
* Based on kernel 5.11 (x86_64) – QEMU
* 2-socket CPUs (2 cores/socket)
* 16GB memory
* Kernel parameter: nokaslr norandmaps
* KASAN: disabled
* Userspace: ASLR is disabled
* Legacy BIOS

Linux Synchronization Mechanism: Semaphore &
Mutex

Adrian Huang | Feb, 2023

Agenda
• Semaphore
✓producer-consumer problem

✓Implementation in Linux kernel

• Mutex (introduced in v2.6.16)
✓Enforce serialization on shared memory systems

✓Implementation in Linux kernel

✓Mutex lock
➢Fast path, midpath, slow path

✓Mutex unlock
➢Fast path and slow path

➢Mutex ownership (with a lab)
◼ Re-visit this concept: Only the lock owner has the permission to unlock the mutex

✓Q & A

Semaphore: producer-consumer problem

task 0

Semaphore

wakeup/signal

#0
#1
#2
#3

Share resource

counter = 4

wait_list

wait/sleep
P, down()

V, up()

task 1

task N

.

.

task task task

• Sleeping lock
• Used in process context *ONLY*
• Cannot hold a spin lock while acquiring a semaphore
• Mainly use in producer-consumer scenario
• The lock holder does not require to unlock the lock. (non-ownership concept)

✓ Something like notification

down

__down

raw_spin_lock_irqsave

sem->count > 0

semaphore

lock
count

wait_list semaphore_waiter

list
task

struct raw_spinlock or raw_spinlock_t

raw_lock

sem->count--

raw_spin_unlock_irqrestore

up

Semaphore Implementation in Linux Kernel

__down_common

Y

N

Semaphore Implementation in Linux Kernel

Semaphore Implementation in Linux Kernel

[Only for interruptible and wakekill task] Check if the sleeping task gets a signal

Semaphore Implementation in Linux Kernel
1 Protect sem->count data

2

Reschedule: Need to unlock spinlock

down

__down

raw_spin_lock_irqsave

sem->count > 0

sem->count--

raw_spin_unlock_irqrestore

__down_common

Y

N

Semaphore Implementation in Linux Kernel

Protect sem->count dataup

__up

raw_spin_lock_irqsave

wait_list empty?

sem->count++

raw_spin_unlock_irqrestore

Y

Nsemaphore

lock
count

wait_list semaphore_waiter

list
task

struct raw_spinlock or raw_spinlock_t

raw_lock

up

Agenda
• Semaphore
✓producer-consumer problem

✓Implementation in Linux kernel

• Mutex (introduced in v2.6.16)
✓Enforce serialization on shared memory systems

✓Implementation in Linux kernel

✓Call path
➢Fast path, midpath, slow path

Mutex: Enforce serialization on shared memory systems

task 0

mutex_unlock()

mutex_lock()
task 1

task N

.

.

task task task

mutex

owner
wait_lock

osq
wait_list

Critical Section

task

rlock

struct spinlock or spinlock_t

atomic_t tail;

optimistic_spin_queue

Lock owner

Protect accessing members
of mutex struct

[midpath] spinning: busy-waiting

[slow path] waiting tasks: sleep
(non-busy waiting)

Mutex Implementation in Linux

• Mutex implementation paths
✓Fastpath: Uncontended case by using cmpxchg(): CAS (Compare and Swap)

✓Midpath (optimistic spinning) - The priority of the lock owner is the highest one
➢Spin for mutex lock acquisition when the lock owner is running.

➢The lock owner is likely to release the lock soon.

➢Leverage cancelable MCS lock (OSQ - Optimistic Spin Queue: MCS-like lock): v3.15

✓Slowpath: The task is added to the waiting queue and sleeps until woken up by the
unlock path

• Mutex is a hybrid type (spinning & sleeping): Busy-waiting for a few cycles
instead of immediately sleeping

• Ownership: Only the lock owner can release the lock

• kernel/locking/{mutex.c, osq_lock.c}

• Reference: Generic Mutex Subsystem

https://01.org/linuxgraphics/gfx-docs/drm/locking/mutex-design.html

mutex_lock

__mutex_trylock_fast

atomic_long_try_cmpxchg_acquire

__mutex_lock_slowpath

Fail

__mutex_lock

__mutex_lock_common

preempt_disable

__mutex_trylock() ||
mutex_optimistic_spin()

preempt_enable

return

add the task to wait_list

Success: fast path

Yes: midpath

No: slow path

mutex_lock(): Call path

mutex_lock

__mutex_trylock_fast

atomic_long_try_cmpxchg_acquire

__mutex_lock_slowpath

Fail

__mutex_lock

__mutex_lock_common

preempt_disable

__mutex_trylock() ||
mutex_optimistic_spin()

preempt_enable

return

add the task to wait_list

Success: fast path

Yes: midpath

No: slow path

mutex_lock(): Fast path

__mutex_trylock

__mutex_trylock_or_owner

mutex_can_spin_on_owner

The lock might be unlocked by another core

mutex_optimistic_spin

osq_lock

__mutex_trylock_or_owner

mutex_spin_on_owner

cpu_relax

osq_unlock

for (;;)
break if getting the lock

There’s an owner: break if the lock
is released or owner goes to sleep

Return true if the following conditions are met
• The spinning task is not preempted: need_resched()
• The lock owner:

✓ Not preempted : checked by vcpu_is_preempted()
✓ Not sleep: checked by owner->on_cpu

• Spinner is spinning on the current lock owner!

mutex_spin_on_owner() returns true → keep looping for
acquiring the lock
• Lock release: one of spinning tasks can get the lock

mutex_spin_on_owner() returns false → break ‘for’ loop
• The spinning task is preempted
• The lock owner is preempted
• The lock owner sleeps

mutex_lock(): midpath

mutex_can_spin_on_owner

mutex_spin_on_owner

__mutex_trylock

__mutex_trylock_or_owner

mutex_can_spin_on_owner

The lock might be unlocked by another core

mutex_optimistic_spin

osq_lock

__mutex_trylock_or_owner

mutex_spin_on_owner

cpu_relax

osq_unlock

for (;;)
break if getting the lock

There’s an owner: break if the lock
is released or owner goes to sleep

mutex_lock(): midpath

Second or later osq_lock() is spinned in this function.

First osq_lock() gets osq lock and spins in this loop.

Notify other osq spinners to get an osq lock.

owner

ownermutex_unlock()

mutex_lock()

Critical Section

core 0

mutex_unlock()

mutex_lock()

Critical Section

core 1 core 2 core 3

spinning

mutex_unlock()

mutex_lock()

Critical Section

spinning

mutex_unlock()

mutex_lock()

Critical Section

spinning

midpath: [Case #1: ideal] without preemption or sleep (both lock
owner and spinner)

owner

owner

One of spinning tasks can get the lock after the owner releases the lock:
Spinning tasks do not need to be moved to wait list

mutex_unlock()

mutex_lock()

Critical Section

core 0

mutex_unlock()

mutex_lock()

Critical Section

core 1 core 2 core 3

spinning

mutex_unlock()

mutex_lock()

Critical Section

spinning

mutex_unlock()

mutex_lock()

Critical Section

spinning

midpath – [Case #1: ideal] lock release without preemption or
sleep

When to exit the spinning?

1. The lock owner releases the lock
2. The lock owner goes to sleep or is preempted: spinning tasks go to slow path

✓ Check task->on_cpu
✓ Functions: prepare_task(), finish_task()…

3. The spinning task is preempted: the spinning task goes to slow path
✓ need_resched()

owner

owner

owner

owner

Three cases for “cannot spin on
mutex owner”

• The lock owner is preempted

• The spinning task is preempted

• The lock owner sleeps

owner

ownermutex_unlock()

mutex_lock()

Critical Section

core 0

mutex_unlock()

mutex_lock()

Critical Section

core 1 core 2 core 3

spinning (midpath)

mutex_unlock()

mutex_lock()

Critical Section

spinning (midpath)

mutex_unlock()

mutex_lock()

Critical Section

non-busy wait
(slow path: move
this task to wait

list)

midpath: [Case #2] Mutex lock owner is preempted

owner

owner

Critical Section

preempt

reschedule

wakeup

non-busy wait
(slow path: move
this task to wait

list)

1

2

3

6 4

5
7

8

mutex_unlock()

mutex_lock()

Critical Section

core 0

mutex_unlock()

mutex_lock()

core 1 core 2

spinning (midpath)

mutex_unlock()

mutex_lock()

Critical Section

spinning (midpath)

midpath: [Case #3] Spinner (osq lock owner) is preempted

owner

preempt

1

non-busy wait
(slow path)

Reschedule back4

3 owner

Critical Section
__mutex_unlock_slowpath ->
wake_up_q

5

core 3

mutex_unlock()

mutex_lock()

Critical Section

spinning (midpath)

6 owner

Reschedule:
schedule_preempt_disabled()

2

Three cases for “cannot spin on
mutex owner”

• The lock owner is preempted

• The spinning task is preempted

• The lock owner sleeps

mutex_unlock()

mutex_lock()

Critical Section

core 0

mutex_unlock()

mutex_lock()

core 1 core 2

spinning (midpath)

mutex_unlock()

mutex_lock()

Critical Section

spinning (midpath)

midpath: [Case #3] Spinner (osq lock owner) is preempted

owner

preempt

1

Reschedule:
schedule_preempt_disabled()

2

non-busy wait
(slow path)

Reschedule back4

3 owner

Critical Section
__mutex_unlock_slowpath ->
wake_up_q

5

core 3

mutex_unlock()

mutex_lock()

Critical Section

spinning (midpath)

6 owner

Who sets TIF_NEED_RESCHED? → set_tsk_need_resched()

1. Call path
✓ timer_interrupt→ tick_handle_periodic → tick_periodic→

update_process_times → scheduler_tick→ curr->sched_class-
>task_tick→ task_tick_fair→ entity_tick -> check_preempt_tick
-> resched_curr -> set_tsk_need_resched

✓ HW interrupt (not timer HW) → wake up a higher priority task
2. Users:

✓ check_preempt_tick(), check_preempt_wakeup(),
wake_up_process()….and so on.

Who sets TIF_NEED_RESCHED? full call path

Who sets TIF_NEED_RESCHED?

Who sets TIF_NEED_RESCHED? → set_tsk_need_resched()

1. Call path
✓ timer_interrupt→ tick_handle_periodic → tick_periodic

→ update_process_times→ scheduler_tick → curr-
>sched_class->task_tick→ task_tick_fair→ entity_tick ->
check_preempt_tick -> resched_curr ->
set_tsk_need_resched

✓ HW interrupt (not timer HW) → wake up a higher priority
task

2. Users:
✓ check_preempt_tick(), check_preempt_wakeup(),

wake_up_process()….and so on.

Set TIF_NEED_RESCHED: current task will be rescheduled later

PREEMPT_NEED_RESCHED bit = 0 → Need to reschedule (check comments in this header)

Who sets TIF_NEED_RESCHED?

• Set TIF_NEED_RESCHED flag if the delta is greater than
ideal_runtime
✓ The running task will be scheduled out.

Who sets TIF_NEED_RESCHED?

Who sets TIF_NEED_RESCHED? → set_tsk_need_resched()

1. Call path
✓ timer_interrupt→ tick_handle_periodic → tick_periodic→

update_process_times → scheduler_tick→ curr->sched_class-
>task_tick→ task_tick_fair→ entity_tick -> check_preempt_tick
-> resched_curr -> set_tsk_need_resched

✓ HW interrupt (not timer HW) → wake up a higher priority task
2. Users:

✓ check_preempt_tick(), check_preempt_wakeup(),
wake_up_process()….and so on.

Who sets TIF_NEED_RESCHED?

Three cases for “cannot spin on
mutex owner”

• The lock owner is preempted

• The spinning task is preempted

• The lock owner sleeps

[Case #4] Locker owner sleeps (reschedule): A test kernel module

The action of sleep is identical to preemption and “wait for IO”: reschedule

Create 4 kernel threads

Source code (github): test-modules/mutex/mutex.c

https://github.com/AdrianHuang/gdb-linux-real-mode/blob/master/test-modules/mutex/mutex.c

mutex_unlock()

mutex_lock()

core 0 core 1 core 2

owner1
mutex_optimistic_spin() ->
mutex_can_spin_on_owner() returns fail

Owner6

core 3

[Case #4] Locker owner sleeps (reschedule): other tasks cannot spin
kthread_0 kthread_1 kthread_2 kthread_3

Critical Section

msleep(): reschedule
task->cpu_on = 1 0

mutex_unlock()

mutex_lock()

Critical Section

msleep(): reschedule
task->cpu_on = 1 0

non-busy wait
(slow path): lock owner’s

task->cpu_on = 0

mutex_unlock()

mutex_lock()

Critical Section

msleep(): reschedule
task->cpu_on = 1 0

non-busy wait
(slow path): lock owner’s

task->cpu_on = 0

mutex_unlock()

mutex_lock()

Critical Section

msleep(): reschedule
task->cpu_on = 1 0

non-busy wait
(slow path): lock owner’s

task->cpu_on = 0

2

3

4

mutex_optimistic_spin() ->
mutex_can_spin_on_owner() returns fail

5

mutex_optimistic_spin() ->
mutex_can_spin_on_owner()
returns fail

Owner7

Owner8

__mutex_trylock() ||
mutex_optimistic_spin()

preempt_enable

return

add the task to wait_list

Yes: midpath

No: slow path

Call path

[Case #4] Locker owner sleeps (reschedule): gdb

watchpoint: task->on_cpu→ who changes this?

[Case #4] Locker owner sleeps (reschedule): Who changes task->on_cpu?

task->on_cpu is set 0 during context switch

mutex_unlock()

mutex_lock()

core 0 core 1

owner1
mutex_optimistic_spin() ->
mutex_can_spin_on_owner() returns fail

Owner6

[Case #4] Locker owner sleeps (reschedule): gdb: other tasks cannot spin
kthread_0 kthread_1

Critical Section

msleep(): reschedule
task->cpu_on = 1 0

mutex_unlock()

mutex_lock()

Critical Section

msleep(): reschedule
task->cpu_on = 1 0

non-busy wait
(slow path): lock owner’s

task->cpu_on = 0

2

3

__mutex_trylock() ||
mutex_optimistic_spin()

preempt_enable

return

add the task to wait_list

Yes: midpath

No: slow path

Call path

mutex_unlock()

mutex_lock()

core 0 core 1

owner1
mutex_optimistic_spin() ->
mutex_can_spin_on_owner() returns fail

Owner6

[Case #4] Locker owner sleeps (reschedule): gdb: other tasks cannot spin
kthread_0 kthread_1

Critical Section

msleep(): reschedule
task->cpu_on = 1 0

mutex_unlock()

mutex_lock()

Critical Section

msleep(): reschedule
task->cpu_on = 1 0

non-busy wait
(slow path): lock owner’s

task->cpu_on = 0

2

3

__mutex_trylock() ||
mutex_optimistic_spin()

preempt_enable

return

add the task to wait_list

Yes: midpath

No: slow path

Call path

retval = 0 → cannot spin this owner

owner->on_cpu = 0

mutex_unlock()

mutex_unlock

__mutex_unlock_fast

mutex_unlock(): Call path

return

mutex

owner
wait_lock

osq
wait_list

task

• task_struct pointers aligns to at least L1_CACHE_BYTES

• 3 LSB bits are used for non-empty waiter list
✓ W (MUTEX_FLAG_WAITERS)

◼ Non-empty waiter list. Issue a wakeup when unlocking

✓ H (MUTEX_FLAG_HANDOFF)
◼ Unlock needs to hand the lock to the top-waiter
◼ Use by ww_mutex because ww_mutex’s waiter list is not FIFO order.

✓ P (MUTEX_FLAG_PICKUP)
◼ Handoff has been done and we're waiting for pickup
◼ Use by ww_mutex because ww_mutex’s waiter list is not FIFO order.

locker->owner = 0

__mutex_unlock_slowpath

Have waiters: One of 3-bit LSB
of lock->owner is not cleared.

spin_lock(&lock->wait_lock)

spin_unlock(&lock->wait_lock)

Get a waiter from lock->wait_list

wake_up_q

wake_up_process

owner
task virtual addr WP H

01263

lock->owner

__mutex_handoff Called if MUTEX_FLAG_HANDOFF is set

atomic_long_cmpxchg_release(
&lock->owner, owner,

__owner_flags(owner))

The woken task will update lock->owner

Set 3-bit LSB of lock->owner → Clear the
original task struct address

* ww_mutex (Wound/Wait Mutex): Deadlock-proof mutex

[Unlock task = lock->owner]
No waiter: 3-bit LSB of lock->owner are cleared

mutex_unlock

__mutex_unlock_fast

mutex_unlock(): fast path

return

locker->owner = 0

[fast path] A spinner will take the lock

[Unlock task = lock->owner]
No waiter: 3-bit LSB of lock->owner are cleared

mutex_unlock

__mutex_unlock_fast

mutex_unlock(): slow path

return

locker->owner = 0

__mutex_unlock_slowpath

Have waiters: One of 3-bit LSB
of lock->owner is not cleared.

spin_lock(&lock->wait_lock)

spin_unlock(&lock->wait_lock)

Get a waiter from lock->wait_list

wake_up_q

wake_up_process

__mutex_handoff Called if MUTEX_FLAG_HANDOFF is set

owner
task virtual addr 10 0

01263

atomic_long_cmpxchg_release(
&lock->owner, owner,
__owner_flags(owner)

owner
0 10 0

01263

The woken task will update lock->owner

mutex

owner
wait_lock

osq
wait_list

task

• task_struct pointers aligns to at least L1_CACHE_BYTES

• 3 LSB bits are used for non-empty waiter list
✓ W (MUTEX_FLAG_WAITERS)

◼ Non-empty waiter list. Issue a wakeup when unlocking

✓ H (MUTEX_FLAG_HANDOFF)
◼ Unlock needs to hand the lock to the top-waiter
◼ Use by ww_mutex because ww_mutex’s waiter list is not FIFO order.

✓ P (MUTEX_FLAG_PICKUP)
◼ Handoff has been done and we're waiting for pickup
◼ Use by ww_mutex because ww_mutex’s waiter list is not FIFO order.

owner
task virtual addr WP H

01263

lock>-owner

* ww_mutex (Wound/Wait Mutex): Deadlock-proof mutex

[Unlock task = lock->owner]
No waiter: 3-bit LSB of lock->owner are cleared

mutex_unlock

__mutex_unlock_fast

[Unlock task = lock->owner]
No waiter: 3-bit LSB of lock->owner are cleared

return

locker->owner = 0

__mutex_unlock_slowpath

Have waiters: One of 3-bit LSB
of lock-owner is not cleared.

spin_lock(&lock->wait_lock)

spin_unlock(&lock->wait_lock)

Get a waiter from lock->wait_list

wake_up_q

wake_up_process

__mutex_handoff Called if MUTEX_FLAG_HANDOFF is set

owner
task virtual addr 10 0

01263

atomic_long_cmpxchg_release(
&lock->owner, owner,
__owner_flags(owner)

owner
0 10 0

01263

The woken task will update lock->owner

mutex_unlock(): slow path

Resume here: kthread_0 wakes up kthread_1

Woken task

1 Context switch

2

Update lock->owner
gdb watchpoint: lock->owner

Update lock->owner

* Bit 0 is still set (MUTEX_FLAG_WAITERS): The upcoming
mutex_unlock() will wake up the waiter instead of spinner.
* Bit 1 (MUTEX_FLAG_HANDOFF) is cleared from
__mutex_trylock->__mutex_trylock_or_owner.

Update lock->owner

When/who clears 3-bit LSB of lock->owner?

Woken task: When/who to clear 3-bit LSB of lock-owner?

Clear 3-bit LSB of lock->owner if no waiters

mutex_unlock

__mutex_unlock_fast

mutex_unlock(): Mutex ownership

return

locker->owner = 0

__mutex_unlock_slowpath

Have waiters: One of 3-bit LSB
of lock->owner is not cleared.

spin_lock(&lock->wait_lock)

spin_unlock(&lock->wait_lock)

Get a waiter from lock->wait_list

wake_up_q

wake_up_process

__mutex_handoff Called if MUTEX_FLAG_HANDOFF is set

atomic_long_cmpxchg_release(
&lock->owner, owner,

__owner_flags(owner))

The woken task will update lock->owner

Set 3-bit LSB of lock->owner → Clear the
original task struct address

[Unlock task = lock->owner]
No waiter: 3-bit LSB of lock->owner are cleared

• [Fastpath] Check ownership of a mutex
• [Slowpath] Does not check ownership of a mutex

mutex_unlock(): [lab] Behavior observation when lock owner !=
unlocker’s task (Mutex ownership)

mutex_unlock()

mutex_lock()

core 0 core 1

kthread_0 kthread_1

Critical Section

sleep 3 seconds mutex_unlock()

sleep 1 second

lock_thread unlock_thread

Source code: test-modules/mutex-unlock-by-another-task/mutex.c

This scenario is created on purpose for
demonstration. It won’t happen in real case.

Note

https://github.com/AdrianHuang/gdb-linux-real-mode/blob/master/test-modules/mutex-unlock-by-another-task/mutex.c

mutex_unlock()

mutex_lock()

core 0 core 1

kthread_0 kthread_1

Critical Section

sleep 3 seconds mutex_unlock()

sleep 1 second

lock_thread unlock_thread

Can another task
unlock the mutex?

mutex_unlock(): [lab] Behavior observation when lock owner !=
unlocker’s task (Mutex ownership)

This scenario is created on purpose for
demonstration. It won’t happen in real case.

Note

__mutex_unlock_slowpath

spin_lock(&lock->wait_lock)

spin_unlock(&lock->wait_lock)

Get a waiter from lock->wait_list

wake_up_q

wake_up_process

__mutex_handoff

atomic_long_cmpxchg_release(
&lock->owner, owner,

__owner_flags(owner))

mutex_unlock(): slow path does not check unlocker’s ownership

[DEBUG_MUTEXES] Print a warning message if unlocker’s task != lock owner’s task

breakpoint

breakpoint

1

1

Lock owner2

Unlocker’s task != lock owner3

mutex_unlock(): [lab] Behavior when lock owner != unlocker’s task

mutex_unlock()

mutex_lock()

core 0 core 1

kthread_0 kthread_1

Critical Section

sleep 3 seconds mutex_unlock()

sleep 1 second

lock_thread unlock_thread

We’re here

breakpoint1

breakpoint1

lock owner = old2

lock->owner is set 0 by atomic_long_cmpxchg_release()3

mutex_unlock(): [lab] Behavior if lock owner != unlocker’s task

mutex_unlock()

mutex_lock()

core 0 core 1

kthread_0 kthread_1

Critical Section

sleep 3 seconds mutex_unlock()

sleep 1 second

lock_thread unlock_thread

We’re here

mutex_unlock(): [lab] Behavior observation when lock owner !=
unlocker’s task (Mutex ownership)

mutex_unlock()

mutex_lock()

core 0 core 1

kthread_0 kthread_1

Critical Section

sleep 3 seconds mutex_unlock()

sleep 1 second

lock_thread unlock_thread

1

2

3

This unlocks the
locked mutex

mutex

owner = 0
wait_lock = 0

osq = 0
wait_list

Breakpoint stops at second mutex_unlock() in kthread_0

mutex_unlock(): [lab] Behavior observation when lock owner !=
unlocker’s task (Mutex ownership)

mutex_unlock()

mutex_lock()

core 0 core 1

kthread_0 kthread_1

Critical Section

sleep 3 seconds mutex_unlock()

sleep 1 second

lock_thread unlock_thread

1

2

3

This unlocks the locked mutex

What’s the behavior?

breakpoint1

mutex_unlock(): [lab] Behavior when lock owner != unlocker’s task

mutex_unlock()

mutex_lock()

core 0 core 1

kthread_0 kthread_1

Critical Section

sleep 3 seconds mutex_unlock()

sleep 1 second

lock_thread unlock_thread

breakpoint1

No lock owner2

We’re here

breakpoint1

mutex_unlock(): [lab] Behavior if lock owner != unlocker’s task

mutex_unlock()

mutex_lock()

core 0 core 1

kthread_0 kthread_1

Critical Section

sleep 3 seconds mutex_unlock()

sleep 1 second

lock_thread unlock_thread

breakpoint1

lock owner = old2

lock->owner is set 0 by atomic_long_cmpxchg_release()3

4

We’re here

mutex_unlock(): [lab] Behavior observation when lock owner !=
unlocker’s task (Mutex ownership)

mutex_unlock()

mutex_lock()

core 0 core 1

kthread_0 kthread_1

Critical Section

sleep 3 seconds mutex_unlock()

sleep 1 second

lock_thread unlock_thread

Takeaways

1. [Fastpath] Linux kernel checks mutex’s ownership
2. [Slowpath] Linux kernel does not check mutex’s ownership when unlocking a mutex

✓ Developers must take care of mutex_lock/mutex_unlock pair
✓ Slowpath prints a warning message if mutex debug option is enabled.
✓ Different from the concept: Only the lock owner has the permission to unlock the mutex

mutex_unlock(): [lab] Behavior observation when lock owner !=
unlocker’s task (Mutex ownership)

Why doesn’t slowpath check ownership?

1. Ownership checking is only for developers and not enforced by Linux kernel.
✓ Developers need to take care of it.

Quotes

1. From Generic Mutex Subsystem
✓ Mutex Semantics

• Only one task can hold the mutex at a time.
• Only the owner can unlock the mutex.
• …

✓ These semantics are fully enforced when CONFIG_DEBUG_MUTEXES is enabled

https://docs.kernel.org/locking/mutex-design.html

Think about…

mutex_unlock()

mutex_lock()

core 0 core 1

Critical Section

sleep 3 seconds
mutex_unlock()

sleep 1 second

mutex_unlock()

mutex_lock()

core 2

Critical Section

1 Will it acquire the mutex lock
successfully?

2Will this unlock the mutex
lock acquired by core 2?

Q&A #1: Semaphore can be used to synchronize with user-space

Consumer

buffer

Producer

up()

down()

[Semaphore] Producer/Consumer Concept

* Screenshot captured from: Chapter 10, Linux Kernel Development, 3rd Edition, Robert Love

• Consumer waits if buffer is empty
• Producer waits if buffer is full
• Only one process can manipulate the buffer at a time

(mutual exclusion)

Principle

Q&A #1: Semaphore can be used to synchronize with user-space

Consumer

buffer

Producer

up(), V

down(), P

[Semaphore] Producer/Consumer Concept

Code reference: CS 537 Notes, Section #6: Semaphores and Producer/Consumer Problem

https://pages.cs.wisc.edu/~bart/537/lecturenotes/s6.html

Q&A #1: Semaphore can be used to synchronize with user-space

Consumer

buffer

Producer

up(), V

down(), P

[Semaphore] Producer/Consumer Concept

Data structure synchronization

Notify consumer

Wait if buffer is full Wait if buffer is empty

Notify producer

Code reference: CS 537 Notes, Section #6: Semaphores and Producer/Consumer Problem

https://pages.cs.wisc.edu/~bart/537/lecturenotes/s6.html

Q&A #1: Semaphore can be used to synchronize with user-space

Consumer

buffer

Producer

up(), V

down(), P

[Semaphore] Producer/Consumer Concept

User Space

Kernel Space

. . .

buffer

Consumer Consumer

Producer

system
call

system
call

Possible Scenario

Note

1. up()/down() invocations are done in kernel.

Q&A #2: Mutex isn’t suitable for synchronizations
between kernel and user-space

* Screenshot captured from: Chapter 10, Linux Kernel Development, 3rd Edition, Robert Love

Explanation

1. [Mutex] ownership!
✓ Whoever locked a mutex must unlock it

Reference

• Generic Mutex Subsystem

• Wound/Wait Deadlock-Proof Mutex Design

• Mutexes and Semaphores Demystified

• MCS locks and qspinlocks

• Linux中的mutex机制[一] -加锁和osq lock

https://docs.kernel.org/locking/mutex-design.html
https://docs.kernel.org/locking/ww-mutex-design.html
https://barrgroup.com/embedded-systems/how-to/rtos-mutex-semaphore
https://lwn.net/Articles/590243/
https://zhuanlan.zhihu.com/p/90508284

Backup

__mutex_trylock

signal_pending_state

spin_unlock(&lock->wait_lock)

spin_lock(&lock->wait_lock)

for (;;)
goto ‘acquired’ lable if getting the lock

Interrupted by signal: break

mutex_lock(): slowpath

__mutex_add_waiter(lock, &waiter, &lock-
>wait_list)

waiter.task = current

set_current_state(state)

schedule_preempt_disabled

__mutex_set_flag(lock,
MUTEX_FLAG_HANDOFF)

__mutex_trylock() ||
(first && mutex_optimistic_spin())

spin_lock(&lock->wait_lock)

N Y: break

spin_lock(&lock->wait_lock)

acquired

__set_current_state(TASK_RUNNING)

mutex_remove_waiter

list_empty(&lock->wait_list)

__mutex_clear_flag(lock,
MUTEX_FLAGS)

spin_lock(&lock->wait_lock)

preempt_enable

