Sleepable RCU

Classic RCU requires that read-side critical sections obey the same rules

obeyed by the critical sections of pure spinlocks: blocking or sleeping of any October 9, 2006

sort is strictly prohibited. This has frequently been an obstacle to the use of This article was contributed by
RCU, and | have received numerous requests for a “sleepable RCU" (SRCU) | Paul McKenney

that permits arbitrary sleeping (or blocking) within RCU read-side critical

sections. | had previously rejected all such requests as unworkable, since arbitrary sleeping in RCU read-side could
indefinitely extend grace periods, which in turn could result in arbitrarily large amounts of memory awaiting the end
of a grace period, which finally would result in system hangs due to memory exhaustion. After all, any concurrency-
control primitive that could result in system hangs -- even when used correctly - does not deserve to exist.

However, the realtime kernels that require spinlock critical sections be preemptible [3] also require that RCU read-
side critical sections be preemptible [2]. Preemptible critical sections in turn require that lock-acquisition primitives
block in order to avoid deadlock, which in turns means that both RCU's and spinlocks' critical sections be able to
block awaiting a lock. However, these two forms of sleeping have the special property that priority boosting and
priority inheritance may be used to awaken the sleeping tasks in short order.

Nevertheless, use of RCU in realtime kernels was the first crack in the tablets of stone on which were inscribed
"RCU read-side critical sections can never sleep". That said, indefinite sleeping, such as blocking waiting for an
incoming TCP connection, is strictly verboten even in realtime kernels.

Quick Quiz 1: Why is sleeping prohibited within Classic RCU read-side critical sections?

Quick Quiz 2: Why not permit sleeping in Classic RCU read-side critical sections by eliminating context switch as a
quiescent state, leaving user-mode execution and idle loop as the remaining quiescent states?

SRCU Implementation Strategy

The primary challenge in designing an SRCU is to prevent any given task sleeping in an RCU read-side critical
section from preventing an unbounded number of RCU callbacks. SRCU uses two strategies to achieve this goal:

1. refusing to provide asynchronous grace-period interfaces, such as the Classic RCU's call_rcu() API, and
2. isolating grace-period detection within each subsystem using SRCU.

The rationale for these strategies are discussed in the following sections.

Abolish Asynchronous Grace-Period APIs

The problem with the call_rcu() API is that a single thread can generate an arbitrarily large number of blocks of
memory awaiting a grace period, as illustrated by the following:

1 while (p = kmalloc(sizeof(*p), GFP_ATOMIC))
2 call_rcu(&p->rcu, f);

In contrast, the analogous code using synchronize_rcu() can have at most a single block of memory per thread
awaiting a grace period:

1 while (p = kmalloc(sizeof(*p),

2 GFP_ATOMIC)) {
3 synchronize_rcu();

4 kfree(&p->rcu, f);
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Therefore, SRCU provides an equivalent to synchronize_rcu(), but not to call_rcu().
Isolate Grace-Period Detection

In Classic RCU, a single read-side critical section could indefinitely delay all RCU callbacks, for example, as
follows:

/* BUGGY: Do not use!!! */
rcu_read_lock();
schedule_timeout_interruptible(longdelay);
rcu_read_unlock();
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This sort of behavior might be tolerated if RCU were used only within a single subsystem that was carefully
designed to withstand long-term delay of grace periods. It is the fact that a single RCU read-side bug in one
isolated subsystem can delay all users of RCU that forced these long-term RCU read-side delays to be abolished.

One way around this issue is for grace-period detection to be performed on a subsystem-by-subsystem basis, so
that a lethargic RCU reader will delay grace periods only within that reader's subsystem. Since each subsystem can
have only a bounded number of memory blocks awaiting a grace period, and since the number of subsystems is
also presumably bounded, the total amount of memory awaiting a grace period will also be bounded. The designer
of a given subsystem is responsible for: (1) ensuring that SRCU read-side sleeping is bounded and (2) limiting the
amount of memory waiting for synchronize_srcu(). [1]

This is precisely the approach that SRCU takes, as described in the following section.

SRCU API and Usage

The SRCU API is shown in below. The following sections describe how to use it.

int init_srcu_struct(struct srcu_struct *sp);

void cleanup_srcu_struct(struct srcu_struct *sp)

int srcu_read_lock(struct srcu_struct *sp);

void srcu_read_unlock(struct srcu_struct *sp, int idx);
void synchronize_srcu(struct srcu_struct *sp);

long srcu_batches_completed(struct srcu_struct *sp);

Initialization and Cleanup

Each subsystem using SRCU must create an struct srcu_struct, either by declaring a variable of this type or by
dynamically allocating the memory, for example, via kmalloc(). Once this structure is in place, it must be initialized
via init_srcu_struct(), which returns zero for success or an error code for failure (for example, upon memory
exhaustion).

If the struct srcu_struct is dynamically allocated, thencleanup_srcu_struct() must be called before it is freed.
Similarly, if the struct srcu_struct is a variable declared within a Linux kernel module,

then cleanup_srcu_struct() must be called before the module is unloaded. Either way, the caller must take care to
ensure that all SRCU read-side critical sections have completed (and that no more will commence) before

calling cleanup_srcu_struct(). One way to accomplish this is described below.

Read-Side Primitives

The read-side srcu_read_lock() and srcu_read_unlock() primitives are used as shown:
1 idx = srcu_read_lock(&ss);
2 /* read-side critical section. */

3 srcu_read_unlock(&ss, idx);

The ss variable is the struct srcu_struct whose initialization was described above, and the idx variable is an
integer that in effect tellssrcu_read_unlock() the grace period during which the
correspondingsrcu_read_lock() started.

This carrying of an index is a departure from the RCU API, which, when required, stores the equivalent information
in the task structure. However, since a given task could potentially occupy an arbitrarily large number of nested
SRCU read-side critical sections, SRCU cannot reasonably store this index in the task structure.

Update-Side Primitives

The synchronize_srcu() primitives may be used as shown below:
1 list_del_rcu(p);
2 synchronize_srcu(&ss);

3 kfree(p);

As one might expect by analogy with Classic RCU, this primitive blocks until until after the completion of all SRCU
read-side critical sections that started before the synchronize_srcu() started, as shown in Table 1.

Table 1: SRCU Update and Read-Side Critical Sections

CPUO CPU1 CPU 2 CPU 3
1 i0=srcu_read_lock(&s1); i3=srcu_read_lock(&s2);
2 synchronize_srcu(&s1);[enter]
3 i3=srcu_read_lock(&s1);

4 srcu_read_unlock(&s1,1i0);



5 synchronize_srcu(&s1);[exit]
6 srcu_read_unlock(&s1,12);

Here, CPU 1 need only wait for the completion of CPU 0's SRCU read-side critical section. It need not wait for the
completion of CPU 2's SRCU read-side critical section, because CPU 2 did not start this critical section

until after CPU 1 began executing synchronize_srcu(). Finally, CPU 1's synchronize_srcu() need not wait for

CPU 3's SRCU read-side critical section, because CPU 3 is using s2 rather than s1 as its structsrcu_struct.

CPU 3's SRCU read-side critical section is thus related to a different set of grace periods than those of CPUs 0 and
2.

The srcu_batches_completed() primitive may be used to monitor the progress of a given struct srcu_struct's
grace periods. This primitive is used in ““torture tests" that validate SRCU's operation.

Cleaning Up Safely

Cleaning up SRCU safely can be a challenge, but fortunately many uses need not do so. For example, uses in
operating-system kernels that are initialized at boot time need not be cleaned up. However, uses within loadable
modules must clean up if the corresponding module is to be safely unloaded.

In some cases, such as the RCU torture module, only a small known set of threads are using the SRCU read-side
primitives against a particular struct srcu_struct. In these cases, the module-exit code need only kill that set of
threads, wait for them to exit, and then clean up.

In other cases, for example, for device drivers, any thread in the system might be using the SRCU read-side
primitives. Although one could apply the method of the previous paragraph, this ends up being equivalent to a full
reboot, which can be unattractive. The example below shows one way that cleanup could be accomplished without
a reboot.

1 int readside(void) {

2 int idx;

3 rcu_read_lock();

4 if (nomoresrcu) {

5 rcu_read_unlock();
6 return -EINVAL;

7

8

}

idx = srcu_read_lock(&ss);
9 rcu_read_unlock();
10 /* SRCU read-side critical section. */
11 srcu_read_unlock(&ss, idx);
12 return O;
13 }
14
15 void cleanup(void)
16 {
17 nomoresrcu = 1;
18 synchronize_rcu();
19 synchronize_srcu(&ss);
20 cleanup_srcu_struct(&ss);
21 }

The readside() function overlaps an RCU and an SRCU read-side critical section, with the former running from
lines 8-7 and the latter running from lines 6-9. The RCU read-side critical section uses pure RCU to guard the value
of the nomoresrcu variable. If this variable is set, we are cleaning up, and therefore must not enter the SRCU read-
side critical section, so we return -EINVAL instead. On the other hand, if we are not yet cleaning up, we proceed into
the SRCU read-side critical section.

The cleanup() function first sets the nomoresrcu variable on line 17, but then must wait for all currently executing
RCU read-side critical sections to complete via the synchronize_rcu() primitive on line 19. Once

the cleanup() function reaches line 19, all calls to readside() that could possibly have seen nomorersrcu equal to
zero must have already reached line 8, and therefore already must have entered their SRCU read-side critical
section. All other calls to readside() will exit via line 6, and will thus refrain from entering the read-side critical
section.

Therefore, once cleanup() completes its call to synchronize_srcu() on line 19, all SRCU read-side critical sections

will have completed, and no new ones will be able to start. It is therefore safe on line 20 to
call cleanup_srcu_struct()to clean up.

Implementation

This section describes SRCU's data structures, initialization and cleanup primitives, read-side primitives, and
update-side primitives.



Data Structures

SRCU's data structures are shown below in source and schematic form. The completed field is a count of the
number of grace periods since the struct srcu was initialized, and as shown in the diagram, its low-order bit is used
to index the struct srcu_struct_array. The per_cpu_ref field points to the array, and the mutex field is used to
permit but one synchronize_srcu() at a time to proceed.
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struct srcu_struct_array
Initialization Implementation

SRCU's initialization function, init_srcu_struct(), is shown below. This function simply initializes the fields in
the struct srcu_struct, returning zero if initialization succeeds or -ENOMEM otherwise.

1 int init_srcu_struct(struct srcu_struct *sp)

2 A

3 sp->completed = 0;

4 mutex_init(&sp->mutex);

5 sp->per_cpu_ref =

6 alloc_percpu(struct srcu_struct_array);
7 return (sp->per_cpu_ref ? 0 : -ENOMEM);

8}

SRCU's cleanup functions are shown below.

1 int srcu_readers_active_idx(struct srcu_struct *sp,
2 int idx)

3

4 int cpu;

5 int sum;

6

7 sum = 0;

8 for_each_possible_cpu(cpu)

9 sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx];
10 return sum;

11 }

12

13 int srcu_readers_active(struct srcu_struct *sp)
14 {

15 return srcu_readers_active_idx(sp, 0) +

16 srcu_readers_active_idx(sp, 1);
17 }

18

19 void cleanup_srcu_struct(struct srcu_struct *sp)
20 {

21 int sum;

22

23 sum = srcu_readers_active(sp);

24 WARN_ON(sum) ;

25 if (sum != 0)

26 return;

27 free_percpu(sp->per_cpu_ref);

28 sp->per_cpu_ref = NULL;

29 }

The main cleanup function, cleanup_srcu_struct() is shown on lines 19-29 of this figure, however, it immediately
invokessrcu_readers_active(), shown on lines 13-17 of this figure, to verify that there are no readers currently
using this struct srcu_struct.



The srcu_readers_active() function simply returns the sum ofsrcu_readers_active_idx() on both possible
indexes, while srcu_readers_active_idx(), as shown on lines 1-11, sums up the per-CPU counters corresponding
to the specified index, returning the result.

If the value returned from srcu_readers_active() iS non-zero, then cleanup_srcu_struct() issues a warning on
line 24 and simply returns on lines 25 and 26, declining to destroy a struct srcu_struct that is still in use. Such a
warning always indicates a bug, and given that the bug has been reported, it is better to allow the system to
continue with a modest memory leak than to introduce possible memory corruption.

Otherwise, cleanup_srcu_struct() frees the array of per-CPU counters and NULLS the pointer on lines 27 and 28.
Read-Side Implementation

The code implementing srcu_read_lock() is:

1 int srcu_read_lock(struct srcu_struct *sp)
2

3 int idx;

4

5 preempt_disable();

6 idx = sp->completed & 0x1;

7 barrier();

8 per_cpu_ptr(sp->per_cpu_ref,

9 smp_processor_id())->c[idx]++;
10 srcu_barrier();

11 preempt_enable();

12 return idx;

13 }

This function has been carefully constructed to avoid the need for memory barriers and atomic instructions.

Lines 5 and 11 disable and re-enable preemption, in order to force the sequence of code to execute unpreempted
on a single CPU. Line 6 picks up the bottom bit of the grace-period counter, which will be used to select which rank
of per-CPU counters is to be used for this SRCU read-side critical section. The barrier() call on line 7 is a directive
to the compiler that ensures that the index is fetched but once, so that the index used on line 9 is the same one
returned on line 12. Lines 8-9 increment the selected counter for the current CPU. Line 10 forces subsequent
execution to occur after lines 8-9, in order to prevent to misordering of any code in a non-CONFIG_PREEMPT build, but
only from the perspective of an intervening interrupt handler. However, in a CONFIG_PREEMPT kernel, the

required barrier() call is embedded in the preempt_enable() on line 11, so the srcu_barrier() is a no-op in that
case. Finally, line 12 returns the index so that it may be passed in to the corresponding srcu_read_unlock().

The code for srcu_read_unlock() is:

1 void srcu_read_unlock(struct srcu_struct *sp, int idx)
2 A

3 preempt_disable();

4 srcu_barrier();

5 per_cpu_ptr(sp->per_cpu_ref,

6 smp_processor_id())->c[idx]--;

7 preempt_enable();

8}

Again, lines 3 and 7 disable and re-enable preemption so that the whole code sequence executes unpreempted on
a single CPU. In CONFIG_PREEMPT Kkernels, the preempt_disable() on line 3 contains a barrier() primitive, otherwise,
the barrier()is supplied by line 4. Again, this directive forces the subsequent code to execute after the critical
section from the perspective of intervening interrupt handlers. Lines 5 and 6 decrement the counter for this CPU,
but with the same index as was used by the corresponding srcu_read_lock().

The key point is that a given CPU's counters can be observed by other CPUs only in cooperation with that CPU's

interrupt handlers. These interrupt handlers are responsible for ensuring that any needed memory barriers are
executed prior to observing the counters.

Update-Side Implementation

The key point behind SRCU is that synchronize_sched() blocks until all currently-executing preempt-disabled
regions of code complete. The synchronize_srcu() primitive makes heavy use of this effect, as can be seen here:

1 void synchronize_srcu(struct srcu_struct *sp)
2 A

3 int idx;

4

5 idx = sp->completed;



6 mutex_lock(&sp->mutex);

7 if ((sp->completed - idx) >= 2) {

8 mutex_unlock(&sp->mutex);

9 return;

10 }

11 synchronize_sched();

12 idx = sp->completed & 0x1;

13 sp->completed++;

14 synchronize_sched();

15 while (srcu_readers_active_idx(sp, 1idx))
16 schedule_timeout_interruptible(1);
17 synchronize_sched();

18 mutex_unlock(&sp->mutex);

19 }

Line 5 takes a shapshot of the grace-period counter. Line 6 acquires the mutex, and lines 7-10 check to see
whether at least two grace periods have elapsed since the snapshot, and, if so, releases the lock and returns -- in
this case, someone else has done our work for us. Otherwise, line 11 guarantees that any other CPU that sees the
incremented value of the grace period counter in srcu_read_lock()also sees any changes made by this CPU prior
to enteringsynchronize_srcu(). This guarantee is required to make sure that any SRCU read-side critical sections
not blocking the next grace period have seen any prior changes.

Line 12 fetches the bottom bit of the grace-period counter for later use as an index into the per-CPU counter arrays,
and then line 13 increments the grace-period counter. Line 14 then waits for any currently-

executing srcu_read_lock()to complete, so that by the time that we reach line 15, all extant instances

of srcu_read_lock() will be using the updated value from sp->completed. Therefore, the counters sampled in

by srcu_readers_active_idx()on line 15 are guaranteed to be monotonically decreasing, so that once their sum
reaches zero, it is guaranteed to stay there.

However, there are no memory barriers in the srcu_read_unlock()primitive, so the CPU is within its rights to reorder
the counter decrement up into the SRCU critical section, so that references to an SRCU-protected data structure
could in effect ““bleed out" of the SRCU critical section. This scenario is addressed by the synchronize_sched() on
line 17, which blocks until all other CPUs executing in preempt_disable()code sequences (such as that

in srcu_read_unlock()) complete these sequences. Because completion of a given preempt_disable() code
sequence is observed from the CPU executing that sequence, completion of the sequence implies completion of
any prior SRCU read-side critical section. Any required memory barriers are supplied by the code making the
observation.

At this point, it is therefore safe to release the mutex as shown on line 18 and return to the caller, who can now be
assured that all SRCU read-side critical sections sharing the same struct srcu_structwill observe any update
made prior to the call to synchronize_srcu().

Quick Quiz 3:Why is it OK to assume that updates separated bysynchronize_sched() will be performed in order?

Quick Quiz 4: Why must line 17 in synchronize_srcu() precede the release of the mutex on line 18? What would
have to change to permit these two lines to be interchanged? Would such a change be worthwhile? Why or why
not?

SRCU Summary

SRCU provides an RCU-like set of primitives that permit general sleeping in the SRCU read-side critical sections.
However, it is important to note that SRCU has been used only in prototype code, though it has passed the RCU
torture test. It will be very interesting to see what use, if any, SRCU sees in the future.

Quick Quiz answers
Quick Quiz 1: Why is sleeping prohibited within Classic RCU read-side critical sections?

Answer: Because sleeping implies a context switch, which in Classic RCU is a quiescent state, and RCU's grace-
period detection requires that quiescent states never appear in RCU read-side critical sections.

Quick Quiz 2: Why not permit sleeping in Classic RCU read-side critical sections by eliminating context switch as a
quiescent state, leaving user-mode execution and idle loop as the remaining quiescent states?

Answer: This would mean that a system undergoing heavy kernel-mode execution load (e.g., due to kernel
threads) might never complete a grace period, which would cause it to exhaust memory sooner or later.

Quick Quiz 3: Why is it OK to assume that updates separated bysynchronize_sched() will be performed in order?

Answer: Because this property is required for the synchronize_sched()aspect of RCU to work at all. For example,
consider a code sequence that removes an object from a list, invokes synchronize_sched(), then frees the object. If



this property did not hold, then that object might appear to be freed before it was removed from the list, which is
precisely the situation that synchronize_sched() is supposed to prevent!

Quick Quiz 4: Why must line 17 in synchronize_srcu() precede the release of the mutex on line 18? What would
have to change to permit these two lines to be interchanged? Would such a change be worthwhile? Why or why
not?

Answer: Suppose that the order was reversed, and that CPU 0 has just reached line 13 of synchronize_srcu(),
while both CPU 1 and CPU 2 start executing another synchronize_srcu() each, and CPU 3 starts executing

a srcu_read_lock(). Suppose that CPU 1 reaches line 6 of synchronize_srcu() just before CPU 0 increments the
counter on line 13. Most importantly, suppose that CPU 3 executes srcu_read_lock()out of order with the following
SRCU read-side critical section, so that it acquires a reference to some SRCU-protected data structure before CPU
0 increments sp->completed, but executes the srcu_read_lock()after CPU 0 does this increment.

Then CPU 0 will not wait for CPU 3 to complete its SRCU read-side critical section before exiting the "while" loop
on lines 15-16 and releasing the mutex (remember, the CPU could be reordering the code).

Now suppose that CPU 2 acquires the mutex next, and again increments sp->completed. This CPU will then have
to wait for CPU 3 to exit its SRCU read-side critical section before exiting the loop on lines 15-16 and releasing the
mutex. But suppose that CPU 3 again executes out of order, completing the srcu_read_unlock() prior to executing
a final reference to the pointer it obtained when entering the SRCU read-side critical section.

CPU 1 will then acquire the mutex, but see that the sp->completedcounter has incremented twice, and therefore
take the early exit. The caller might well free up the element that CPU 3 is still referencing (due to CPU 3's out-of-
order execution).

To prevent this perhaps improbable, but entirely possible, scenario, the final synchronize_sched() must precede the
mutex release in synchronize_srcu(). Another approach would be to change to comparison on line 7

of synchronize_srcu() to check for at least three increments of the counter. However, such a change would
increase the latency of a "bulk update" scenario, where a hash table is being updated or unloaded using multiple
threads. In the current code, the latency of the resulting concurrent synchronize_srcu() calls would take at most
two SRCU grace periods, while with this change, three would be required.

More experience will be required to determine which approach is really better. For one thing, there must first be
some use of SRCU with multiple concurrent updaters.
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