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Introduction

Read-copy update (RCU) is a synchronization mechanism that was added to the Linux kernel in
October of 2002. RCU achieves scalability improvements by allowing reads to occur concurrently
with updates. In contrast with conventional locking primitives that ensure mutual exclusion among
concurrent threads regardless of whether they be readers or updaters, or with reader-writer locks
that allow concurrent reads but not in the presence of updates, RCU supports concurrency
between a single updater and multiple readers. RCU ensures that reads are coherent by
maintaining multiple versions of objects and ensuring that they are not freed up until all pre-
existing read-side critical sections complete. RCU defines and uses efficient and scalable
mechanisms for publishing and reading new versions of an object, and also for deferring the
collection of old versions. These mechanisms distribute the work among read and update paths
in such a way as to make read paths extremely fast. In some cases (non-preemptable kernels),
RCU's read-side primitives have zero overhead.

Quick Quiz 1: But doesn't seqlock also permit readers and updaters to get work done
concurrently?

This leads to the question "what exactly is RCU?", and perhaps also to the question "how can
RCU possibly work?" (or, not infrequently, the assertion that RCU cannot possibly work). This
document addresses these questions from a fundamental viewpoint; later installments look at
them from usage and from API viewpoints. This last installment also includes a list of references.

RCU is made up of three fundamental mechanisms, the first being used for insertion, the second
being used for deletion, and the third being used to allow readers to tolerate concurrent insertions
and deletions. These mechanisms are described in the following sections, which focus on
applying RCU to linked lists:

1. Publish-Subscribe Mechanism (for insertion)
2. Wait For Pre-Existing RCU Readers to Complete (for deletion)
3. Maintain Multiple Versions of Recently Updated Objects (for readers)

These sections are followed by concluding remarks and the answers to the Quick Quizzes.

Publish-Subscribe Mechanism

One key attribute of RCU is the ability to safely scan data, even though that data is being
modified concurrently. To provide this ability for concurrent insertion, RCU uses what can be
thought of as a publish-subscribe mechanism. For example, consider an initially NULL global
pointer gp that is to be modified to point to a newly allocated and initialized data structure. The
following code fragment (with the addition of appropriate locking) might be used for this purpose:
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1 struct foo {

2 int a;

3 int b;

4 int c;

5}

6 struct foo *gp = NULL;
7

8 /* . . . */

9

10 p = kmalloc(sizeof(*p), GFP_KERNEL);
11 p->a = 1;

12 p->b = 2;

13 p->c = 3;

14 gp = p;

Unfortunately, there is nothing forcing the compiler and CPU to execute the last four assignment
statements in order. If the assignment to gphappens before the initialization of p's fields, then
concurrent readers could see the uninitialized values. Memory barriers are required to keep
things ordered, but memory barriers are notoriously difficult to use. We therefore encapsulate
them into a primitive rcu_assign_pointer() that has publication semantics. The last four lines
would then be as follows:
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cu_assign_pointer(gp, p);
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The rcu_assign_pointer () would publish the new structure, forcing both the compiler and the
CPU to execute the assignment to gp after the assignments to the fields referenced by p.

However, it is not sufficient to only enforce ordering at the updater, as the reader must enforce
proper ordering as well. Consider for example the following code fragment:

p = 8p,
if (p != NULL) {
do_something_with(p->a, p->b, p->c);
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Although this code fragment might well seem immune to misordering, unfortunately, the DEC
Alpha CPU [PDF] and value-speculation compiler optimizations can, believe it or not, cause the
values of p->a, p->b, and p->c to be fetched before the value of p! This is perhaps easiest to see
in the case of value-speculation compiler optimizations, where the compiler guesses the value
of p, fetches p->a, p->b, and p->c, then fetches the actual value of p in order to check whether its
guess was correct. This sort of optimization is quite aggressive, perhaps insanely so, but does
actually occur in the context of profile-driven optimization.

Clearly, we need to prevent this sort of skullduggery on the part of both the compiler and the
CPU. The rcu_dereference() primitive uses whatever memory-barrier instructions and compiler
directives are required for this purpose:

rcu_read_lock();

p = rcu_dereference(gp);

if (p !'= NULL) {
do_something_with(p->a, p->b, p->c);

}

rcu_read_unlock();

oo phWN-—-

The rcu_dereference() primitive can thus be thought of as subscribingto a given value of the
specified pointer, guaranteeing that subsequent dereference operations will see any initialization
that occurred before the corresponding publish (rcu_assign_pointer()) operation.

The rcu_read_lock() and rcu_read_unlock() calls are absolutely required: they define the extent
of the RCU read-side critical section. Their purpose is explained in the next section, however,
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they never spin or block, nor do they prevent the 1ist_add_rcu() from executing concurrently. In
fact, in non-CONFIG_PREEMPT kernels, they generate absolutely no code.

Although rcu_assign_pointer() and rcu_dereference() can in theory be used to construct any
conceivable RCU-protected data structure, in practice it is often better to use higher-level
constructs. Therefore, the rcu_assign_pointer() and rcu_dereference() primitives have been
embedded in special RCU variants of Linux's list-manipulation API. Linux has two variants of
doubly linked list, the circular struct list_head and the linear struct hlist_head/struct
hlist_node pair. The former is laid out as follows, where the green boxes represent the list header
and the blue boxes represent the elements in the list.
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Adapting the pointer-publish example for the linked list gives the following:

1 struct foo {
2 struct list_head list;
3 int a;
4 int b;

5 int c;

6 };

7 LIST_HEAD(head);
8

9 /* . . . */

10

11 p = kmalloc(sizeof(*p), GFP_KERNEL);
12 p->a 1,

13 p->b = 2;

14 p->c 3;

15 list_add_rcu(&p->1list, &head);

Line 15 must be protected by some synchronization mechanism (most commonly some sort of
lock) to prevent multiple 1ist_add() instances from executing concurrently. However, such
synchronization does not prevent this list_add() from executing concurrently with RCU readers.

Subscribing to an RCU-protected list is straightforward:

1 rcu_read_lock();

2 list_for_each_entry_rcu(p, head, list) {
3 do_something_with(p->a, p->b, p->c);

4 }

5

rcu_read_unlock();

The list_add_rcu() primitive publishes an entry into the specified list, guaranteeing that the
corresponding list_for_each_entry_rcu()invocation will properly subscribe to this same entry.

Quick Quiz 2: What prevents the 1ist_for_each_entry_rcu() from getting a segfault if it happens
to execute at exactly the same time as the 1list_add_rcu()?

Linux's other doubly linked list, the hlist, is a linear list, which means that it needs only one pointer
for the header rather than the two required for the circular list. Thus, use of hlist can halve the
memory consumption for the hash-bucket arrays of large hash tables.
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Publishing a new element to an RCU-protected hlist is quite similar to doing so for the circular list:

1 struct foo {
2 struct hlist_node *list;
3 int a;
4 int b;

5 int c;

6 };

7 HLIST _HEAD(head);
8

9 /* . . . *

11 p = kmalloc(sizeof(*p), GFP_KERNEL);
12 p->a 1;
13 p->b = 2;
14 p->c = 3;
15 hlist_add_head_rcu(&p->list, &head);

As before, line 15 must be protected by some sort of synchronization mechanism, for example, a
lock.

Subscribing to an RCU-protected hlist is also similar to the circular list:

1 rcu_read_lock();

2 hlist_for_each_entry_rcu(p, q, head, list) {
3 do_something_with(p->a, p->b, p->c);

4 }

5 rcu_read_unlock();

Quick Quiz 3: Why do we need to pass two pointers intohlist_for_each_entry_rcu() when only
one is needed for 1ist_for_each_entry_rcu()?

The set of RCU publish and subscribe primitives are shown in the following table, along with
additional primitives to "unpublish”, or retract:

Category Publish Retract Subscribe
Pointers rcu_assign_pointer() &SEE§551gn_p01nter(..., rcu_dereference()
list_add_rcu()
Lists list_add_tail rcu() list_del_rcu() list_for_each_entry_rcu()

list_replace_rcu()
hlist_add_after_rcu()

Hlists Eiiii:ggg:ﬁg:giiggig() hlist_del rcu() hlist_for_each_entry_rcu()

hlist_replace_rcu()

Note that the list_replace_rcu(), list_del_rcu(),hlist_replace_rcu(),

and hlist_del_rcu() APIs add a complication. When is it safe to free up the data element that
was replaced or removed? In particular, how can we possibly know when all the readers have
released their references to that data element?

These questions are addressed in the following section.

Wait For Pre-Existing RCU Readers to Complete

In its most basic form, RCU is a way of waiting for things to finish. Of course, there are a great
many other ways of waiting for things to finish, including reference counts, reader-writer locks,
events, and so on. The great advantage of RCU is that it can wait for each of (say) 20,000
different things without having to explicitly track each and every one of them, and without having
to worry about the performance degradation, scalability limitations, complex deadlock scenarios,
and memory-leak hazards that are inherent in schemes using explicit tracking.



In RCU's case, the things waited on are called "RCU read-side critical sections". An RCU read-
side critical section starts with anrcu_read_lock() primitive, and ends with a
correspondingrcu_read_unlock() primitive. RCU read-side critical sections can be nested, and
may contain pretty much any code, as long as that code does not explicitly block or sleep
(although a special form of RCU called "SRCU" does permit general sleeping in SRCU read-side
critical sections). If you abide by these conventions, you can use RCU to wait for any desired
piece of code to complete.

RCU accomplishes this feat by indirectly determining when these other things have finished, as
has been described elsewhere for RCU Classicand realtime RCU.

In particular, as shown in the following figure, RCU is a way of waiting for pre-existing RCU read-
side critical sections to completely finish, including memory operations executed by those critical
sections.

Reader Reader Reader
Reader
Reader Reader
Grace period
Reader extends as
I needed.
Reader “f#H#F
Removal Grace Period Reclamation

However, note that RCU read-side critical sections that begin after the beginning of a given grace
period can and will extend beyond the end of that grace period.

The following pseudocode shows the basic form of algorithms that use RCU to wait for readers:
1. Make a change, for example, replace an element in a linked list.
2. Wait for all pre-existing RCU read-side critical sections to completely finish (for example, by
using the synchronize_rcu()primitive). The key observation here is that subsequent RCU
read-side critical sections have no way to gain a reference to the newly removed element.

3. Clean up, for example, free the element that was replaced above.

The following code fragment, adapted from those in the previous section, demonstrates this
process, with field a being the search key:

1 struct foo {
2 struct list _head list;
3 int a;
4 int b;
5 int c;
6},

7 LIST _HEAD(head);

8

9 /* . . . */

10

11 p = search(head, key);

12 if (p == NULL) {

13 /* Take appropriate action, unlock, and return. */
14 }
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15 q = kmalloc(sizeof(*p), GFP_KERNEL);

16 *q = *p;
17 q->b = 2;
18 g->c = 3;

19 list_repiace_rcu(&p->list, &q->1list);
20 synchronize_rcu();
21 kfree(p);

Lines 19, 20, and 21 implement the three steps called out above. Lines 16-19 gives RCU ("read-
copy update”) its name: while permitting concurrent reads, line 16 copies and lines 17-19 do
an update.

The synchronize_rcu() primitive might seem a bit mysterious at first. After all, it must wait for all
RCU read-side critical sections to complete, and, as we saw earlier,

the rcu_read_lock() and rcu_read_unlock()primitives that delimit RCU read-side critical sections
don't even generate any code in non-CONFIG_PREEMPT kernels!

There is a trick, and the trick is that RCU Classic read-side critical sections delimited

by rcu_read_lock() and rcu_read_unlock() are not permitted to block or sleep. Therefore, when
a given CPU executes a context switch, we are guaranteed that any prior RCU read-side critical
sections will have completed. This means that as soon as each CPU has executed at least one
context switch, all prior RCU read-side critical sections are guaranteed to have completed,
meaning that synchronize_rcu() can safely return.

Thus, RCU Classic's synchronize_rcu() can conceptually be as simple as the following:

1 for_each_online_cpu(cpu)
2 run_on(cpu);

Here, run_on() switches the current thread to the specified CPU, which forces a context switch
on that CPU. The for_each_online_cpu() loop therefore forces a context switch on each CPU,
thereby guaranteeing that all prior RCU read-side critical sections have completed, as required.
Although this simple approach works for kernels in which preemption is disabled across RCU
read-side critical sections, in other words, for non-CONFIG_PREEMPT and CONFIG_PREEMPT kernels, it
does notwork for CONFIG_PREEMPT_RT realtime (-rt) kernels. Therefore, realtime RCU uses a
different approach based loosely on reference counters.

Of course, the actual implementation in the Linux kernel is much more complex, as it is required
to handle interrupts, NMIs, CPU hotplug, and other hazards of production-capable kernels, but
while also maintaining good performance and scalability. Realtime implementations of RCU must
additionally help provide good realtime response, which rules out implementations (like the
simple two-liner above) that rely on disabling preemption.

Although it is good to know that there is a simple conceptual implementation

of synchronize_rcu(), other questions remain. For example, what exactly do RCU readers see
when traversing a concurrently updated list? This question is addressed in the following section.

Maintain Multiple Versions of Recently Updated Objects

This section demonstrates how RCU maintains multiple versions of lists to accommodate
synchronization-free readers. Two examples are presented showing how an element that might
be referenced by a given reader must remain intact while that reader remains in its RCU read-
side critical section. The first example demonstrates deletion of a list element, and the second
example demonstrates replacement of an element.

Example 1: Maintaining Multiple Versions During Deletion

To start the "deletion" example, we will modify lines 11-21 in theexample in the previous
section as follows:
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p = search(head, key);

if (p != NULL) {
list_del_rcu(&p->list);
synchronize_rcu();
kfree(p);

ouphwNn -

The initial state of the list, including the pointer p, is as follows.

head 1231 gl 567 1134,8\

P

The triples in each element represent the values of fields a, b, and c, respectively. The red
borders on each element indicate that readers might be holding references to them, and because
readers do not synchronize directly with updaters, readers might run concurrently with this entire
replacement process. Please note that we have omitted the backwards pointers and the link from
the tail of the list to the head for clarity.

After the 1ist_del_rcu() on line 3 has completed, the 5,6,7 element has been removed from the
list, as shown below. Since readers do not synchronize directly with updaters, readers might be
concurrently scanning this list. These concurrent readers might or might not see the newly
removed element, depending on timing. However, readers that were delayed (e.g., due to
interrupts, ECC memory errors, or, in CONFIG_PREEMPT_RT kernels, preemption) just after fetching a
pointer to the newly removed element might see the old version of the list for quite some time
after the removal. Therefore, we now have two versions of the list, one with element 5,6,7 and
one without. The border of the 5,6,7 element is still red, indicating that readers might be
referencing it.

‘ head 1.2.3 5.6.7 114.8

p

Please note that readers are not permitted to maintain references to element 5,6, 7 after exiting
from their RCU read-side critical sections. Therefore, once the synchronize_rcu() on line 4
completes, so that all pre-existing readers are guaranteed to have completed, there can be no
more readers referencing this element, as indicated by its black border below. We are thus back
to a single version of the list.

‘ head 1.2,3 567 | w1148

p
At this point, the 5,6,7 element may safely be freed, as shown below:




‘ head 12,3 -] 1,4,8\

At this point, we have completed the deletion of element 5,6,7. The following section covers
replacement.

Example 2: Maintaining Multiple Versions During Replacement

To start the replacement example, here are the last few lines of theexample in the previous
section:

g = kmalloc(sizeof(*p), GFP_KERNEL);
*CI = *p;

g->b = 2;

g->c = 3;

list_replace_rcu(&p->list, &q->list);
synchronize_rcu();

kfree(p);

Nouh,~,wN =

The initial state of the list, including the pointer p, is the same as for the deletion example:

|heaﬁ 1231l 567 11,4,8\

p

As before, the triples in each element represent the values of fields a, b, and c, respectively. The
red borders on each element indicate that readers might be holding references to them, and
because readers do not synchronize directly with updaters, readers might run concurrently with
this entire replacement process. Please note that we again omit the backwards pointers and the
link from the tail of the list to the head for clarity.

Line 1 kmalloc()s a replacement element, as follows:

Line 2 copies the old element to the new one:

q — 5:6:?

1231 ]567 1 1:4,8\
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Line 3 updates q->b to the value "2":

q—™ 5,27

head 1,23 1l 567 11,4,8\

Line 4 updates q->c to the value "3":

g 523

123 .|567 1 1,4,8\

P

Now, line 5 does the replacement, so that the new element is finally visible to readers. At this
point, as shown below, we have two versions of the list. Pre-existing readers might see

the 5,6,7 element, but new readers will instead see the 5, 2,3 element. But any given reader is
guaranteed to see some well-defined list.

q—™ 5,23

" head 123 5.6.7 11 ,4,8\

p

/

After the synchronize_rcu() on line 6 returns, a grace period will have elapsed, and so all reads
that started before the 1ist_replace_rcu() will have completed. In particular, any readers that
might have been holding references to the 5,6,7 element are guaranteed to have exited their
RCU read-side critical sections, and are thus prohibited from continuing to hold a reference.
Therefore, there can no longer be any readers holding references to the old element, as indicated
by the thin black border around the 5,6,7 element below. As far as the readers are concerned, we
are back to having a single version of the list, but with the new element in place of the old.

|' head 1,2.3 / 56,7

l

11,4,8\




After the kfree() on line 7 completes, the list will appear as follows:

q—] 523

‘ head 123 / 1 1,4,8\

Despite the fact that RCU was named after the replacement case, the vast majority of RCU
usage within the Linux kernel relies on the simple deletion case shown in the previous section.

Discussion

These examples assumed that a mutex was held across the entire update operation, which would
mean that there could be at most two versions of the list active at a given time.

Quick Quiz 4: How would you modify the deletion example to permit more than two versions of
the list to be active?

Quick Quiz 5: How many RCU versions of a given list can be active at any given time?

This sequence of events shows how RCU updates use multiple versions to safely carry out
changes in presence of concurrent readers. Of course, some algorithms cannot gracefully handle
multiple versions. There are techniques [PDF] for adapting such algorithms to RCU, but these are
beyond the scope of this article.

Conclusion

This article has described the three fundamental components of RCU-based algorithms:
1. a publish-subscribe mechanism for adding new data,
2. a way of waiting for pre-existing RCU readers to finish, and

3. a discipline of maintaining multiple versions to permit change without harming or unduly
delaying concurrent RCU readers.

Quick Quiz 6: How can RCU updaters possibly delay RCU readers, given that
the rcu_read_lock() and rcu_read_unlock() primitives neither spin nor block?

These three RCU components allow data to be updated in face of concurrent readers, and can
be combined in different ways to implement a surprising variety of different types of RCU-based
algorithms, some of which will be the topic of the next installment in this "What is RCU, Really?"
series.
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Answers to Quick Quizzes

Quick Quiz 1: But doesn't seglock also permit readers and updaters to get work done
concurrently?

Answer: Yes and no. Although seqlock readers can run concurrently with seqglock writers,
whenever this happens, the read_seqretry()primitive will force the reader to retry. This means
that any work done by a seglock reader running concurrently with a seglock updater will be
discarded and redone. So seglock readers can run concurrently with updaters, but they cannot
actually get any work done in this case.

In contrast, RCU readers can perform useful work even in presence of concurrent RCU updaters.

Quick Quiz 2: What prevents the 1ist_for_each_entry_rcu() from getting a segfault if it happens
to execute at exactly the same time as the 1ist_add_rcu()?

Answer: On all systems running Linux, loads from and stores to pointers are atomic, that is, if a
store to a pointer occurs at the same time as a load from that same pointer, the load will return
either the initial value or the value stored, never some bitwise mashup of the two. In addition,
the list_for_each_entry_rcu() always proceeds forward through the list, never looking back.
Therefore, the 1ist_for_each_entry_rcu() will either see the element being added

by list_add_rcu(), or it will not, but either way, it will see a valid well-formed list.

Back to Quick Quiz 2.

Quick Quiz 3: Why do we need to pass two pointers intohlist_for_each_entry_rcu() when only
one is needed for list_for_each_entry_rcu()?

Answer: Because in an hlist it is necessary to check for NULL rather than for encountering the
head. (Try coding up a single-pointer hlist_for_each_entry_rcu(). If you come up with a nice
solution, it would be a very good thing!)

Back to Quick Quiz 3.

Quick Quiz 4: How would you modify the deletion example to permit more than two versions of
the list to be active?

Answer: One way of accomplishing this is as follows:

spin_lock(&mylock);

p = search(head, key);

if (p == NULL)
spin_unlock(&mylock);

else {
list_del_rcu(&p->list);
spin_unlock(&mylock);
synchronize_rcu();
kfree(p);

b

Note that this means that multiple concurrent deletions might be waiting in synchronize_rcu().

Back to Quick Quiz 4.

Quick Quiz 5: How many RCU versions of a given list can be active at any given time?

Answer: That depends on the synchronization design. If a semaphore protecting the update is
held across the grace period, then there can be at most two versions, the old and the new.
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However, if only the search, the update, and the 1ist_replace_rcu()were protected by a lock,
then there could be an arbitrary number of versions active, limited only by memory and by how
many updates could be completed within a grace period. But please note that data structures that
are updated so frequently probably are not good candidates for RCU. That said, RCU can handle
high update rates when necessary.

Back to Quick Quiz 5.

Quick Quiz 6: How can RCU updaters possibly delay RCU readers, given that
the rcu_read_lock() and rcu_read_unlock() primitives neither spin nor block?

Answer: The modifications undertaken by a given RCU updater will cause the corresponding
CPU to invalidate cache lines containing the data, forcing the CPUs running concurrent RCU
readers to incur expensive cache misses. (Can you design an algorithm that changes a data
structure without inflicting expensive cache misses on concurrent readers? On subsequent
readers?)

Back to Quick Quiz 6.
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