference.
○ E.g., SPARC ADI and ARM MTE.

● Pros and Cons:
○ Efficient check in hardware.
○ Limited entropy.
○ No intra-object protection.
○ Only for 64-bit systems. Virtual Memory

Allocated
Object Pointer

-

+
-

T
A
G

Allocated
Object Pointer

T
A
G

TAG

[33] Bialek et. al., Security analysis of memory tagging. [Microsoft Research 2020]

-

TAG

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
104

105

 WHITELISTING: NO METADATA (LOWFAT)

● Main Idea:
○ Partition the heap into

equally-sized regions.

Virtual Memory

[35] Duck & Yap, Heap bounds protection with low fat pointers. [CC 2016]

106

 WHITELISTING: NO METADATA (LOWFAT)

● Main Idea:
○ Partition the heap into

equally-sized regions.
○ Use one allocation size per region.

Virtual Memory

Pointer Allocated
Object

[35] Duck & Yap, Heap bounds protection with low fat pointers. [CC 2016]

107

 WHITELISTING: NO METADATA (LOWFAT)

● Main Idea:
○ Partition the heap into

equally-sized regions.
○ Use one allocation size per region.
○ Check on pointer arithmetic.

Virtual Memory

Allocated
Object

[35] Duck & Yap, Heap bounds protection with low fat pointers. [CC 2016]

Pointer

108

 WHITELISTING: NO METADATA (LOWFAT)

● Main Idea:
○ Partition the heap into

equally-sized regions.
○ Use one allocation size per region.
○ Check on pointer arithmetic.

● Pros and Cons:
○ Good binary compatibility.
○ Memory fragmentation.
○ No intra-object protection.

Virtual Memory

+

Allocated
Object

[35] Duck & Yap, Heap bounds protection with low fat pointers. [CC 2016]

-
-

Pointer

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
109[27] Duck & Yap. EffectiveSan: type and memory error detection using dynamically typed C/C++. [PLDI 2018]

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
110

111

 BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.

Virtual Memory

Allocated
Object

Pointer

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012]

112

 BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify

red zone locations.

Virtual Memory

Allocated
Object

Pointer

Shadow Obj.

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012]

113

 BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify

red zone locations.
○ E.g., AddressSanitizer (ASan).

Virtual Memory

Allocated
Object

Pointer

Shadow Obj.

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012]

114

 BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify

red zone locations.
○ E.g., AddressSanitizer (ASan).

● Pros and Cons:
○ No metadata propagation.
○ Good binary compatibility.

Virtual Memory

Allocated
Object

Pointer

Shadow Obj.

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012]

+
+

115

 BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify

red zone locations.
○ E.g., AddressSanitizer (ASan).

● Pros and Cons:
○ No metadata propagation.
○ Good binary compatibility.
○ High memory footprint.

Virtual Memory

Allocated
Object

Pointer

Shadow Obj.

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012]

-

+
+

116

 BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify

red zone locations.
○ E.g., AddressSanitizer (ASan).

● Pros and Cons:
○ No metadata propagation.
○ Good binary compatibility.
○ High memory footprint.
○ Less precise than whitelisting. Virtual Memory

Allocated
Object

Pointer

-

+

-

Shadow Obj.
+

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012]

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
117

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
118[29] Qin et. al., SafeMem: exploiting ECC-memory for detecting memory leaks. [HPCA 2005]

Whitelisting
Blacklisting

Per-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound,
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Inlined
Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
119

120

 BLACKLISTING: INLINED METADATA (REST)

● Main Idea:
○ Store a unique value (Token) in

locations to be blacklisted.
○ Issue an exception when a

regular load/store touches them.

Virtual Memory

Allocated
ObjectPointer

REST Tokens

REST Tokens

[31] Kanad Sinha and Simha Sethumadhavan. Practical memory safety with REST. [ISCA 2018]

121

 BLACKLISTING: INLINED METADATA (REST)

● Main Idea:
○ Store a unique value (Token) in

locations to be blacklisted.
○ Issue an exception when a

regular load/store touches them.
● Pros and Cons:

○ Negligible perf. overheads.
○ Good binary compatibility.

Virtual Memory

Allocated
ObjectPointer

+
+

REST Tokens

REST Tokens

[31] Kanad Sinha and Simha Sethumadhavan. Practical memory safety with REST. [ISCA 2018]

122

 BLACKLISTING: INLINED METADATA (REST)

● Main Idea:
○ Store a unique value (Token) in

locations to be blacklisted.
○ Issue an exception when a

regular load/store touches them.
● Pros and Cons:

○ Negligible perf. overheads.
○ Good binary compatibility.
○ No intra-object protection.

Virtual Memory

Allocated
ObjectPointer

-

+
+

REST Tokens

REST Tokens

[31] Kanad Sinha and Simha Sethumadhavan. Practical memory safety with REST. [ISCA 2018]

123

 BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in

structs to store the metadata.

Virtual Memory

Allocated
ObjectPointer

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]

Virtual Memory
124

 BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in

structs to store the metadata.

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]

struct A
{
 char c;
 char padding;
 char padding;
 char padding;
 int i;
 char buf[64];
 void (*fp)();
}

Pointer

125

 BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in

structs to store the metadata.
○ Only 1-bit of metadata is needed

per each 64B cacheline.

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]

Califorms

A B C D E

Normal cacheline

A B C D EHeaderY

Is
Califormed?

126

 BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in

structs to store the metadata.
○ Only 1-bit of metadata is needed

per each 64B cacheline.
● Pros and Cons:

○ Intra-object protection.
○ Negligible perf. overheads.
+

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]

Califorms

A B C D E

Normal cacheline

A B C D EHeaderY

Is
Califormed?

+

127

 BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in

structs to store the metadata.
○ Only 1-bit of metadata is needed

per each 64B cacheline.
● Pros and Cons:

○ Intra-object protection.
○ Negligible perf. overheads.
○ Same paddings layout for

objects of the same type.
-

+
+

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]

Califorms

A B C D E

Normal cacheline

A B C D EHeaderY

Is
Califormed?

Whitelisting
Blacklisting Randomized

AllocatorsPer-object Per-pointer

Disjoint
Metadata

Compatible C
Baggy Bounds

Mondrian
M-machine
Softbound
Hardbound
Watchdog
CUP, MPX

Purify
Valgrind

Dr. Memory
Electric Fence

ASan

Diehard
FreeGuard

Guarder
Inlined

Metadata EffectiveSan

(aka Fat Pointers)
CHERI
Cyclone

CheckedC

SafeMem
REST

CALIFORMS

Co-joined
Metadata

ARM Memory Tagging
SPARC ADI

No Metadata Lowfat s/w Lowfat h/w
128[20] Berger and Zorn, DieHard: Probabilistic memory safety for unsafe languages. [PLDI 2006]

Temporal Memory Safety

Spatial Memory Safety

129

 MEMORY SAFETY TECHNIQUES

Naive Solution Never use Free()

130

Naive Solution Never use Free()

131

High memory consumption

& memory leaks!

Naive Solution Never use Free()

Garbage
Collection (GC)

Regular Hardware Accelerated GC

Conservative MarkUs

132[37] Mass et. al., A hardware accelerator for tracing garbage collection. [ISCA 2018]

Naive Solution Never use Free()

Garbage
Collection (GC)

Regular Hardware Accelerated GC

Conservative MarkUs

Memory Quarantining Valgrind, ASan, REST,
Califorms, CHERIvoke

133

Naive Solution Never use Free()

Garbage
Collection (GC)

Regular Hardware Accelerated GC

Conservative MarkUs

Memory Quarantining Valgrind, ASan, REST,
Califorms, CHERIvoke

Lock
&

Key

Explicit Change Lock CETS, CUP

Implicit
Change Lock Electric Fence, Oscar

Revoke key DangNull, DangSan, BOGO

134

135

 LOCK & KEY: EXPLICIT LOCK CHANGE (CETS)

Virtual Memory

Allocated
ObjectPointer A

Lock
Key

Pointer B
Key

● Main Idea:
○ Use unique Lock per object.
○ Pass Lock to pointers as a key.
○ Propagate keys on pointer

arithmetic.
○ Check on pointer dereference.

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012]

136

 LOCK & KEY: EXPLICIT LOCK CHANGE (CETS)

Virtual Memory

Pointer A

Lock
Key

Pointer B
Key

● Main Idea:
○ Use unique Lock per object.
○ Pass Lock to pointers as a key.
○ Propagate keys on pointer

arithmetic.
○ Check on pointer dereference.

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012]

137

 LOCK & KEY: EXPLICIT LOCK CHANGE (CETS)

Virtual Memory

New ObjectPointer A

Lock
Key

Pointer B
Key

Pointer C
Key

● Main Idea:
○ Use unique Lock per object.
○ Pass Lock to pointers as a key.
○ Propagate keys on pointer

arithmetic.
○ Check on pointer dereference.

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012]

138

 LOCK & KEY: EXPLICIT LOCK CHANGE (CETS)

Virtual Memory

New ObjectPointer A

Lock
Key

Pointer B
Key

Pointer C
Key

● Main Idea:
○ Use unique Lock per object.
○ Pass Lock to pointers as a key.
○ Propagate keys on pointer

arithmetic.
○ Check on pointer dereference.

● Pros and Cons:
○ Simple bounds checking.
○ High performance overheads.
+
-

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012]

139

 LOCK & KEY: IMPLICIT LOCK CHANGE

● Main Idea:
○ Use object address as a lock.

Virtual Memory

Allocated
ObjectPointer A

Pointer B

[39] Dang et. al., Oscar: A practical page-permissions-based scheme. [USENIX 2017]

140

 LOCK & KEY: IMPLICIT LOCK CHANGE

Virtual Memory

Pointer A

Pointer B

● Main Idea:
○ Use object address as a lock.
○ Mark virtual addresses as

inaccessible upon free.

[39] Dang et. al., Oscar: A practical page-permissions-based scheme. [USENIX 2017]

141

 LOCK & KEY: IMPLICIT LOCK CHANGE

Virtual Memory

Pointer A

Pointer B New Object

Pointer C

● Main Idea:
○ Use object address as a lock.
○ Mark virtual addresses as

inaccessible upon free.
○ Never reuse virtual addresses.

[39] Dang et. al., Oscar: A practical page-permissions-based scheme. [USENIX 2017]

142

 LOCK & KEY: IMPLICIT LOCK CHANGE

Virtual Memory

Pointer A

Pointer B New Object

Pointer C

● Main Idea:
○ Use object address as a lock.
○ Mark virtual addresses as

inaccessible upon free.
○ Never reuse virtual addresses.

● Pros and Cons:
○ No per-pointer overheads.
○ High TLB overheads.
+
-

[39] Dang et. al., Oscar: A practical page-permissions-based scheme. [USENIX 2017]

143

 LOCK & KEY: IMPLICIT KEY REVOCATION

● Main Idea:
○ Use pointer value as a key.

Virtual Memory

Allocated
ObjectPointer A

Pointer B

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019]

 LOCK & KEY: IMPLICIT KEY REVOCATION

144

Virtual Memory

Pointer A

NULL

Pointer B

● Main Idea:
○ Use pointer value as a key.
○ Nullify pointers upon Free().

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019]

 LOCK & KEY: IMPLICIT KEY REVOCATION

145

Virtual Memory

Pointer A

NULL

Pointer B

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019]

● Main Idea:
○ Use pointer value as a key.
○ Nullify pointers upon Free().

● Limitations:
○ Overheads are proportional to

the number of pointers.
○ May miss dangling pointers

stored in registers.

-

-

Naive Solution Never use Free()

Garbage
Collection (GC)

Regular Hardware Accelerated GC

Conservative MarkUs

Memory Quarantining Valgrind, ASan, REST,
Califorms, CHERIvoke

Lock
&

Key

Explicit Change Lock CETS, CUP

Implicit
Change Lock Electric Fence, Oscar

Revoke key DangNull, DangSan, BOGO

146

Future Work
Map

147

148

 FUTURE WORK MAP

Created via: https://azgaar.github.io/Fantasy-Map-Generator/

https://azgaar.github.io/Fantasy-Map-Generator/

149

 LOW-COST MEMORY SAFETY SOLUTIONS

Created via: https://azgaar.github.io/Fantasy-Map-Generator/

https://azgaar.github.io/Fantasy-Map-Generator/

150

 LOW-COST MEMORY SAFETY SOLUTIONS

CALIFORMS

Hiroshi Sasaki, Miguel A. Arroyo, Mohamed Tarek Ibn Ziad, Koustubha Bhat, Kanad
Sinha, and Simha Sethumadhavan, Practical byte-granular memory blacklisting using
Califorms. [MICRO 2019] [IEEE Micro Top Picks Honorable Mention]

151

 PROTECTING NON-64 BIT SYSTEMS

152

 PROTECTING NON-64 BIT SYSTEMS

PAIRS

Mohamed Tarek Ibn Ziad and Evgeny Manzhosov, Practical Software Security on
Heterogeneous Systems on Chips. [Qualcomm Innovation Fellowship Finalists 2020]

153

 COHESIVE MEMORY SAFETY SOLUTIONS

154

 COHESIVE MEMORY SAFETY SOLUTIONS

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, and Simha Sethumadhavan,
SPAM: Stateless Permutation of Application Memory. [Submitted to USENIX 2020]

Why is memory safety still a
concern?

Mohamed (Tarek Ibn Ziad) Hassan

Ph.D. Candidacy Exam
April 9th, 2020.

155

Why is memory safety still a
concern?

Mohamed (Tarek Ibn Ziad) Hassan

Ph.D. Candidacy Exam
April 9th, 2020.

156

QUESTIONS?
https://www.cs.columbia.edu/~mtarek/

@M_TarekIbnZiad

http://www.cs.columbia.edu/~mtarek/
https://twitter.com/M_TarekIbnZiad

Slide Intentionally Left Blank

157

Supplementary Slides

158

 CODE INJECTION

void main (int argc, char **argv) {
...

vulnerable(argv[1]);

...

}

void vulnerable(char *str1){

char str2[100];

strcpy(str2,str1);

return;

}

159

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

main()
stack frame

code address

malicious code

[4] Szekeres et. al, SoK: Eternal war in memory. [S&P 2013]

160

 RETURN-TO-LIBC

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

TEXT

Libc address

malicious
arguments

● Attack payload:
○ An address to libc function.
○ Function arguments.

● Limitations:
○ Execute whole functions.
○ Cannot target functions with

‘00’ byte in address.

[3] Van der Veen et. al., Memory errors: The past, the present, and the future. [RAID 2012]

161

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G

0

TEXT

● Main Idea:
○ Insert unique variables on the

stack.
○ Check their contents upon

function return.
● Limitations:

○ Only detect continuous writes.
○ No read protection.

return address

str2[100]

Canary

 STACK CANARIES

[3] Van der Veen et. al., Memory errors: The past, the present, and the future. [RAID 2012]

162

 CONTROL FLOW INTEGRITY (CFI)

CFG

● Main Idea:
○ Construct a pre-defined CFG.

■ Statically with point-to analysis.
■ Dynamically with profiling.

○ Enforce it at runtime.
● Limitations:

○ Over-approximation.
○ Modularity.

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017]

163

 CONTROL FLOW INTEGRITY (CFI)

CFG

● Main Idea:
○ Construct a pre-defined CFG.

■ Statically with point-to analysis.
■ Dynamically with profiling.

○ Enforce it at runtime.
● Limitations:

○ Over-approximation.
○ Modularity.

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017]

164

 CONTROL FLOW INTEGRITY (CFI)

CFG

Module 1 Module 2
● Main Idea:

○ Construct a pre-defined CFG.
■ Statically with point-to analysis.
■ Dynamically with profiling.

○ Enforce it at runtime.
● Limitations:

○ Over-approximation.
○ Modularity.

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017]

165

 CONTROL FLOW INTEGRITY (CFI)

CFG

Module 1 Module 2
● Main Idea:

○ Construct a pre-defined CFG.
■ Statically with point-to analysis.
■ Dynamically with profiling.

○ Enforce it at runtime.
● Limitations:

○ Over-approximation.
○ Modularity.

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017]

166

Counterfeit Object Oriented
Programming

[9] Schuster et. al, Counterfeit object-oriented programming. [S&P 2015]

167

What are C++ Virtual Pointers?

 C++ CONCEPTS: OBJECT-ORIENTED

168

class A {
public:
int x;
char *y;

void foo();
void bar();

}

 C++ CONCEPTS: OBJECT-ORIENTED

169

class A {
public:
int x;
char *y;

void foo();
void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A

 C++ CONCEPTS: INHERITANCE

170

class A {
public:
int x;
char *y;

void foo();
void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A

class B : public A {
public:
int z;

}

x: int
y: char*

foo(): void

object: B

bar(): void

z: int

 C++ CONCEPTS: POLYMORPHISM

171

class A {
public:
int x;
char *y;

void foo();
virtual void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A

class B : public A {
public:
int z;

 void bar();

}

 C++ CONCEPTS: COMPILER

172

class A {
public:
int x;
char *y;

void foo();
virtual void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A

class B : public A {
public:
int z;

 void bar();

}

...

...
& B::bar

B::vTable

 C++ CONCEPTS: COMPILER

173

class A {
public:
int x;
char *y;

void foo();
virtual void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A

class B : public A {
public:
int z;

 void bar();

}

x: int
y: char*

foo(): void

object: B

z: int
vptr

...

...
& B::bar

B::vTable

 C++ CONCEPTS: COMPILER

174

x: int
y: char*

foo(): void
bar(): void

object: A

x: int
y: char*

foo(): void

object: B

z: int
vptr

...

...
& B::bar

B::vTable

vptr = load [object Base Addr]

vFunction = load [vptr + index]

Call [vFunction]

175

x: int
y: char*

foo(): void
bar(): void

object: A

x: int
y: char*

foo(): void

object: B

z: int
vptr

...

...
& B::bar

B::vTable

vptr = load [object Base Addr]

vFunction = load [vptr + index]

Call [vFunction]

 COUNTERFEIT OBJECT ORIENTED PROGRAMMING (COOP)

176

x: int
y: char*

foo(): void
bar(): void

object: A

x: int
y: char*

foo(): void

object: B

z: int
vptr

...

...
& B::bar

B::vTable

Steps:
● Find a loop with virtual function calls.
● Inject counterfeit objects with attacker’s vptrs.
● Overlap object fields for passing values.

 COUNTERFEIT OBJECT ORIENTED PROGRAMMING (COOP)

...

...

...

C::vTable

177

 JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Main Idea:

○ Repeatedly abuse a memory
disclosure.

Text

0

Div.
Code
Page

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013]

178

 JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Main Idea:

○ Repeatedly abuse a memory
disclosure.

● Attack Steps:
○ Leak one code pointer. Text

Leaked Ptr

0

Div.
Code
Page

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013]

179

 JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Main Idea:

○ Repeatedly abuse a memory
disclosure.

● Attack Steps:
○ Leak one code pointer.
○ Scan code pages on the fly.

Text

Leaked Ptr

0

Div.
Code
Page

Runtime
Disassembler

Code
Page

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013]

180

 JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Main Idea:

○ Repeatedly abuse a memory
disclosure.

● Attack Steps:
○ Leak one code pointer.
○ Scan code pages on the fly.
○ Pinpoint useful gadgets.

Text

Runtime
Gadget Finder

0

Gadgets

Code
Page

Gadgets

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013]

181

 JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel
Space

4G
● Main Idea:

○ Repeatedly abuse a memory
disclosure.

● Attack Steps:
○ Leak one code pointer.
○ Scan code pages on the fly.
○ Pinpoint useful gadgets.
○ JIT-compile an ROP gadget

chain.

Text

JIT-ROP
Compiler

0

Gadgets

Gadg.
Chain

Gadgets

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013]

182

 DATA ORIENTED PROGRAMMING (DOP)

● Attack Steps:
○ Trigger a memory safety

vulnerability.
○ Manipulate non control data.
○ Use the corrupted data.

● Goal:
○ Never change program CFG.

CFG

[10] Cheng et. al., Exploitation techniques and defenses for data-oriented attacks. [SecDev 2019]

183

 DATA FLOW INTEGRITY

DFG

● Main Idea:
○ Construct a compile-time DFG.

■ Load inst. → {IDs of store insts.}
with point-to analysis.

○ Enforce it at runtime.
■ Tag every memory word with

2-byte shadow.
■ Write the ID to the Tag upon store.
■ Compare ID vs. set upon load.

● Limitations:
○ Over-approximation.

[13] Castro et. al., Securing software by enforcing data-flow integrity. [OSDI 2006]

184

 INTEL CONTROL FLOW ENF. TECH. (CET)

Source:
https://www.linuxplumbersconf.org/event/2/contributions/147/attachments/72/83/CET-LPC-2018.pdf

https://www.linuxplumbersconf.org/event/2/contributions/147/attachments/72/83/CET-LPC-2018.pdf

185

 PAIRS vs. CODE REUSE ATTACKS

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019]

186

 PAIRS vs. CODE REUSE ATTACKS

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019]

● Main Idea:
○ Randomize the representation of data stored in memory.

● Approaches:
○ Use encryption with a unique key per variable.

■ DSR.
○ Statically randomize structs layout in a program.

■ GCC struct randomization.
○ Dynamically randomize objects layout in memory.

■ SALADS, SmokeStack, and POLAR.

187

 DATA SPACE RANDOMIZATION

188

 MOVING TARGET DEFENSE (MORPHEUS)

Gallagher et. al., Morpheus: A Vulnerability-Tolerant Secure Architecture Based on Ensembles of Moving
Target Defenses with Churn. [ASPLOS 2019]

189

Tripwire Insertion Policies

struct A_opportunistic
{
 char c;
 char tripwire[3];
 int i;
 char buf[64];
 void (*fp)();
}

struct A_full {
 char tripwire[2];
 char c;
 char tripwire[1];
 int i;
 char tripwire[3];
 char buf[64];
 char tripwire[2];
 void (*fp)();
 char tripwire[1];
}

struct A_intelligent {
 char c;
 int i;
 char tripwire[3];
 char buf[64];
 char tripwire[2];
 void (*fp)();
 char tripwire[3];
}

(1) Opportunistic (2) Full (3) Intelligent

 CALIFORMS: INSERTION POLICIES

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]

190

Dead Memory

Memory that is never be used
by the program.

SPEC CPU2006 C and C++ Benchmarks

Normally Occurring Dead Bytes

V8 JavaScript Engine

Struct density = ∑
i
#fields(sizeof(field

i
))/sizeof(struct)

 CALIFORMS: DEAD BYTES

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]

191

 CALIFORMS: CACHELINE FORMAT

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019]

192

 INTEL MPX

[29] Oleksenko et. al., Intel MPX explained [ACM Surveys 2018]

● Main Limitations:
○ High overheads (up to 4x).
○ Lack of multithreading.
○ Incorrect handling of

several common C idioms.
○ Poor Interaction with other

ISA extensions (like SGX).

193

 TYPE SAFETY

Virtual Memory

Object of
Type APointer A

Pointer B

● Main Idea:
○ Add runtime checks to detect

incompatible type casting.

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019]

194

 TYPE SAFETY

Virtual Memory

Object of
Type APointer A

Pointer B

● Main Idea:
○ Add runtime checks to detect

incompatible type casting.
● Examples:

○ UBSan and Clang CFI
■ RTTI-based verification.

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019]

195

 TYPE SAFETY

Virtual Memory

Object of
Type APointer A

Pointer B

● Main Idea:
○ Add runtime checks to detect

incompatible type casting.
● Examples:

○ UBSan and Clang CFI
■ RTTI-based verification.

○ CaVer, TypeSan, and HexType
■ Custom metadata.

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019]

196

 TYPE SAFETY

Virtual Memory

Object of
Type APointer A

Pointer B

● Main Idea:
○ Add runtime checks to detect

incompatible type casting.
● Examples:

○ UBSan and Clang CFI
■ RTTI-based verification.

○ CaVer, TypeSan, and HexType
■ Custom metadata.

○ Clang TySan and EffetiveSan
■ Check pointer dereference.

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019]

End of
Supplementary

Slides

197

