
Enforcing Forward-Edge
Control-Flow Integrity in
GCC & LLVM

Caroline Tice Tom Roeder Peter Collingbourne Stephen Checkoway
 Google, Inc. Google Inc. Google Inc. Johns Hopkins University

Úlfar Erlingsson Luis Lozano Geoff Pike
 Google, Inc. Google Inc. Google Inc.

What is Control-Flow Integrity?
Control Flow Integrity (CFI) is a security policy that dictates that the software

execution must follow the path of a previously determined control flow graph (CFG).

Static CFG

●

●

●

●

●

●

Dynamic Path

(attacker code!)

How can branch targets be attacked?
● Targets are hard-coded (in non-writable memory)...

●

●

● call *(my_func)

●

Heap

my_func: 0x123

Stack

<ret addr>:
0xabc

return

forward edge

backward edge

● ...except when on the heap…
● ...or on the stack.

je 0x40186d (direct control flow)

(indirect control flow)

So...why focus on forward-edge?

attacker
defender

STACK

Attacks Defenses

Buffer Overflow

Return-Oriented Programming

Return-to-libc

Stack Canaries, Layout Reordering

Address-Space Layout Randomization (ASLR)

Coding patterns that avoid stack buffers

Status of forward-edge defenses?

attacker
defender

HEAP

Attacks Defenses

Buffer overflow / fake vtables

Exploit use-after-free bugs

Heap spraying / feng shui

Heap-Metadata Canaries

Address-Space Layout Randomization

Various ad hoc CFI attempts

Our Overall Contribution

Practical CFI enforcement in production compilers,
for forward edges.

What do we have to offer?

● Integrated forward-edge CFI into GCC & LLVM.
● No restrictions or simplifying assumptions.
● Scales completely.
● Strong security guarantees.
● Low performance degradation.

● Vtable Verification (VTV), in GCC 4.9
For every virtual call in C++, verifies the vtable pointer used to make the
call is valid and correct for the static class (type) of object making the call.

● Indirect Function Call Checker (IFCC), in LLVM
Forces every indirect function call to use a specially constructed jump table
(in non-writable memory), to prevent attacker changing target to something
outside the program.

Verifies (at runtime) that the actual function signature of the called function
exactly matches the function signature at the call site.

● Indirect Function Call Sanitizer (FSan), in LLVM

What exactly did we do?

Load Dynamic Library

VTV Pointer Data Set details

Compiler/
Assembler

Source Files

Object Files

Class
Hierarchy
Info

Start

Load Libraries

Constructor Inits

“Main”

libvtv

(vtable ptr data sets)

IFCC: Function Verification Details

.

.

.

call *%rax

f:

.

.

.

.

.

.

.

.

.

.

.

.

IFCC: Function Verification Details

call *%rax

.

.

.

f:

f_JT:
jmp f@PLT

Jump table of size
2n

.

.

.

.

.

.

.

.

.

IFCC: Function Verification Details

<transform/check %rax>
call *%rax

.

.

.

f:

f_JT:
jmp f@PLT

Jump table of size
2n

Measurements: What & How?
● Security

○ AIR = Average Indirect-target Reduction [Zhang ‘13]
■ ~ fraction of protected indirect control flow insns.
■ fAIR = “forward-edge AIR”

● Run-time performance degradation
○ SPEC 2006 C++ benchmarks
○ Chromium web browser

■ dromaeo, sunspider, octane benchmarks

How do they compare?

VTV IFCC FSan

Security fAIR = 95.2% fAIR = 99.8% NA

Performance
Penalty

1.6% - 8.7% 1.9% - 3.4%
(0.6% - 5.8%)

2.2% - 9.1%

Precision
guarantees

Target is in a
correct class for
call site.

Target is a function (of
correct arity) in
original program.

Target has correct
signature.

Applicability - C++ only
- Virtual calls only

- Any LLVM lang.
- All indirect calls

- C++ only
- All indirect calls

What have we learned?
● Fully integrating CFI w/compiler helps with performance.
● Do security analysis on final compiler output.

○ Some optimizations could affect security passes.
● Incremental compilation: Incomplete data => false +’s

(execution aborts -- MUST AVOID!!).

assembler

Source
Files

Assembly
Files

Object
Files

Final
Optimized

Binary

linker

link-time
optimizer()

parser/analyzer

optimizer

What have we learned (cont.)?
● Need to support dynamic library loading.

○ Purely statically linked binaries are hard to find!
● Mixed verified & unverified code (e.g. libraries):

○ Another source of incomplete information!
○ Requires ability for programmer intervention:

■ IFCC: Allows explicitly disabling verification for
specified functions.

■ VTV: Allows modifying the failure function, e.g.
w/whitelist or secondary verification.

Questions & Answers...

Practical CFI enforcement in production compilers
for forward edges.

Back up slides come next.

Performance - SPEC CPU2006

Performance - Chromium

