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MEMORY SAFETY DEFINITION VIOLATIONS
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Buffer overflow
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● Between their intended bounds, 
● During their lifetime, and
● Given their original 

(or compatible) type.

A program property that guarantees memory objects can 
only be accessed:

Use-after-free
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● Between their intended bounds, 
● During their lifetime, and
● Given their original 

(or compatible) type.

A program property that guarantees memory objects can 
only be accessed:

Type confusion



MEMORY SAFETY IS A SERIOUS PROBLEM!
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PREVALENCE OF MEMORY SAFETY VULNS
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Microsoft Product CVEs

Source: Matt Miller, Microsoft Security Response Center (MSRC) [BlueHat 2019] 
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Microsoft Product CVEs Google OSS-Fuzz bugs from 
2016-2018.

Source: https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html  

https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html


14Source: Google Project Zero, 0day "In the Wild" spreadsheet. Last updated: April 3rd, 2020  

ATTACKERS PREFER MEMORY SAFETY VULNS

Zero-day “in the wild” exploits 
from 2014-2020  

https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/view#gid=0
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● Performance.
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● Performance.
● Communication.
● Completeness.
● Maturity. 
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● Performance.
● Communication.
● Completeness.
● Maturity.
● Legacy code. 

C/C++ IS HERE TO STAY



REST OF THE TALK

Memory Safety Techniques

Memory Corruption Attacks & Defenses

Future Work Map
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Memory Corruption 
Attacks & Defenses
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Source: James P. Anderson, Computer Security Technology Planning Study, October 1972 
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf   
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“the code performing this function does not 
check the source and destination 
addresses properly, permitting portions of 
the monitor to be overlaid by the user.

Source: James P. Anderson, Computer Security Technology Planning Study, October 1972 
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf   
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“the code performing this function does not 
check the source and destination 
addresses properly, permitting portions of 
the monitor to be overlaid by the user. 
This can be used to inject code into the 
monitor that will permit the user to seize 
control of the machine”

Source: James P. Anderson, Computer Security Technology Planning Study, October 1972 
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf   
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[4] Szekeres et. al, SoK: Eternal war in memory. [S&P 2013] 
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Virtual Memory
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● Main Idea:

○ Create two diversified variants 
of each function. 
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     ISOMERON

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G
● Main Idea:

○ Create two diversified variants 
of each function.  

○ Pick which variant to execute 
randomly at runtime. Text
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Func.
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     ISOMERON

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G
● Main Idea:

○ Create two diversified variants 
of each function.  

○ Pick which variant to execute 
randomly at runtime. 

● Goal:
○ Prevent JIT-ROP from reliably 

building a gadget chain.

Text

0

Func.
A

Diversifier

Func. 
A

Func. 
A’
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[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019] 
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      PAIRS
● Main Idea:

○ Insert TRAP instructions in the 
beginning of code basic blocks.

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019] 
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      PAIRS
● Main Idea:

○ Insert TRAP instructions in the 
beginning of code basic blocks.

○ Create two (or more) program 
copies in virtual memory.

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019] 
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      PAIRS
● Main Idea:

○ Insert TRAP instructions in the 
beginning of code basic blocks.

○ Create two (or more) program 
copies in virtual memory.

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019] 
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      PAIRS
● Main Idea:

○ Insert TRAP instructions in the 
beginning of code basic blocks.

○ Create two (or more) program 
copies in virtual memory.

○ Randomize the execution 
between the copies in runtime.

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019] 
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      PAIRS
● Main Idea:

○ Insert TRAP instructions in the 
beginning of code basic blocks.

○ Create two (or more) program 
copies in virtual memory.

○ Randomize the execution 
between the copies in runtime.

● Pros and Cons:
○ Negligible perf. overheads. Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

+

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019] 
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      PAIRS
● Main Idea:

○ Insert TRAP instructions in the 
beginning of code basic blocks.

○ Create two (or more) program 
copies in virtual memory.

○ Randomize the execution 
between the copies in runtime.

● Pros and Cons:
○ Negligible perf. overheads.
○ No code pointers protection. 

Virtual Memory

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

A0: TRAP
A1: MOVE
A2: ADD
A3: JUMP
B0: TRAP
B1: MOVE
B2: JUMP

Original Copy Phantom Copy

+
-

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019] 
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[10] Cheng et. al., Exploitation techniques and defenses for data-oriented attacks. [SecDev 2019] 
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      WHITELISTING: PER-OBJECT DISJOINT METADATA

● Main Idea:
○ Record bounds information for 

each object in a bounds table.
○ Check on pointer arithmetic.  

Virtual Memory

Allocated 
ObjectPointer

Bounds Table

[19] Jones and Kelly. Backwards-compatible bounds checking for arrays and pointers. [DEBUG 1997] 
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      WHITELISTING: PER-OBJECT DISJOINT METADATA

● Main Idea:
○ Record bounds information for 

each object in a bounds table.
○ Check on pointer arithmetic.  

● Pros and Cons: 
○ Good binary compatibility.

Virtual Memory

Allocated 
ObjectPointer

Bounds Table
+

[19] Jones and Kelly. Backwards-compatible bounds checking for arrays and pointers. [DEBUG 1997] 
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      WHITELISTING: PER-OBJECT DISJOINT METADATA

● Main Idea:
○ Record bounds information for 

each object in a bounds table.
○ Check on pointer arithmetic.  

● Pros and Cons: 
○ Good binary compatibility.
○ Costly range lookups.

Virtual Memory

Allocated 
ObjectPointer

Bounds Table-
+

[19] Jones and Kelly. Backwards-compatible bounds checking for arrays and pointers. [DEBUG 1997] 
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      WHITELISTING: PER-OBJECT DISJOINT METADATA

● Main Idea:
○ Record bounds information for 

each object in a bounds table.
○ Check on pointer arithmetic.  

● Pros and Cons: 
○ Good binary compatibility.
○ Costly range lookups. 
○ No intra-object protection. 

Virtual Memory

Allocated 
ObjectPointer

Bounds Table-
+

-

[19] Jones and Kelly. Backwards-compatible bounds checking for arrays and pointers. [DEBUG 1997] 
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      WHITELISTING: PER-POINTER DISJOINT METADATA

● Main Idea:
○ Record bounds information for 

each pointer in a bounds table.
○ Propagate metadata on pointer 

arithmetic. 
○ Check on pointer dereference.  

Virtual Memory

Allocated 
ObjectPointer

Bounds Table

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012] 
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      WHITELISTING: PER-POINTER DISJOINT METADATA

● Main Idea:
○ Record bounds information for 

each pointer in a bounds table.
○ Propagate metadata on pointer 

arithmetic. 
○ Check on pointer dereference.  

● Pros and Cons: 
○ Lower number of checks.   

Virtual Memory

Allocated 
ObjectPointer

Bounds Table

+

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012] 
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      WHITELISTING: PER-POINTER DISJOINT METADATA

● Main Idea:
○ Record bounds information for 

each pointer in a bounds table.
○ Propagate metadata on pointer 

arithmetic. 
○ Check on pointer dereference.  

● Pros and Cons: 
○ Lower number of checks.   
○ Good binary compatibility.
○ Problematic for multi-threading. Virtual Memory

Allocated 
ObjectPointer

Bounds Table

+
-

+

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012] 
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97[18] Alexandre Joannou. Optimizing the CHERI capability machine. [PhD Thesis 2019] 
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      WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.

Virtual Memory

Allocated 
Object       PointerTAG

T
A
G

[34] Serebryany et. al., Memory tagging and how it improves C/C++ memory safety. [arXiv 2018] 
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      WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.
○ Compare tags on pointer 

dereference.

Virtual Memory

Allocated 
Object       Pointer

T
A
G

Allocated 
Object       Pointer

T
A
G

TAG

[34] Serebryany et. al., Memory tagging and how it improves C/C++ memory safety. [arXiv 2018] 

TAG
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      WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.
○ Compare tags on pointer 

dereference.
○ E.g., SPARC ADI and ARM MTE. 

Virtual Memory

Allocated 
Object       Pointer

T
A
G

Allocated 
Object       Pointer

T
A
G

TAG

[34] Serebryany et. al., Memory tagging and how it improves C/C++ memory safety. [arXiv 2018] 

TAG
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      WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.
○ Compare tags on pointer 

dereference.
○ E.g., SPARC ADI and ARM MTE. 

● Pros and Cons:
○ Efficient check in hardware.   
○ Limited entropy.

Virtual Memory

Allocated 
Object       Pointer

+
-

T
A
G

Allocated 
Object       Pointer

T
A
G

TAG

[33] Bialek et. al., Security analysis of memory tagging. [Microsoft Research 2020] 

TAG
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      WHITELISTING: CO-JOINED METADATA

● Main Idea:
○ Assign a tag for each pointer/object.
○ Compare tags on pointer 

dereference.
○ E.g., SPARC ADI and ARM MTE. 

● Pros and Cons:
○ Efficient check in hardware.   
○ Limited entropy.
○ No intra-object protection.
○ Only for 64-bit systems. Virtual Memory

Allocated 
Object       Pointer

-

+
-

T
A
G

Allocated 
Object       Pointer

T
A
G

TAG

[33] Bialek et. al., Security analysis of memory tagging. [Microsoft Research 2020] 
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      WHITELISTING: NO METADATA (LOWFAT)

● Main Idea:
○ Partition the heap into 

equally-sized regions.

Virtual Memory

[35] Duck & Yap, Heap bounds protection with low fat pointers. [CC 2016] 
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      WHITELISTING: NO METADATA (LOWFAT)

● Main Idea:
○ Partition the heap into 

equally-sized regions.
○ Use one allocation size per region.

Virtual Memory

Pointer Allocated 
Object

[35] Duck & Yap, Heap bounds protection with low fat pointers. [CC 2016] 
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      WHITELISTING: NO METADATA (LOWFAT)

● Main Idea:
○ Partition the heap into 

equally-sized regions.
○ Use one allocation size per region.
○ Check on pointer arithmetic.  

Virtual Memory

Allocated 
Object

[35] Duck & Yap, Heap bounds protection with low fat pointers. [CC 2016] 

Pointer
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      WHITELISTING: NO METADATA (LOWFAT)

● Main Idea:
○ Partition the heap into 

equally-sized regions.
○ Use one allocation size per region.
○ Check on pointer arithmetic.  

● Pros and Cons: 
○ Good binary compatibility.
○ Memory fragmentation.
○ No intra-object protection.

Virtual Memory

+

Allocated 
Object

[35] Duck & Yap, Heap bounds protection with low fat pointers. [CC 2016] 

-
-

Pointer
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109[27] Duck & Yap. EffectiveSan: type and memory error detection using dynamically typed C/C++. [PLDI 2018] 
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      BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.

Virtual Memory

Allocated 
Object

Pointer

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012] 
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      BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify 

red zone locations.

Virtual Memory

Allocated 
Object

Pointer

Shadow Obj.

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012] 
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      BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify 

red zone locations.
○ E.g., AddressSanitizer (ASan).

Virtual Memory

Allocated 
Object

Pointer

Shadow Obj.

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012] 
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      BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify 

red zone locations.
○ E.g., AddressSanitizer (ASan). 

● Pros and Cons: 
○ No metadata propagation.   
○ Good binary compatibility. 

Virtual Memory

Allocated 
Object

Pointer

Shadow Obj.

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012] 

+
+
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      BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify 

red zone locations.
○ E.g., AddressSanitizer (ASan).  

● Pros and Cons: 
○ No metadata propagation.   
○ Good binary compatibility. 
○ High memory footprint.

Virtual Memory

Allocated 
Object

Pointer

Shadow Obj.

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012] 

-

+
+
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      BLACKLISTING: DISJOINT METADATA

● Main Idea:
○ Guard objects with red zones.
○ Use shadow memory to identify 

red zone locations.
○ E.g., AddressSanitizer (ASan).  

● Pros and Cons: 
○ No metadata propagation.   
○ Good binary compatibility. 
○ High memory footprint. 
○ Less precise than whitelisting. Virtual Memory

Allocated 
Object

Pointer

-

+

-

Shadow Obj.
+

[24] Serebryany, AddressSanitizer: a fast address sanity checker. [USENIX ATC 2012] 
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118[29] Qin et. al., SafeMem: exploiting ECC-memory for detecting memory leaks. [HPCA 2005] 
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      BLACKLISTING: INLINED METADATA (REST)

● Main Idea:
○ Store a unique value (Token) in 

locations to be blacklisted. 
○ Issue an exception when a 

regular load/store touches them.   

Virtual Memory

Allocated 
ObjectPointer

REST Tokens

REST Tokens

[31] Kanad Sinha and Simha Sethumadhavan. Practical memory safety with REST. [ISCA 2018] 
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      BLACKLISTING: INLINED METADATA (REST)

● Main Idea:
○ Store a unique value (Token) in 

locations to be blacklisted. 
○ Issue an exception when a 

regular load/store touches them.   
● Pros and Cons: 

○ Negligible perf. overheads.
○ Good binary compatibility.

Virtual Memory

Allocated 
ObjectPointer

+
+

REST Tokens

REST Tokens

[31] Kanad Sinha and Simha Sethumadhavan. Practical memory safety with REST. [ISCA 2018] 
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      BLACKLISTING: INLINED METADATA (REST)

● Main Idea:
○ Store a unique value (Token) in 

locations to be blacklisted. 
○ Issue an exception when a 

regular load/store touches them.   
● Pros and Cons: 

○ Negligible perf. overheads.
○ Good binary compatibility.
○ No intra-object protection.

Virtual Memory

Allocated 
ObjectPointer

-

+
+

REST Tokens

REST Tokens

[31] Kanad Sinha and Simha Sethumadhavan. Practical memory safety with REST. [ISCA 2018] 
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      BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in 

structs to store the metadata.

Virtual Memory

Allocated 
ObjectPointer

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019] 



Virtual Memory
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      BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in 

structs to store the metadata.

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019] 

struct A
{
  char c;
  char padding; 
  char padding;
  char padding;
  int i;
  char buf[64];
  void (*fp)();
} 

Pointer
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      BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in 

structs to store the metadata. 
○ Only 1-bit of metadata is needed 

per each 64B cacheline.   

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019] 

Califorms

A B C D E

Normal cacheline

A B C D EHeaderY

Is 
Califormed?
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      BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in 

structs to store the metadata.
○ Only 1-bit of metadata is needed 

per each 64B cacheline.   
● Pros and Cons: 

○ Intra-object protection.
○ Negligible perf. overheads.   
+

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019] 

Califorms

A B C D E

Normal cacheline

A B C D EHeaderY

Is 
Califormed?

+
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      BLACKLISTING: INLINED METADATA (CALIFORMS)

● Main Idea:
○ Use natural padding bytes in 

structs to store the metadata.
○ Only 1-bit of metadata is needed 

per each 64B cacheline.   
● Pros and Cons: 

○ Intra-object protection.
○ Negligible perf. overheads.   
○ Same paddings layout for 

objects of the same type.
-

+
+

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019] 

Califorms

A B C D E

Normal cacheline

A B C D EHeaderY

Is 
Califormed?
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128[20] Berger and Zorn, DieHard: Probabilistic memory safety for unsafe languages. [PLDI 2006] 
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     MEMORY SAFETY TECHNIQUES



Naive Solution Never use Free()
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Naive Solution Never use Free()
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High memory consumption 

& memory leaks!



Naive Solution Never use Free()

Garbage 
Collection (GC)

Regular Hardware Accelerated GC

Conservative MarkUs

132[37] Mass et. al., A hardware accelerator for tracing garbage collection. [ISCA 2018] 
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Garbage 
Collection (GC)

Regular Hardware Accelerated GC

Conservative MarkUs

Memory Quarantining Valgrind, ASan, REST, 
Califorms, CHERIvoke
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Naive Solution Never use Free()

Garbage 
Collection (GC)

Regular Hardware Accelerated GC

Conservative MarkUs

Memory Quarantining Valgrind, ASan, REST, 
Califorms, CHERIvoke

Lock 
& 

Key

Explicit Change Lock CETS, CUP

Implicit
Change Lock Electric Fence, Oscar

Revoke key DangNull, DangSan, BOGO
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      LOCK & KEY: EXPLICIT LOCK CHANGE (CETS) 

Virtual Memory

Allocated 
ObjectPointer A

Lock
Key

Pointer B
Key

● Main Idea:
○ Use unique Lock per object.  
○ Pass Lock to pointers as a key.
○ Propagate keys on pointer 

arithmetic.
○ Check on pointer dereference. 

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012] 
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      LOCK & KEY: EXPLICIT LOCK CHANGE (CETS)

Virtual Memory

Pointer A

Lock
Key

Pointer B
Key

● Main Idea:
○ Use unique Lock per object.  
○ Pass Lock to pointers as a key.
○ Propagate keys on pointer 

arithmetic.
○ Check on pointer dereference. 

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012] 
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      LOCK & KEY: EXPLICIT LOCK CHANGE (CETS)

Virtual Memory

New ObjectPointer A

Lock
Key

Pointer B
Key

Pointer C
Key

● Main Idea:
○ Use unique Lock per object.  
○ Pass Lock to pointers as a key.
○ Propagate keys on pointer 

arithmetic.
○ Check on pointer dereference. 

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012] 
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      LOCK & KEY: EXPLICIT LOCK CHANGE (CETS)

Virtual Memory

New ObjectPointer A

Lock
Key

Pointer B
Key

Pointer C
Key

● Main Idea:
○ Use unique Lock per object.  
○ Pass Lock to pointers as a key.
○ Propagate keys on pointer 

arithmetic.
○ Check on pointer dereference.  

● Pros and Cons: 
○ Simple bounds checking.   
○ High performance overheads.
+
-

[17] Santosh Nagarakatte. Practical Low-Overhead Enforcement of Memory Safety. [PhD Thesis 2012] 
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      LOCK & KEY: IMPLICIT LOCK CHANGE 

● Main Idea:
○ Use object address as a lock.

Virtual Memory

Allocated 
ObjectPointer A

Pointer B

[39] Dang et. al., Oscar: A practical page-permissions-based scheme. [USENIX 2017] 
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      LOCK & KEY: IMPLICIT LOCK CHANGE

Virtual Memory

Pointer A

Pointer B

● Main Idea:
○ Use object address as a lock.
○ Mark virtual addresses as 

inaccessible upon free. 

[39] Dang et. al., Oscar: A practical page-permissions-based scheme. [USENIX 2017] 
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      LOCK & KEY: IMPLICIT LOCK CHANGE

Virtual Memory

Pointer A

Pointer B New Object

Pointer C

● Main Idea:
○ Use object address as a lock.
○ Mark virtual addresses as 

inaccessible upon free. 
○ Never reuse virtual addresses.  

[39] Dang et. al., Oscar: A practical page-permissions-based scheme. [USENIX 2017] 
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      LOCK & KEY: IMPLICIT LOCK CHANGE

Virtual Memory

Pointer A

Pointer B New Object

Pointer C

● Main Idea:
○ Use object address as a lock.
○ Mark virtual addresses as 

inaccessible upon free. 
○ Never reuse virtual addresses.  

● Pros and Cons: 
○ No per-pointer overheads. 
○ High TLB overheads.
+
-

[39] Dang et. al., Oscar: A practical page-permissions-based scheme. [USENIX 2017] 
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      LOCK & KEY: IMPLICIT KEY REVOCATION 

● Main Idea:
○ Use pointer value as a key.

Virtual Memory

Allocated 
ObjectPointer A

Pointer B

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019] 



      LOCK & KEY: IMPLICIT KEY REVOCATION 
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Virtual Memory

Pointer A

NULL

Pointer B

● Main Idea:
○ Use pointer value as a key.
○ Nullify pointers upon Free(). 

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019] 



      LOCK & KEY: IMPLICIT KEY REVOCATION 
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Virtual Memory

Pointer A

NULL

Pointer B

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019] 

● Main Idea:
○ Use pointer value as a key.
○ Nullify pointers upon Free(). 

● Limitations: 
○ Overheads are proportional to 

the number of pointers.
○ May miss dangling pointers 

stored in registers. 

-

-



Naive Solution Never use Free()

Garbage 
Collection (GC)

Regular Hardware Accelerated GC

Conservative MarkUs

Memory Quarantining Valgrind, ASan, REST, 
Califorms, CHERIvoke

Lock 
& 

Key

Explicit Change Lock CETS, CUP
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Revoke key DangNull, DangSan, BOGO
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      FUTURE WORK MAP 

Created via: https://azgaar.github.io/Fantasy-Map-Generator/ 

https://azgaar.github.io/Fantasy-Map-Generator/
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      LOW-COST MEMORY SAFETY SOLUTIONS 

Created via: https://azgaar.github.io/Fantasy-Map-Generator/ 

https://azgaar.github.io/Fantasy-Map-Generator/
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      LOW-COST MEMORY SAFETY SOLUTIONS 

CALIFORMS

Hiroshi Sasaki, Miguel A. Arroyo, Mohamed Tarek Ibn Ziad, Koustubha Bhat, Kanad 
Sinha, and Simha Sethumadhavan, Practical byte-granular memory blacklisting using 
Califorms. [MICRO 2019] [IEEE Micro Top Picks Honorable Mention]
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      PROTECTING NON-64 BIT SYSTEMS

PAIRS

Mohamed Tarek Ibn Ziad and Evgeny Manzhosov, Practical Software Security on 
Heterogeneous Systems on Chips. [Qualcomm Innovation Fellowship Finalists 2020] 
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      COHESIVE MEMORY SAFETY SOLUTIONS 
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      COHESIVE MEMORY SAFETY SOLUTIONS 

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, and Simha Sethumadhavan, 
SPAM: Stateless Permutation of Application Memory. [Submitted to USENIX 2020]
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Why is memory safety still a 
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QUESTIONS?
https://www.cs.columbia.edu/~mtarek/ 

@M_TarekIbnZiad

http://www.cs.columbia.edu/~mtarek/
https://twitter.com/M_TarekIbnZiad
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     CODE INJECTION

void main (int argc, char **argv) {
...

vulnerable(argv[1]);

...

}

void vulnerable(char *str1){

char str2[100];

strcpy(str2,str1);

return;

}

159

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G

0

main() 
stack frame

code address

malicious code

[4] Szekeres et. al, SoK: Eternal war in memory. [S&P 2013] 
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     RETURN-TO-LIBC

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G

0

TEXT

Libc address

malicious 
arguments

● Attack payload:
○ An address to libc function.
○ Function arguments.

● Limitations:
○ Execute whole functions. 
○ Cannot target functions with 

‘00’ byte in address.

[3] Van der Veen et. al., Memory errors: The past, the present, and the future. [RAID 2012] 
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Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G

0

TEXT

● Main Idea:
○ Insert unique variables on the 

stack. 
○ Check their contents upon 

function return.
● Limitations:

○ Only detect continuous writes.
○ No read protection.

return address

str2[100]

Canary

     STACK CANARIES

[3] Van der Veen et. al., Memory errors: The past, the present, and the future. [RAID 2012] 
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     CONTROL FLOW INTEGRITY (CFI)

CFG

● Main Idea:
○ Construct a pre-defined CFG.

■ Statically with point-to analysis.
■ Dynamically with profiling.

○ Enforce it at runtime.
● Limitations:

○ Over-approximation.
○ Modularity.

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017] 
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     CONTROL FLOW INTEGRITY (CFI)

CFG

● Main Idea:
○ Construct a pre-defined CFG.

■ Statically with point-to analysis.
■ Dynamically with profiling.

○ Enforce it at runtime.
● Limitations:

○ Over-approximation.
○ Modularity.

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017] 
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     CONTROL FLOW INTEGRITY (CFI)

CFG

Module 1 Module 2
● Main Idea:

○ Construct a pre-defined CFG.
■ Statically with point-to analysis.
■ Dynamically with profiling.

○ Enforce it at runtime.
● Limitations:

○ Over-approximation.
○ Modularity.

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017] 
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     CONTROL FLOW INTEGRITY (CFI)

CFG

Module 1 Module 2
● Main Idea:

○ Construct a pre-defined CFG.
■ Statically with point-to analysis.
■ Dynamically with profiling.

○ Enforce it at runtime.
● Limitations:

○ Over-approximation.
○ Modularity.

[12] Burow et. al, Control-flow integrity: Precision, security, and performance. [ACM Surveys 2017] 
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Counterfeit Object Oriented 
Programming 

[9] Schuster et. al, Counterfeit object-oriented programming. [S&P 2015] 
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What are C++ Virtual Pointers?



     C++ CONCEPTS: OBJECT-ORIENTED

168

class A { 
public:
int x;
char *y;

void foo();
void bar();

}



     C++ CONCEPTS: OBJECT-ORIENTED
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class A { 
public:
int x;
char *y;

void foo();
void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A



     C++ CONCEPTS: INHERITANCE

170

class A { 
public:
int x;
char *y;

void foo();
void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A

class B : public A { 
public:
int z;

}

x: int
y: char*

foo(): void

object: B

bar(): void

z: int



     C++ CONCEPTS: POLYMORPHISM

171

class A { 
public:
int x;
char *y;

void foo();
virtual void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A

class B : public A { 
public:
int z;

  void bar();

}



     C++ CONCEPTS: COMPILER

172

class A { 
public:
int x;
char *y;

void foo();
virtual void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A

class B : public A { 
public:
int z;

  void bar();

}

...

...
& B::bar

B::vTable



     C++ CONCEPTS: COMPILER
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class A { 
public:
int x;
char *y;

void foo();
virtual void bar();

}

x: int
y: char*

foo(): void
bar(): void

object: A

class B : public A { 
public:
int z;

  void bar();

}

x: int
y: char*

foo(): void

object: B

z: int
vptr

...

...
& B::bar

B::vTable



     C++ CONCEPTS: COMPILER
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x: int
y: char*

foo(): void
bar(): void

object: A

x: int
y: char*

foo(): void

object: B

z: int
vptr

...

...
& B::bar

B::vTable

vptr = load [object Base Addr] 

vFunction = load [vptr + index]

Call [vFunction]
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x: int
y: char*

foo(): void
bar(): void

object: A

x: int
y: char*

foo(): void

object: B

z: int
vptr

...

...
& B::bar

B::vTable

vptr = load [object Base Addr] 

vFunction = load [vptr + index]

Call [vFunction]

      COUNTERFEIT OBJECT ORIENTED PROGRAMMING (COOP)
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x: int
y: char*

foo(): void
bar(): void

object: A

x: int
y: char*

foo(): void

object: B

z: int
vptr

...

...
& B::bar

B::vTable

Steps:
● Find a loop with virtual function calls.  
● Inject counterfeit objects with attacker’s vptrs. 
● Overlap object fields for passing values.

      COUNTERFEIT OBJECT ORIENTED PROGRAMMING (COOP)

...

...

...

C::vTable
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     JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G
● Main Idea:

○ Repeatedly abuse a memory 
disclosure.

Text

0

Div. 
Code 
Page

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013] 
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     JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G
● Main Idea:

○ Repeatedly abuse a memory 
disclosure.

● Attack Steps:
○ Leak one code pointer. Text

Leaked Ptr

0

Div. 
Code 
Page

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013] 
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     JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G
● Main Idea:

○ Repeatedly abuse a memory 
disclosure.

● Attack Steps:
○ Leak one code pointer.
○ Scan code pages on the fly.

Text

Leaked Ptr

0

Div. 
Code 
Page

Runtime 
Disassembler

Code 
Page

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013] 
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     JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G
● Main Idea:

○ Repeatedly abuse a memory 
disclosure.

● Attack Steps:
○ Leak one code pointer.
○ Scan code pages on the fly.
○ Pinpoint useful gadgets.

Text

Runtime 
Gadget Finder

0

Gadgets

Code 
Page

Gadgets

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013] 
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     JUST-IN-TIME ROP

Virtual Memory

0xFFFFFFFF

0x00000000

OS Kernel 
Space

4G
● Main Idea:

○ Repeatedly abuse a memory 
disclosure.

● Attack Steps:
○ Leak one code pointer.
○ Scan code pages on the fly.
○ Pinpoint useful gadgets.
○ JIT-compile an ROP gadget 

chain. 

Text

JIT-ROP
Compiler

0

Gadgets

Gadg. 
Chain

Gadgets

[8] Snow et. al,Just-in-time code reuse: On the effectiveness of fine-grained ASLR. [S&P 2013] 
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     DATA ORIENTED PROGRAMMING (DOP)

● Attack Steps:
○ Trigger a memory safety 

vulnerability. 
○ Manipulate non control data.
○ Use the corrupted data.

● Goal: 
○ Never change program CFG.

CFG

[10] Cheng et. al., Exploitation techniques and defenses for data-oriented attacks. [SecDev 2019] 
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     DATA FLOW INTEGRITY

DFG

● Main Idea:
○ Construct a compile-time DFG.

■ Load inst. → {IDs of store insts.} 
with point-to analysis.

○ Enforce it at runtime.
■ Tag every memory word with 

2-byte shadow. 
■ Write the ID to the Tag upon store.
■ Compare ID vs. set upon load.

● Limitations:
○ Over-approximation.

[13] Castro et. al., Securing software by enforcing data-flow integrity. [OSDI 2006] 
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     INTEL CONTROL FLOW ENF. TECH. (CET)

Source: 
https://www.linuxplumbersconf.org/event/2/contributions/147/attachments/72/83/CET-LPC-2018.pdf   

https://www.linuxplumbersconf.org/event/2/contributions/147/attachments/72/83/CET-LPC-2018.pdf
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      PAIRS vs. CODE REUSE ATTACKS

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019] 
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      PAIRS vs. CODE REUSE ATTACKS

[2] Mohamed et. al, PAIRS: Control flow protection using phantom addressed instructions. [arXiv 2019] 



● Main Idea:
○ Randomize the representation of data stored in memory.

● Approaches:
○ Use encryption with a unique key per variable. 

■ DSR.
○ Statically randomize structs layout in a program. 

■ GCC struct randomization. 
○ Dynamically randomize objects layout in memory.

■ SALADS, SmokeStack, and POLAR.
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     DATA SPACE RANDOMIZATION
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     MOVING TARGET DEFENSE (MORPHEUS)

Gallagher et. al., Morpheus: A Vulnerability-Tolerant Secure Architecture Based on Ensembles of Moving 
Target Defenses with Churn. [ASPLOS 2019] 
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Tripwire Insertion Policies

struct A_opportunistic 
{
  char c;
  char tripwire[3];
  int i;
  char buf[64];
  void (*fp)();
} 

struct A_full {
  char tripwire[2];  
  char c;
  char tripwire[1];
  int i;
  char tripwire[3];
  char buf[64];
  char tripwire[2];
  void (*fp)();
  char tripwire[1];
} 

struct A_intelligent {
  char c;
  int i;
  char tripwire[3];
  char buf[64];
  char tripwire[2];
  void (*fp)();
  char tripwire[3];
} 

(1) Opportunistic (2) Full (3) Intelligent

      CALIFORMS: INSERTION POLICIES

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019] 



190

Dead Memory

Memory that is never be used 
by the program.

SPEC CPU2006 C and C++ Benchmarks

Normally Occurring Dead Bytes

V8 JavaScript Engine

Struct density =  ∑
i
#fields(sizeof(field

i
))/sizeof(struct)

      CALIFORMS: DEAD BYTES

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019] 
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      CALIFORMS: CACHELINE FORMAT

[1] Sasaki et. al., Practical byte-granular memory blacklisting using Califorms. [MICRO 2019] 
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      INTEL MPX

[29] Oleksenko et. al., Intel MPX explained [ACM Surveys 2018] 

● Main Limitations:
○ High overheads (up to 4x).
○ Lack of multithreading.
○ Incorrect handling of 

several common C idioms. 
○ Poor Interaction with other 

ISA extensions (like SGX).
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      TYPE SAFETY 

Virtual Memory

Object of 
Type APointer A

Pointer B

● Main Idea:
○ Add runtime checks to detect 

incompatible type casting.

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019] 
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      TYPE SAFETY 

Virtual Memory

Object of 
Type APointer A

Pointer B

● Main Idea:
○ Add runtime checks to detect 

incompatible type casting.
● Examples: 

○ UBSan and Clang CFI
■ RTTI-based verification.

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019] 
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      TYPE SAFETY 

Virtual Memory

Object of 
Type APointer A

Pointer B

● Main Idea:
○ Add runtime checks to detect 

incompatible type casting.
● Examples: 

○ UBSan and Clang CFI
■ RTTI-based verification.

○ CaVer, TypeSan, and HexType
■ Custom metadata.

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019] 
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      TYPE SAFETY 

Virtual Memory

Object of 
Type APointer A

Pointer B

● Main Idea:
○ Add runtime checks to detect 

incompatible type casting.
● Examples: 

○ UBSan and Clang CFI
■ RTTI-based verification.

○ CaVer, TypeSan, and HexType
■ Custom metadata.

○ Clang TySan and EffetiveSan
■ Check pointer dereference.

[5] Song et. al., SoK: Sanitizing for security. [S&P 2019] 
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