
Process Address Space: The way to create virtual 
address (page table) of userspace application

Adrian Huang | Oct, 2021

* Based on kernel 5.11 (x86_64) – QEMU 
* SMP (4 CPUs) and 8GB memory
* Kernel parameter: nokaslr norandmaps
* Userspace: ASLR is disabled
* Legacy BIOS



Agenda
• 64-bit Virtual Address

• mm_struct & VMA

• Detail about stack
• Stack configuration via bprm_execve()

• Important function: load_elf_binary()

• Auxiliary Vector

• How does Linux call your main() function? The call path?
• Statically-linked program

• Base address: 0x400000

• Dynamically-linked program
• Base address: 0x555555554000

• Do you know why the base address of a dynamically-linked program is the 
base address ‘0x555555554000’?



64-bit Process Virtual Address

Kernel Space

0x0000_7FFF_FFFF_FFFF

0xFFFF_8000_0000_0000

1
2

8
TB

64-bit Virtual Address

0

0xFFFF_FFFF_FFFF_FFFF

• [Option 1] Disable ASLR (Address Space Layout Randomization)
# echo 0 > /proc/sys/kernel/randomize_va_space

• [Option 2] kernel parameter: norandmaps

Note: Disable User Space Address Randomization

Empty Space

User Space

1
2

8
TB

128MB gap



Process Address Space – mm_struct & VMA



Process Address Space – mm_struct & VMA



Process Address Space – mm_struct & VMA



64-bit Process Virtual Address – Stack Layout



wait for user input

while(1)

fork

child

parent

shell_execve

execve(command, args, env)

shell (ex: bash) - `cat hello.c` File name (Ex: /bin/mount)
4KB - Hole

Environment strings

Command-line arguments

Dynamic linker’s table
(Auxiliary Vector)

envp[]

argv[]

argc

Return address

User space stack created by kernel

Kernel

copy from user

copy from user

copy from user

Stack layout when executing a command



vma->vm_end = STACK_TOP_MAX = 0x7FFF_FFFF_F000
4KB (PAGE_SIZE) vma->vm_start = 0x7FFF_FFFF_E000

4KB - hole
0x7FFF_FFFF_FFFF

User Space Stack

bprm->p = vma->vm_end - sizeof(void *)
= 0x7FFF_FFFF_EFF8 (Current top of memory)

kernel_init -> run_init_process: init process (pid = 1) - Stack

1

2

1

2

linux_binprm

vma
vma_pages

mm
struct file *executable
struct file *interpreter

struct file *file

const char *filename = “/init”
const char *interp = “/init”

argc = 2
envc = 3

rlmit_stack
char buf[]



[Argument/environment space] Case #1
[Argument/environment space] Case #2

kernel_init -> run_init_process: init process (pid = 1) - Stack



kernel_init -> run_init_process: init process (pid = 1) - Stack



1 2

3 4

kernel_init -> run_init_process: init process (pid = 1) - Stack



kernel_init -> run_init_process: init process (pid = 1) - Stack



kernel_init -> run_init_process: init process (pid = 1) - Stack



kernel_init -> run_init_process: init process (pid = 1) - Stack



struct file *executable
struct file *interpreter

struct file *file

const char *filename = “/init”
const char *interp = “/init”

argc = 2
envc = 3

kern
el_read

rlmit_stack
char buf[]

linux_binprm

vma
vma_pages

mm

kernel_init -> run_init_process: init process (pid = 1) - Stack



struct file *executable
struct file *interpreter

struct file *file

const char *filename = “/init”
const char *interp = “/init” “/bin/sh”

argc = 2 3
envc = 3

kern
el_read

rlmit_stack
char buf[]

linux_binprm

vma
vma_pages

mm
file: /bin/sh

file: /init

kernel_init -> run_init_process: init process (pid = 1) - Stack



struct file *executable
struct file *interpreter

struct file *file

const char *filename = “/init”
const char *interp = “/init” “/bin/sh”

argc = 2 3
envc = 3

kern
el_read

rlmit_stack
char buf[]

linux_binprm

vma
vma_pages

mm
file: /bin/sh

file: /init

struct file *executable
struct file *interpreter = NULL

struct file *file

const char *filename = “/init”
const char *interp = “/init” “/bin/sh”

argc = 2 3
envc = 3

kern
el_read

rlmit_stack
char buf[]

linux_binprm

vma
vma_pages

mm

file: /bin/sh

kernel_init -> run_init_process: init process (pid = 1)



struct file *executable
struct file *interpreter = NULL

struct file *file

const char *filename = “/init”
const char *interp = “/init” “/bin/sh”

argc = 2 3
envc = 3

kern
el_read

rlmit_stack
char buf[]

linux_binprm

vma
vma_pages

mm

file: /bin/sh

depth = 1

kernel_init -> run_init_process: init process (pid = 1)



kernel_init -> run_init_process: init process (pid = 1)

[Dynamic linking] ld-Linux.so: dynamic linker/loader
• Find and load the shared objects (shared libraries) needed 

by a program, prepare the program to run, and then run it
• `man ld-linux`

depth = 1



kernel_init -> run_init_process: init process (pid = 1)

de_thread(): All threads other than the calling thread are destroyed during an execve(). Mutexes, condition variables, and other pthreads
objects are not preserved.
unshare_files(): The file descriptor table is unshared, undoing the effect of the CLONE_FILES flag of clone(2).
exec_mmap(): 

1. The program that is currently being run by the calling process to be replaced with a new program, with newly initialized stack, 
heap, and (initialized and uninitialized) data segments.

2. Memory mappings are not preserved.
unshare_sighand(): The signal dispositions is unshared, undoing the effect of the CLONE_SIGHAND flag of clone(2) – Not from `man execve`
do_close_on_exec(): By default, file descriptors remain open across an execve(). File descriptors that are marked close-on-exec are closed.

Description from `man execve`



kernel_init -> run_init_process: init process (pid = 1)

CLONE_FILES flag is set



kernel_init -> run_init_process: init process (pid = 1)



load_elf_binary()->setup_new_exec()



kernel_init -> run_init_process: init process (pid = 1)



load_elf_binary()->setup_arg_pages()

expand_stack()



load_elf_binary()->setup_arg_pages()



load_elf_binary(): load PT_LOAD program headers



load_elf_binary(): load PT_LOAD program headers

Note: statically linked program



set_brk() & padzero()



load_elf_binary(): set_brk() & padzero()

Note: statically linked program



create_elf_tables()

create_elf_tables()



create_elf_tables() – User space stack



mm_struct

unsigned long saved_auxv[]

create_elf_tables() - Auxiliary Vector

Auxiliary Table Entry Value

Auxiliary Table Entry ID

Auxiliary Table Entry Value
Auxiliary Table Entry ID

. .

saved_auxv[0]

saved_auxv[1]

saved_auxv[n]

filename: “/init”

4KB - hole
8-byte hole

dyndbg=file arch/x86/mm/init.c +p

TERM=linux
HOME=/

nokaslr
/init

Stack Guard Gap

/bin/sh

mmap

ELF_PLATFORM: “x86_64”
16-byte random characters

Auxiliary Vector

envp[2]
envp[1]
envp[0]

argv[2]
argv[1]
argv[0]

argc = bprm->argc (=3)

0

0

User Space Virtual Memory Layout - Stack

More Info
• `man getauxval`
• https://lwn.net/Articles

/519085/

https://lwn.net/Articles/519085/


load_elf_binary()



load_elf_binary() -> START_THREAD()



load_elf_binary() -> START_THREAD() – Statically-linked program

STACK_END_MAGIC = 0x57AC6E9D

struct pt_regs (save CPU registers for 
userspace application)

task.stack

THREAD_SIZE = 16KB
kernel stack 
usage space

task.stack + THREAD_SIZE

struct inactive_task_frame
task.thread_struct.sp

struct fork_frame

Kernel Stack

_start() in executable file ‘busybox’



STACK_END_MAGIC 

ip = 0x401c10

kernel stack 
usage space

struct inactive_task_frame

Kernel Stack

…

p
t_regs

File name (Ex: /tmp/hello)
4KB - Hole

Environment strings

Command-line arguments

Dynamic linker’s table
(Auxiliary Vector)

envp[]

argv[]

argc

Return address

User Space Stack

/tmp/hello
_start

__libc_start_main - LIBC_START_MAIN in csu/libc-start.c
(/lib/x86_64-linux-gnu/libc.so.6 -> libc-2.31.so)

Pass address of main()

main

Statically-linked program (OS: Ubuntu 20.04.3)



STACK_END_MAGIC 

ip = 0x7ffff7fd0100

kernel stack 
usage space

struct inactive_task_frame

Kernel Stack

Dynamically-linked program (OS: Ubuntu 20.04.3)

…

p
t_regs

_start

_dl_start

_dl_start_final

_dl_sysdep_start

Parse auxiliary vector:
For example: Get ‘AT_ENTRY’ value = 0x555555555060

dl_main

File name (Ex: /tmp/hello)
4KB - Hole

Environment strings

Command-line arguments

Dynamic linker’s table
(Auxiliary Vector)

envp[]

argv[]

argc

Return address

User Space Stack

load binary/libraries and
perform relocation

_dl_start_user

[Function Return]
Next IP of _dl_start()

Return value of _dl_start() = Address 
of _start() of the executable file

/lib64/ld-linux-x86-64.so.2 -> /lib/x86_64-linux-gnu/ld-2.31.so

Jump to ‘AT_ENTRY’ value = 0x555555555060

/tmp/hello
_start

__libc_start_main - LIBC_START_MAIN in csu/libc-start.c
(/lib/x86_64-linux-gnu/libc.so.6 -> libc-2.31.so)

Pass address of main()

main



STACK_END_MAGIC 

ip = 0x7ffff7fd0100

kernel stack 
usage space

struct inactive_task_frame

Kernel Stack

Dynamically-linked program (OS: Ubuntu 20.04.3)

…

p
t_regs

+



/lib64/ld-linux-x86-64.so.2 _start

_dl_start

_dl_start_user

[Function Return]
Next IP of _dl_start()

Return value of _dl_start() = Address 
of _start() of the executable file

/lib64/ld-linux-x86-64.so.2 -> /lib/x86_64-linux-gnu/ld-2.31.so

Jump to ‘AT_ENTRY’ value = 0x555555555060

Ubuntu 20.04.3 RHEL8.2



[Dynamically-linked program] Executable file: where is “_start()” from?

*crt*.o (C Runtime): A set of execution startup routines linked into a C program that 
performs initialization work before calling the program’s main function. 

Reference
https://dev.gentoo.org/~vapier/crt.txt
https://en.wikipedia.org/wiki/Crt0

https://dev.gentoo.org/~vapier/crt.txt
https://en.wikipedia.org/wiki/Crt0


[Dynamically-linked program] Executable file: where is “_start()” from?



Auxiliary vector & base address of a program
Dynamically-linked program Statically-linked program

+

Why is the base address ‘0x555555554000’ for a dynamically-linked program?



Why is the base address ‘0x555555554000’ for a dynamically-linked program?



Demand paging

Demand paging: copy a disk page into physical memory if a page fault occurs



Demand paging

Demand paging: copy a disk page into physical memory if a page fault occurs


