Using Hardware Performance Events for Instruction-Level
Monitoring on the x86 Architecture

Sebastian Vogl

Claudia Eckert

Department of Computer Science
Technische Universitat Miinchen
Munich, Germany

{vogls,eckertc}@in.tum.de

ABSTRACT

Full virtualization has become one of the basic technologies
for the development of security applications. This is due to
the fact that full virtualization provides important proper-
ties such as isolation and transparency that are essential for
the development of robust security mechanisms. However,
a fact that is often overlooked is that full virtualization also
enables developers to make full use of the existing hardware
features. By using these features in novel ways, it is possible
to create new robust hardware-based security mechanisms.

In this paper we make use of the Performance Monitoring
Counters (PMCs), which are available on most mainstream
processors, to provide PMC-based trapping, a general con-
cept for trapping hardware performance events to the hy-
pervisor. We make use of this concept by proposing a novel
approach to monitoring applications running within a vir-
tual machine on the instruction-level from the hypervisor.
In contrast to existing approaches, this course of action al-
lows us to not only monitor all instructions of a program,
but also enables us to limit the monitoring to specific in-
struction types. To demonstrate the possibilities of such an
approach we implemented a shadow stack that protects the
return addresses of functions running within a virtual ma-
chine from the hypervisor by only trapping call and return
instructions.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords

Performance Monitoring Counters, Instruction-Level Moni-
toring, Virtual Machine Introspection

1. INTRODUCTION

In the last years virtualization became more and more im-
portant for the field of information security and can nowa-
days, where many mainstream processors have integrated

Copyright ACM, 2012. This is the author’s version of this work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2012 Eu-
ropean Workshop on System Security (EuroSec’12).

hardware support for virtualization, be seen as one of the
fundamental technologies for the creation of security ap-
plications. This is due to the fact that full virtualization
enables security applications to gain important properties
such as isolation [7] or transparency [3], which makes the
technology predestined for the development of robust secu-
rity mechanisms. However, as important as these properties
may be, one must not make the mistake to reduce the pos-
sibilities of full virtualization to these properties alone. A
fact that is often overlooked is that full virtualization also
enables us to make full use of the existing hardware features.
By using these features in novel ways, it is possible to create
new hardware-based security mechanisms that are reliable
and robust [12]. In spite of this fact many of the avail-
able hardware features remain unexplored or unused. One
of these hardware features are the Performance Monitoring
Units (PMUs) of recent processor architectures.

In this paper we present a new hardware-based security
mechanism for the x86 architecture. This mechanism makes
use of the Performance Monitoring Counters (PMCs), which
have been introduced with the Intel Pentium processor [8]
and are nowadays available on almost all modern main-
stream processors [9], to provide PMC-based trapping. That
is, the mechanism is capable of trapping specific hardware
performance events to the hypervisor. We use this capabil-
ity to monitor instructions that are executed by programs
running within a virtual machine (VM) from the host sys-
tem. In contrast to existing hardware-based instruction-
level monitoring (ILM) mechanisms, this approach enables
us to monitor not only all instructions that are executed
by a program, but also allows us to limit the monitoring to
specific instruction types such as branch instructions. Due
to this flexibility, the mechanism is well-suited as a basis
for other security applications that require specific instruc-
tions to function. We demonstrate the latter through the
implementation of a shadow stack that only traps call and
return instructions to protect applications running within
a VM from exploitation attempts that try to modify the re-
turn address of a function to execute malicious code. Since
we leverage the potential of full virtualization to implement
our security mechanism, it is not only flexible, but also guest
transparent and evasion-resistant [13].

2. BACKGROUND & RELATED WORK

While PMC-based trapping is a new concept, there exist a
lot of approaches that are capable of monitoring programs at
the instruction-level. Since covering all of these approaches

would be well beyond the scope of this paper, we will in this
section only provide a general overview of software-based ap-
proaches to instruction-level monitoring (ILM) and will on
the hardware side focus on related hardware-based mecha-
nisms that can similar to our approach be used to implement
ILM from the hypervisor on the x86 architecture. Finally, we
will also briefly summarize other research related to PMCs.

Software-Based ILM Approaches.

On the software side, ILM approaches often rely on one
or a combination of three methods: Instrumentation, em-
ulation, and instruction overwriting. In case of instrumen-
tation, the monitoring code is added to the monitored pro-
gram, which can be done during compilation, after compi-
lation, or during run-time [1]. Frameworks that utilize the
technique are Valgrind and Nirvana [1], for instance. In con-
trast, emulation-based approaches such as TEMU [16] make
use of an emulator, in this case QEMU, to monitor program
execution. Finally, approaches that are based on instruc-
tion overwriting replace existing instructions with the code
required for monitoring or software breakpoints. This tech-
nique is often used by debuggers such as GDB or OllyDbg.

Hardware-Based ILM Approaches.

To the best of our knowledge, there currently exist three
general hardware-based approaches that could be used to
implement ILM from the hypervisor on the x86 architecture:
Page-Fault (PF) based ILM [12, 15], Debug Register (DR)
based ILM [12], and Trap Flag (TF) based ILM ([3, 10].
However, none of these techniques can provide the flexibility
to monitor specific instruction types. To show this each
technique will be briefly described below.

Page-Fault (PF) based ILM. By making use of the
page access bits of the shadow page tables or the extended
page tables, it is possible to trap instructions that are ei-
ther contained within (execute-disable bit) or try to read
from (present bit) or write to (read-only bit) certain memory
pages. Therefore by setting the desired access bits on every
page, it is possible to trap all instructions or all instructions
that involve memory operations on a guest system.

The main problem of using this approach for ILM lies in
the fact that the mechanism is not working on an instruction
basis, but rather on a page basis. Thus the mechanism is by
design only able to trap all instructions contained within a
certain virtual memory page or all instructions that have a
memory operand accessing a certain virtual memory page.

Debug Register (DR) based ILM. The Intel x86 ar-
chitecture provides four breakpoint DRs that can be used
to trap instructions that are fetched from a specific memory
address. By programming the DRs to contain the virtual
memory address of every instruction that we want to moni-
tor, we can implement an ILM mechanism.

In contrast to PF based ILM, this approach works on an
instruction basis. However, the DRs are actually intended
for setting hardware breakpoints. Therefore the only fea-
ture that the hardware supports in this case, is to raise an
exception based on the locations specified in the DRs. The
identification of these locations and the programming of the
DRs has to be done in software. From this it follows that
the complete logic that is required to implement a DR-based
ILM mechanism, must actually be implemented in software.
The role of the hardware is limited to the trapping itself,
which the hardware cannot fulfill in all situations, due to
the fact that hardware breakpoints that are placed directly

after a POP SS or MOV SS instruction may not be triggered
[8]. Thus DR-based ILM is not evasion-resistant [13].

Trap Flag (TF) based ILM. Using the TF for ILM is
a very common approach which is, for example, adopted by
Ether [3] and MAVMM [10]. The TF is a system flag, which
will - if set - lead to the generation of an exception after
every instruction that is executed by the processor. There-
fore this hardware mechanism is the only one of the here
presented mechanisms, that is actually intended for ILM.
Besides, single-stepping the TF can in theory also be used
to implement branch monitoring by combining it with the
single-step on branches flag (BTF). However, this function-
ality cannot be used in practice, since the TF is modified by
some guest operating systems (OSs) and the processor [8].
Once cleared, the processor will no longer generate excep-
tions and hence control will be lost. This also complicates
single-step monitoring with the TF, but when every instruc-
tion is trapped, it is at least possible to reset the TF in case
it was cleared between two instructions.

The whole problem arises due to the fact that the TF
cannot be protected by the hardware. This means that there
is no hardware mechanism which we are aware of that could
be used to raise a signal if the TF is modified. Thus a TF-
based ILM mechanisms is not only unreliable, but also not
evasion-resistant, since every process has access to its own
TF and can therefore arbitrarily manipulate it.

Overview of related work involving PMCs.

ReVirt [5] and Aftersight [2] use the PMCs to be able to
replay program executions within a VM. Du et al. [4] as
well as Nikolaev and Back [11] provide solutions to PMCs-
based profiling within VMs, while Malone et al. [9] propose
to use PMCs for integrity checking of programs. Finally,
there are many frameworks and libraries that provide a com-
mon interface to PMCs on different architectures. Examples
include perf_events for Linux, the Performance Application
Programming Interface (PAPI) for Linux, Solaris, FreeBSD
and other OSs, and the Windows Management Instrumen-
tation (WMI) for Microsoft Windows.

3. PMC-BASED ILM

In this section we will present our approach to ILM from
the hypervisor on the Intel x86 architecture. In contrast to
existing hardware-based approaches, it allows to select spe-
cific instruction types for monitoring. For this purpose, we
will first introduce PMC-based trapping, which is a gen-
eral concept that can be used to monitor hardware per-
formance events from the hypervisor. We will then de-
pict how this general technique can be applied to realize
ILM. However, before we will go into details about PMC-
based trapping, it is important to know that even though
almost all mainstream processors have Performance Moni-
toring Units (PMUs) [9], their properties and possibilities
may vary. Therefore some of the facts described within this
section, may only be valid for the Intel x86 architecture.

3.1 The Intel x86 PMCs

Most mainstream processors provide a PMU that enables
applications to measure the performance of other applica-
tions or their own performance by monitoring the occurrence
of specific hardware events. To reduce the overhead of the
performance measurement and the lines of code that have
to be added to an application that uses the PMU [14], an

application usually does not monitor these events directly.
Instead the PMU provides so-called Performance Monitor-
ing Counters (PMCs) that count the occurrence of specific
hardware events and can be accessed by the applications.
To illustrate this mechanism, consider a PMC, for example,
that counts the number of instructions that have been ex-
ecuted by the processor. By reading this counter multiple
times and storing its value, an application can deduce how
many instructions were executed in a certain period of time.

On the Intel x86 architecture, PMCs are model-specific
registers (MSRs) that can in addition to the RDMSR and
WRMSR instructions be accessed with the RDPMC instruction.
Depending on the type of the PMC, the event that is counted
by it is either fixed or programmable. While fixed PMCs
count a specific hardware event that cannot be changed,
programmable PMCs can be set to count one of the sup-
ported hardware events. For this purpose there exists an-
other MSR, the performance event select (PES) MSR, that
determines the event that is counted by its corresponding
PMC. Besides the event itself, the PES MSR of a PMC also
provides additional controls that can be used to influence the
counter. For example, it is possible to specify if an event is
only counted at a certain processor privilege level and if the
PMC should generate an interrupt when it overflows.

The number of fixed and programmable PMCs as well as
the type of events that can be counted by a programmable
PMC depend on the specific processor microarchitecture.
On Sandy Bridge-based processors, for example, there are
three fixed and four programmable PMCs [8]. When it
comes to the countable events, it is necessary to distinguish
between architectural events and non-architectural events.
While architectural events are available on all x86 proces-
sor architectures, the number and type of non-architectural
events depend on the specific processor microarchitecture. If
we once more consider the Sandy Bridge microarchitecture,
we find that there exist more than 200 non-architectural
events in addition to the seven architectural events that are
available across all Intel x86 microarchitectures [8].

3.2 PMC-based Trapping

The idea behind PMC-based trapping is to trap the oc-
currence of hardware performance events that are counted
with the help of programmable! PMCs to the hypervisor
such that these events can be used to implement security
mechanisms. As in the case of other security applications
that try to monitor certain events within a VM from the
vantage point of the hypervisor, the realization of such a
mechanism requires two steps: First, it is necessary to force
the hardware to generate a signal whenever the event occurs
that we want to observe. Second, this signal must lead to a
VM Exit that transfers control to the hypervisor.

In case of PMC-based trapping, the first step requires us
to make sure that a PMC, which was set to count a specific
hardware event, generates a signal when a certain number
of events occurred. Since a PMC produces an interrupt on
overflow, given that the corresponding flag was set in the
PES MSR that controls the PMC, we can emit a signal if
we force the PMC to overflow. This can be achieved by
setting the initial value of the PMC to MAX_PMC_VALUE - X
+ 1, were X is the number of events that should occur before
the overflow. For example, to cause an overflow after every

LA similar approach could also be realized using fixed PMCs.

counted event, we set the PMC to its maximum value. Thus
the PMC will overflow when the next event is counted.

The interrupt signal that is emitted by a PMC on overflow
depends on the setting of the local Advanced Programmable
Interrupt Controller (APIC). Amongst other things, the lo-
cal APIC allows us to force the delivery of a Non-Maskable
Interrupt (NMI). Emitting a NMI has two advantages. First,
the processor will handle the interrupt immediately, which
will reduce the time that passes between the counter over-
flow and the moment the interrupt is handled by the pro-
cessor. This is important due to the fact that it is possible
that more than one event occurs during the time it takes to
deliver the interrupt. For a more detailed discussion of the
problem we refer the reader to Section 3.4.1.

Second, a NMI leads to a VM Exit if the appropriate flag
is set within the pin-based VM-execution controls of the x86
architecture. Thus by using a NMI we can force a VM Exit
and thus realize a control transfer to the hypervisor.

3.3 Transparency and Evasion-Resistance

While the steps described in the last section allow us to
trap hardware performance events to the hypervisor, it is
not yet clear if PMC-based trapping is evasion-resistant [13]
and transparent [3]. But, before we can analyze these im-
portant security-relevant properties in the context of PMC-
based trapping, it is necessary to clarify what we mean by
a transparent mechanism. This is due to the fact that com-
plete transparency within virtualized environments is diffi-
cult, if not impossible, to achieve as Garfinkel et al. [6] right-
fully argue. Therefore we use the term guest transparency
within this paper to refer to a hypervisor-based mechanism
that can only be detected through timing attacks.

To achieve both evasion-resistance and guest transparency,
it is necessary that none of the hardware registers that are
used by a PMC-based trapping mechanism can be accessed
from within the guest. Since the processor-based VM-execu-
tion controls on the x86 architecture provide the possibility
to cause a VM Exit in case a MSR is read or written or a
RDPMC instructions is executed, read or write accesses to the
PMCs can be intercepted by the hypervisor. In addition,
because all control structures that are related to PMCs are
MSRs as well, attempts to access or modify the PMC control
structures can also be intercepted. Thus PMC-based trap-
ping is evasion-resistant and guest transparent provided that
the hardware does not contain any flaws and implements the
above mentioned mechanisms correctly [8, 13].

3.4 PMC-based Trapping for ILM

PMC-based trapping can be directly applied to ILM by
making use of hardware performance events that are related
to instruction execution. Since modern microarchitectures
support events that allow to count specific instruction types,
the resulting ILM approach is capable of selecting these in-
struction types for monitoring. To provide the reader with
a better understanding of the type of events that are avail-
able, Table 1 shows a small subset of the non-architectural
events related to taken branch instructions that are about to
retire and are available on modern Sandy Bridge processors.
In this context the term “retire” stands for instructions that
have been executed by the CPU and whose changes will be
committed to the architecture in the correct order in which
they appear within the instruction sequence [8].

Architectural events that are important for ILM and are

Event Type | Description

ALL_BRANCHES | All branch instructions

CONDITIONAL All conditional branch instructions
NEAR_CALL All near call branch instructions
NEAR_RETURN All near return branch instructions
FAR_BRANCH All far branches

Table 1: Non-architectural events related to retired
branches available on recent processors.

available across all architectures are all retired instructions
and all taken branches that are about to retire. Thus even if
a microarchitecture would not support any other hardware
event, it would in any case be possible to trap all instructions
or limit the trapping to all branch instructions.

3.4.1 Counter Overflow Issues

There is the possibility that more than one event occurs
before the PMC overflow interrupt is received. The reason
for this phenomenon is latency within the microarchitecture
in combination with the speed of modern processors. Due
to the latter it is likely that multiple instructions retire in
a very short period of time, which also means that multiple
monitored events could occur at nearly the same time. The
PMC that counts these events will therefore be increased and
will on an overflow generate a signal. This signal will then
be forwarded to the local APIC that in turn will raise the
selected interrupt. Because of latency, it is hence possible
that more than one event occurs during the period of time
between the PMC overflow and the delivery of the interrupt.

How many events can occur before the interrupt is deliv-
ered depends on the event that is monitored. The closer
events appear to each other within the instruction stream,
the higher are the chances that they will occur together be-
fore the interrupt is received. If we implement a single-
stepping mechanism with the help of a PMC by forcing an
overflow after every instruction executed by a system, for ex-
ample, it is very likely that more than one instruction will be
executed before the interrupt is received. In fact, during our
experiments with such a PMC-based single-stepping mech-
anism, we found that on the average about six instructions
were executed before the interrupt was received.

Notice that similar issues could arise if PMC-based trap-
ping is applied to other areas. How this problem can be
solved must be considered on a case-by-case basis. In the
following we will provide a solution for PMC-based ILM.

3.4.2 Instruction Reconstruction (IR)

Because of the speed of modern processors and the latency
within the microarchitecture, it is possible that we miss in-
structions that we want to monitor. However, the fact that
we missed an instruction will not go unnoticed. On the con-
trary, the PMC that is used to count the instructions will
tell us exactly how many instructions were missed, since it
continues counting even after an overflow occurred. There-
fore we know how many instructions we missed between the
occurrence of the last interrupt and the current interrupt.
This effectively reduces the general problem of recovering
all missed instructions to the smaller problem of recover-
ing all missed instructions that lie on the execution path
from the last to the current interrupt. A possible solution to
this problem is to reconstruct this execution path, reanalyze
all executed instructions, and filter the instructions that we

missed. To achieve this we will save the instruction pointer
(IP) of the VM every time a monitoring related interrupt is
received. This allows us to use the IP of the last interrupt as
a starting point for the IR. To reconstruct the instructions,
we will then sequentially decode all instructions that follow
this starting point until we reach the current IP. A remaining
problem are control transfer instructions that we encounter
along the way, since the target of the control transfer may
depend on memory operands that may have been overwrit-
ten in the meantime. However, since the control transfer
instructions that we encounter were already processed dur-
ing normal execution, we can make use of another hardware
feature to recover the target locations of these instructions:
The Last Branch Record Stack (LBR).

As the name suggests, the LBR is a stack that contains
the last instructions that caused a control transfer. More
precisely, the LBR consists of MSR pairs, where one MSR,
the FROM MSR, contains the virtual address of the instruc-
tion that caused the control transfer and the other MSR, the
TO MSR, contains the virtual address of the target of the
control transfer. Therefore the LBR can be used to decide,
if a branch was taken and what the resulting IP value was.

The size of the LBR depends on the processor that is
used. Recent processor families usually provide a LBR that
consists of 16 MSR pairs. The top of the LBR is indicated
by a special MSR, the so-called top-of-stack pointer (TOS)
MSR. Once the TOS reaches its maximum value, it will wrap
around and the oldest entry on the stack will be overwritten.
Therefore the number of branches that can be reconstructed
with the help of the LBR, depend on its size. However, we
do not expect this to be an issue in practice, since the size of
the LBR was always sufficient for IR during our experiments.
But even if we had to record more branches than the LBR
can hold, this is not a problem, because it is also possible
to use the Branch Trace Store (BTS) instead of the LBR,
which is basically a LBR in memory and can therefore hold
as many branches as memory is reserved. Further in contrast
to the LBR, the BTS can be programmed to generate a
signal before it overflows, which means that branches can
always be processed before they get overwritten [8].

By using the LBR it is finally possible to reconstruct the
complete instruction stream by saving the TOS of the LBR
in addition to the IP on every monitoring related interrupt.
While moving through the execution path starting from the
last IP we can then increase the last TOS whenever a control
transfer instruction is encountered that is recorded on the
LBR and continue sequential decoding from the destination
address. This will eventually lead us to the current IP.

4. EXPERIMENTS & ANALYSIS

In this section we will describe the prototype that we im-
plemented and the experiments that we conducted with it.
In the process we will also provide more details about the
shadow stack that we implemented to demonstrate the po-
tential of PMC-based ILM. Finally, we will analyze the re-
sults that the experiments produced.

4.1 Implementation

To be able to conduct experiments and to show the prac-
ticability of our approach we implemented a prototype that
is based on KVM. Similar to KVM this prototype is split
into two components: A user and a kernel space compo-
nent. The kernel space component is integrated within the

KVM kernel modules and is responsible for the actual moni-
toring. Currently this component is capable of trapping any
PMC event that the microarchitectures supports. On top of
that, we also implemented single-step monitoring based on
the TF for the purpose of comparing our monitoring mech-
anism with an existing hardware-based monitoring mecha-
nism. We chose to use the TF for a comparison for two rea-
sons. First, it is the only hardware-based mechanism that
is actually intended for ILM and second, it is probably the
hardware-based ILM mechanism that is used most often.

The user space component of the prototype is built upon
QEMU, which is the user application part of KVM. While
the kernel space component is only responsible for trap-
ping, the task of the user space component is to process the
trapped instructions. Although this approach reduces the
performance of the prototype, since data frequently needs
to be transferred from kernel to user space, it results in a
cleaner design where only tasks are performed within the
kernel modules that cannot be done in user space.

Note that the current prototype works on a per process ba-
sis, which means that only user selected processes are mon-
itored, instead of the complete system. To achieve this, the
prototype hooks the system calls for process creation and
termination using the DRs. Since the placement of these
hooks depends on the guest OS, the current prototype only
supports Linux guests. We are currently working on a Win-
dows version that will be completed in the near future.

4.2 Experiments

Our current prototype is tailored towards simple exper-
iments so that we can demonstrate the potential of PMC-
based ILM mechanisms. To give an initial impression about
the performance of a PMC-based approach, we compared
PMC-based ILM with traditional TF-based ILM by moni-
toring the user space part of common Linux applications on
an Ubuntu 11.04 Server 64-bit VM. In particular we mon-
itored the execution of 1s, tar, cat, and gcc. Thereby 1s
was set to display the contents of the /usr/bin directory,
which contained 597 files, while the remaining three pro-
grams were used to list, compress, or respectively compile a
simple "Hello World’ program that consisted of 10 lines of
code. We decided to limit the monitoring within the VM to
the user space part of the applications to avoid differences
in execution time due to guest kernel code that may be exe-
cuted in case of one application run, but not in case of other
runs. While constraining the monitoring to the user space
part of an application was straight forward in the case of
PMC-based ILM, we were in case of TF-based ILM forced
to detect switches from kernel to user space by monitoring
for changes in the virtual address of the IP. This is due to
the fact that there is no flag as in the case of the PES MSR
that provides this functionality in hardware. But since the
TF was disabled by the guest OS when a switch from kernel
to user space occurred, we had to detect this behavior in
any case to be able to reenable the TF.

All experiments were conducted on an Ubuntu 11.10 host
system with 8 GB RAM and an Intel Core i7-2600 CPU that
was running at 3.40 GHz. To measure the average slowdown
factor of ILM on the applications, we executed the same pro-
gram with the same parameters multiple times and recorded
the total (wall clock) execution time for each program run.
In the process we made use of the PMCs to limit the mon-
itoring to specific instruction types and recorded how this

Mode | Is | tar | cat | gce

PMC ALL&IR | 755 (18s) | 1002 (3.0s) | 334 (0.6s) | 1263 (92s)
TF ALL 310 (7.0s) | 415 (1.2s) | 142 (0.3s) | 545 (40s)
PMC ALL 273 (6.55) | 403 (1.2s) | 126 (0.3s) | 435 (32s)
PMC Branch 163 (4.0s) 259 (0.8s) 81 (0.2s) 281 (21s)
Shadow Stack 95 (2.0s) | 196 (0.6s) | 31 (0.1s) | 212 (15s)

Table 2: The average slowdown factor of different
monitoring modes on common Linux applications.

limitation affected the slowdown factor. In particular we
set the PMCs to monitor all instructions (with and with-
out IR), all branch instructions, and all call and return
instructions. The latter allowed us to implement a shadow
stack that will be described in more detail in the next sec-
tion. The results of the experiments are shown in Table 2.

4.3 Shadow Stack

By using PMC-based trapping, we are able to monitor
specific instructions types. To demonstrate this possibility
we implemented a shadow stack on the hypervisor level that
is capable of verifying if the return address of a function was
modified during execution by trapping call and return in-
structions. Every time a call instruction is executed by the
monitored process, the return address of the called function,
which is the address of the instruction that immediately fol-
lows the call instruction, is pushed on the stack. When the
process later on executes a return instruction, the address
on top of the shadow stack is compared with the new value
of the IP. Since a function should return to the location im-
mediately after the call instruction that invoked it, both
values should be equal, because the return address of the
last call instruction is on top of the stack. Therefore, if the
values do not match the return address was modified.

Since attackers often try to modify the return address of a
function in order to divert the control flow of a program, the
shadow stack is capable of detecting exploitation attempts
on applications running within a VM from the hypervisor
level. In addition, because our shadow stack implementa-
tion solely relies on PMC-based trapping to function, it is
evasion-resistant and guest transparent.

The correct functioning of the shadow stack was verified
with the help of simple buffer overflow exploits that tried to
overwrite the return addresses of multiple vulnerable func-
tions. All exploits were reliably detected. Further no false
positives were observed during the execution of the perfor-
mance experiments, whose results are shown in Table 2.

4.4 Analysis

Flexibility. As the first column of Table 2 shows, PMC-
based ILM allows to select specific instructions for monitor-
ing and thus provides more flexibility than existing hardware-
based ILM mechanisms on the x86 architecture. In addi-
tion, monitoring can also be limited to kernel and/or user
space by using the appropriate flags within the PES MSR
that belongs to a PMC. Nevertheless, it is possible to moni-
tor all executed instructions by reconstructing the complete
instruction stream with the help of the LBR. Finally, the
implementation of a shadow stack demonstrates that the
events, which are supported by current processors, can be
used effectively to create security modules on the hypervisor
level, which are guest transparent and evasion-resistant.

Performance. The experiments that were conducted so

far can only give an indication of the performance of a PMC-
based ILM approach. In spite of that, the current results are
promising and indicate that such an approach can, when
used without IR, be much faster than existing hardware-
based ILM approaches, because a PMC-based approach is
not forced to cause a VM Exit after every executed instruc-
tion. This performance gain is especially visible in case of
applications that only require access to a certain subset of
the executed instructions such as the implemented shadow
stack, which performed in all conducted experiments at least
twice as fast as the TF-based mechanism.

PMC-based single-stepping with IR on the other side was
clearly slower than TF-based single-stepping. This has two
main causes. First, as explained in Section 2, the TF is
cleared by the processor in certain situations such as the exe-
cution of an interrupt handler, while a PMC-based approach
monitors the complete execution. Thus PMC-based ILM
with IR actually monitors more instructions than TF-based
ILM. Second, since the current prototype uses the QEMU
disassembler to disassemble instructions during IR, every in-
struction is individually processed and completely disassem-
bled. However, disassembling every instruction completely
is actually unnecessary, since for most instructions we only
require their length and opcode to continue IR.

Even though PMC-based ILM can provide better perfor-
mance than existing hardware-based ILM mechanisms, the
current results show that such an approach still leads to a
significant overhead. To reduce this overhead we suggest the
following measures that we leave for future work.

First, the current prototype always sets the PMCs to their
maximum value to force an overflow after every event. This
guarantees that events are delivered with as little delay as
possible. However, this may not be necessary for all appli-
cations. In case of the shadow stack, for instance, we do
not need to force a VM Exit after every call or return
instruction, since the LBR allows us to process a group of
those instructions without having to use IR. By reducing
the overflows, however, we will reduce the slowdown factor
by almost the same amount. For example, when we set the
PMC-based branch monitoring to only force a VM Exit af-
ter ten branches instead of after every branch, the average
slowdown factor stated in Table 2 was reduced by 88%.

Second, by using Precise-Event-Based Sampling? it is with-
out a VM Exit possible to store the values of all general
purpose registers on a PMC overflow in memory. Thus this
mechanism would allow us to reduce the number of VM Ex-
its, while still being able to record events on a fine-grained
basis in memory, which can then be inspected on the next
VM exit. However, we did not implement this mechanism
so far, since it requires the allocation of memory within the
guest. While the allocation itself can be achieved by manip-
ulating the page tables of the guest, protecting this memory
area from the hypervisor is an interesting challenge, because
the memory area must be writeable.

5. CONCLUSION

In this paper we presented the concept of PMC-based
trapping. We applied this concept to implement a hardware-
based ILM approach that is capable of monitoring all in-
structions that are executed by a process as well as only

2See Chapter 18.4.2 of Volume 3 of the Intel 64 and IA-32
Architectures Software Developer’s Manual [8] for details.

specific instruction types. This functionality allowed us to
implement a shadow stack that shows the potential of the ap-
proach and demonstrates the performance gain that can be
achieved in comparison to traditional hardware-based ILM
mechanisms by using it. However, the experiments that were
conducted so far can only give an indication of the possibil-
ities of a PMC-based ILM approach. To evaluate the full
capability of the technique further experiments are required
that test the mechanism on different OSs and use the im-
provements stated within this paper. In spite of that, the
current results are promising and we therefore encourage
other researchers to explore this ILM method as well as the
here proposed concept of PMC-based trapping.

6. REFERENCES
[1] S. Bhansali, W.-k. Chen, S. D. Jong, A. Edwards,

R. Murray, M. Drinic, D. Mihocka, and J. Chau.
Framework for Instruction-level Tracing and Analysis
of Program Executions. In Proc. of VEE, 2006.

[2] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling
dynamic program analysis from execution in virtual
environments. In Proc. of USENIX ATC, 2008.

[3] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
Malware Analysis via Hardware Virtualization
Extensions. In Proc. of CCS, 2008.

[4] J. Du, N. Sehrawat, and W. Zwaenepoel. Performance
Profiling of Virtual Machines. SIGPLAN Not., 2011.

[5] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: Enabling Intrusion Analysis
through Virtual-Machine Logging and Replay.
SIGOPS Oper. Syst. Rev., 2002.

[6] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin.
Compatibility is Not Transparency: VMM Detection
Myths and Realities. In Proc. of HotOS, 2007.

[7] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion
Detection. In Proc. of NDSS Symposium, 2003.

[8] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, 2011.

[9] C. Malone, M. Zahran, and R. Karri. Are hardware
performance counters a cost effective way for integrity
checking of programs. In Proc. of STC, 2011.

[10] A. M. Nguyen, N. Schear, H. Jung, A. Godiyal, S. T.
King, and H. D. Nguyen. MAVMM: Lightweight and
Purpose Built VMM for Malware Analysis. In Proc. of
ACSAC, 2009.

[11] R. Nikolaev and G. Back. Perfctr-Xen: A Framework
for Performance Counter Virtualization. SIGPLAN
Not., 2011.

[12] J. Pfoh, C. Schneider, and C. Eckert. Exploiting the
x86 Architecture to Derive Virtual Machine State
Information. In Proc. of Secureware, 2010.

[13] J. Pfoh, C. Schneider, and C. Eckert. Nitro:
Hardware-based System Call Tracing for Virtual
Machines. Adv. in Information and Comp. Sec., 2011.

[14] B. Sprunt. The Basics of Performance-Monitoring
Hardware. IEEE Micro, 2002.

[15] A. Vasudevan and R. Yerraballi. Stealth Breakpoints.
In Proc. of ACSAC, 2005.

[16] H. Yin and D. Song. TEMU: Binary Code Analysis
via Whole-System Layered Annotative Execution.
University of California at Berkeley, 2010.

