
White Paper: Red Hat Crash Utility
by David Anderson
<anderson@redhat.com>

Copyright © 2003, 2008 by Red Hat Software, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts.
A copy of the license is included in the section entitled "GNU Free Documentation
License".

Content

1. Why Crash?
2. Prerequisites
3. Build Procedure
4. Invocation
5. Command Input
6. Command Output
7. Crash Context
8. Builtin Help
9. The Command Set

10. Crash Usage: A Case Study
11. Command Extensions
12. GNU Free Documentation License

Abstract

The Red Hat crash analysis utility is loosely based on the SVR4 UNIX crash command, but has
been significantly enhanced by completely merging it with the GNU gdb debugger. The
marriage of the two effectively combines the kernel-specific nature of the traditional UNIX
crash utility with the source code level debugging capabilities of gdb. The utility can be used
to investigate:

Live Linux systems
Linux kernel core dumps created by the Kdump facility
Compressed Linux kernel core dumps created by the makedumpfile command (from
kdump dumpfiles)
Linux kernel core dumps created from by the Red Hat Netdump facility
Linux kernel core dumps created from by the Red Hat Diskdump facility
Compressed Linux kernel core dumps created by the Red Hat Diskdump facility
Xen host Linux kernel core dumps created by the Kdump facility
Xen guest Linux kernel core dumps created by the original xendump facility
Xen guest Linux kernel core dumps created by the ELF-format xendump facility
Xen hypervisor core dumps created by the Kdump facility

https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=anderson@redhat.com

KVM guest Linux kernel core dumps created by the virsh dump facility
s390 Linux kernel core dumps created by the IBM standalone core dump facility.
s390x Linux kernel core dumps created by the IBM standalone core dump facility.
Linux kernel core dumps created by the LKCD (Linux Kernel Crash Dumps)
Sourceforge project
Linux kernel core dumps created by the Mcore patch offered by Mission Critical Linux

The current set of commands consist of common kernel core analysis tools such as kernel
stack back traces of all processes, source code disassembly, formatted kernel structure
and variable displays, virtual memory data, dumps of linked-lists, etc., along with several
commands that delve deeper into specific kernel subsystems. Relevant gdb commands may
also be entered, which in turn are passed on to the gdb module for execution.

The crash utility is designed to be independent of Linux version dependencies. When new
kernel source code impacts the correct functionality of crash and its command set, the
utility will be updated to recognize new kernel code changes while maintaining backwards
compatibility with earlier releases. The most current version of the crash utility may be
found here: http://people.redhat.com/anderson

Why Crash?

The Linux operating system originally lacked a built-in, traditional UNIX-like kernel crash
dump facility. This was initially addressed by the Mission Critical Linux Mcore kernel patch
and the LKCD (Linux Kernel Crash Dump) kernel patch from SGI in 1999, and later by the
Red Hat Netdump facility in 2002, and the Red hat Diskdump facility in 2004. The upstream
Linux community finally settled upon the adoption of the Kdump crash dump facility in
2006.

However, the creation of a kernel crash dump file is only half of the picture; a utility is
required to be able to recognize the dumpfile format in order to read it, and to offer a
useful set of commands to make sense of it.

Furthermore, to examine the contents of a live system's kernel internals from user space,
the only readily available option has been to use gdb on /proc/kcore. While gdb is an incredibly
powerful tool, it is designed to debug user programs, and is not at all "kernel-aware".
Consequently, using gdb alone has limited usefulness when looking at kernel memory,
essentially constrained to the printing of kernel data structures if the vmlinux file was built
with the -g C flag, the disassembly of kernel text, and raw data dumps. Furthermore,
distributions such as Red Hat Enterprise Linux have limited the access to /proc/kcore,
making it unusable as a kernel memory source.

As far as kernel crash dump files are concerned, the Red Hat Netdump and uncompressed
Diskdump facilities, and the Kdump facility create dump files that are readable by gdb, but
aside from giving it the capability of displaying the panicking task's stack trace, it has the
same constraints as when reading /proc/kcore. However, gdb cannot read LKCD, Mcore, Xen
or s390/s390x dump files.

That being the state of things, the crash utility was developed as a convenient means to
cover all bases, i.e., all listed dumpfile formats as well as live systems. Moreover, it is also
designed to be easily enhanced to suit the specific needs of the kernel developers or
analysts using it; the builtin command set can easily be extended or enhanced, and

http://people.redhat.com/anderson

external command modules may be written and dynamically attached.

Prerequisites

The crash utility has the following prerequisites:

kernel object file:

A vmlinux kernel object file, often referred to as the namelist in this
document, which must have been built with the -g C flag so that it will
contain the debug data required for symbolic debugging.

In RHEL3 installations, the vmlinux file associated with the running kernel is
split into two files, a stripped version found in the /boot directory; which
has have the operating system release string appended to it, for example,
vmlinux-2.4.21-4.ELsmp. The stripped file in /boot contains a link to its
associated debuginfo file, which is located in the /usr/lib/debug/boot
directory.

In RHEL4, RHEL5 and RHEL6 installations, the vmlinux file is part of the
kernel debuginfo package, and is found in the relevant
/usr/lib/debug/lib/modules/<release> directory.

Ideally the kernel object file is the same kernel object file that is
associated with the memory image. However, in circumstances where the
vmlinux file associated with the crash dump or live system was not built
with the -g flag, there are work-arounds discussed later in the Invocation
section.

memory image:

This may consist of a kernel crash dump file generated from any of the
supported dump facilties, or live system memory accessed via /dev/mem or
its replacement in RHEL4/RHEL5/RHEL6, the /dev/crash driver. If no dump
file argument is issued on the crash command line, live system memory will
be used by default. When examining a live system, root privileges are
required.

platform processor types:

The crash utility is actively developed and tested on the x86, x86_64, ia64,
ppc64, arm, s390 and s390x processors. Legacy support for the Alpha and
32-bit PowerPC platforms exists, but no longer actively maintained.

Linux kernel versions:

The crash utility is backwards-compatible to at least Red Hat 6.0 (Linux
version 2.2.5-15), up to Red Hat Enterprise Linux 5 (Linux version 2.6.18+).
Due to the constantly shifting sands of the upstream kernel internals,
immediate support for the latest kernel versions cannot be guaranteed.

However, modifications are constantly being implemented to support
changes in upstream kernel versions. The intent has always been to make
the utility independent of Linux version dependencies, building in
recognition of major kernel code changes so as to adapt to new kernel
versions, while maintaining backwards compatibility.

Build Procedure

Starting with the RHEL3 release, the crash utility is automatically installed during system
installation if the Development Tools package set is selected. However, for all other
kernel versions, or if it was not selected during system installation, the binary RPM can be
installed, or if desired, the sources re-built and installed.

If the crash utility is not pre-installed, and if all dependencies are met on the target system,
install the binary RPM like so:

rpm -ivh crash-4.0-8.11.i386.rpm
Preparing... ### [100%]
 1:crash ### [100%]
#

The crash executable will be installed in the /usr/bin directory.

Alternatively, the crash source code can be rebuilt. The crash utility's source files come
packaged in two typical formats, a compressed tar image. or a source RPM file, So, for
example, crash version 4.0-8.11 can be built from either crash-4.0-8.11.tar.gz or crash-4.0-
8.11.src.rpm.

The latest "upstream" version of the crash utility, available in both file formats, can be
found here: http://people.redhat.com/anderson

In either case, the source file layout consists of a top-level directory containing a set of
crash-specific files, a compressed tar image containing the full, unmodified, gdb source tree,
and a small number of modified gdb files required to merge the two entities. The build
procedure does the following:

1. the unmodified gdb sources are extracted into a subdirectory of the top-level crash
source directory, and overlayed by the small set of modified gdb files.

2. the files in the gdb source tree are built first, creating the libbfd.a, libreadline.a,
libopcodes.a, libiberty.a and libgdb.a libraries.

3. the crash sources files in the top-level directory are then compiled into a crashlib.a
library.

4. the objects are all linked into the crash executable, located in the top-level directory.

Depending upon the speed of the host system, the complete build may take several
minutes, primarily due to the time consumed by the build of the gdb portion.

Building from the tar image

To build from the compressed tar image, simply uncompress/extract the source files, cd
into the resultant source directory, and enter make:

http://people.redhat.com/anderson

tar xvzmf crash-4.0-8.11.tar.gz
crash-4.0-8.11/
crash-4.0-8.11/main.c
crash-4.0-8.11/tools.c
crash-4.0-8.11/global_data.c
crash-4.0-8.11/memory.c
crash-4.0-8.11/filesys.c
crash-4.0-8.11/help.c
crash-4.0-8.11/task.c
crash-4.0-8.11/kernel.c
crash-4.0-8.11/test.c
crash-4.0-8.11/gdb_interface.c
crash-4.0-8.11/configure.c
crash-4.0-8.11/net.c
crash-4.0-8.11/dev.c
crash-4.0-8.11/alpha.c
crash-4.0-8.11/x86.c
crash-4.0-8.11/ppc.c
crash-4.0-8.11/ia64.c
crash-4.0-8.11/s390.c
crash-4.0-8.11/s390x.c
crash-4.0-8.11/s390dbf.c
crash-4.0-8.11/ppc64.c
crash-4.0-8.11/x86_64.c
crash-4.0-8.11/extensions.c
crash-4.0-8.11/remote.c
crash-4.0-8.11/va_server.c
crash-4.0-8.11/va_server_v1.c
crash-4.0-8.11/symbols.c
crash-4.0-8.11/cmdline.c
crash-4.0-8.11/lkcd_common.c
crash-4.0-8.11/lkcd_v1.c
crash-4.0-8.11/lkcd_v2_v3.c
crash-4.0-8.11/lkcd_v5.c
crash-4.0-8.11/lkcd_v7.c
crash-4.0-8.11/lkcd_v8.c
crash-4.0-8.11/lkcd_fix_mem.c
crash-4.0-8.11/s390_dump.c
crash-4.0-8.11/lkcd_x86_trace.c
crash-4.0-8.11/netdump.c
crash-4.0-8.11/diskdump.c
crash-4.0-8.11/xendump.c
crash-4.0-8.11/unwind.c
crash-4.0-8.11/unwind_decoder.c
crash-4.0-8.11/unwind_x86_32_64.c
crash-4.0-8.11/xen_hyper.c
crash-4.0-8.11/xen_hyper_command.c
crash-4.0-8.11/xen_hyper_global_data.c
crash-4.0-8.11/xen_hyper_dump_tables.c
crash-4.0-8.11/defs.h
crash-4.0-8.11/xen_hyper_defs.h
crash-4.0-8.11/va_server.h
crash-4.0-8.11/vas_crash.h
crash-4.0-8.11/netdump.h
crash-4.0-8.11/diskdump.h
crash-4.0-8.11/xendump.h
crash-4.0-8.11/unwind.h
crash-4.0-8.11/unwind_i.h
crash-4.0-8.11/rse.h
crash-4.0-8.11/unwind_x86.h
crash-4.0-8.11/unwind_x86_64.h
crash-4.0-8.11/lkcd_vmdump_v1.h
crash-4.0-8.11/lkcd_vmdump_v2_v3.h
crash-4.0-8.11/lkcd_dump_v5.h
crash-4.0-8.11/lkcd_dump_v7.h
crash-4.0-8.11/lkcd_dump_v8.h
crash-4.0-8.11/lkcd_x86_trace.h
crash-4.0-8.11/lkcd_fix_mem.h
crash-4.0-8.11/ibm_common.h
crash-4.0-8.11/Makefile
crash-4.0-8.11/gdb-6.1/
crash-4.0-8.11/gdb-6.1/gdb/
crash-4.0-8.11/gdb-6.1/gdb/Makefile.in
crash-4.0-8.11/gdb-6.1/gdb/main.c
crash-4.0-8.11/gdb-6.1/gdb/symtab.c

crash-4.0-8.11/gdb-6.1/gdb/target.c
crash-4.0-8.11/gdb-6.1/gdb/symfile.c
crash-4.0-8.11/gdb-6.1/gdb/elfread.c
crash-4.0-8.11/gdb-6.1/gdb/ui-file.c
crash-4.0-8.11/gdb-6.1/gdb/utils.c
crash-4.0-8.11/gdb-6.1/gdb/dwarf2read.c
crash-4.0-8.11/gdb-6.1/gdb/ppc-linux-tdep.c
crash-4.0-8.11/gdb-6.1/Makefile.in
crash-4.0-8.11/gdb-6.1/include/
crash-4.0-8.11/gdb-6.1/include/obstack.h
crash-4.0-8.11/gdb-6.1.patch
crash-4.0-8.11/COPYING
crash-4.0-8.11/.rh_rpm_package
crash-4.0-8.11/crash.8
crash-4.0-8.11/extensions/
crash-4.0-8.11/extensions/Makefile
crash-4.0-8.11/extensions/echo.c
crash-4.0-8.11/extensions/dminfo.c
crash-4.0-8.11/extensions/libsial/
crash-4.0-8.11/extensions/libsial/Makefile
crash-4.0-8.11/extensions/libsial/mkbaseop.c
crash-4.0-8.11/extensions/libsial/README
crash-4.0-8.11/extensions/libsial/README.sial
crash-4.0-8.11/extensions/libsial/sial_alloc.c
crash-4.0-8.11/extensions/libsial/sial_api.c
crash-4.0-8.11/extensions/libsial/sial_api.h
crash-4.0-8.11/extensions/libsial/sial_builtin.c
crash-4.0-8.11/extensions/libsial/sial_case.c
crash-4.0-8.11/extensions/libsial/sial_define.c
crash-4.0-8.11/extensions/libsial/sial_func.c
crash-4.0-8.11/extensions/libsial/sial.h
crash-4.0-8.11/extensions/libsial/sial_input.c
crash-4.0-8.11/extensions/libsial/sial.l
crash-4.0-8.11/extensions/libsial/sial-lsed
crash-4.0-8.11/extensions/libsial/sial_member.c
crash-4.0-8.11/extensions/libsial/sial_node.c
crash-4.0-8.11/extensions/libsial/sial_num.c
crash-4.0-8.11/extensions/libsial/sial_op.c
crash-4.0-8.11/extensions/libsial/sialpp.l
crash-4.0-8.11/extensions/libsial/sialpp-lsed
crash-4.0-8.11/extensions/libsial/sialpp.y
crash-4.0-8.11/extensions/libsial/sial_print.c
crash-4.0-8.11/extensions/libsial/sial_stat.c
crash-4.0-8.11/extensions/libsial/sial_str.c
crash-4.0-8.11/extensions/libsial/sial_type.c
crash-4.0-8.11/extensions/libsial/sial_util.c
crash-4.0-8.11/extensions/libsial/sial_var.c
crash-4.0-8.11/extensions/libsial/sial.y
crash-4.0-8.11/extensions/sial.c
crash-4.0-8.11/extensions/sial.mk
crash-4.0-8.11/gdb-6.1.tar.gz
crash-4.0-8.11/README
cd crash-4.0-8.11
make
TARGET: X86
 CRASH: 4.0-8.11
 GDB: 6.1
gdb-6.1/gdb/CONTRIBUTE
gdb-6.1/gdb/COPYING
gdb-6.1/gdb/ChangeLog
gdb-6.1/gdb/ChangeLog-1990
gdb-6.1/gdb/ChangeLog-1991
gdb-6.1/gdb/ChangeLog-1992
gdb-6.1/gdb/ChangeLog-1993
gdb-6.1/gdb/ChangeLog-1994
gdb-6.1/gdb/ChangeLog-1995
gdb-6.1/gdb/ChangeLog-1996
gdb-6.1/gdb/ChangeLog-1997
gdb-6.1/gdb/ChangeLog-1998
gdb-6.1/gdb/ChangeLog-1999
gdb-6.1/gdb/ChangeLog-2000
gdb-6.1/gdb/ChangeLog-2001
gdb-6.1/gdb/ChangeLog-2002
gdb-6.1/gdb/ChangeLog-2003
gdb-6.1/gdb/ChangeLog-3.x

gdb-6.1/gdb/MAINTAINERS
gdb-6.1/gdb/NEWS
gdb-6.1/gdb/PROBLEMS
gdb-6.1/gdb/README
gdb-6.1/gdb/TODO
gdb-6.1/gdb/abug-rom.c
gdb-6.1/gdb/acconfig.h
gdb-6.1/gdb/acinclude.m4
gdb-6.1/gdb/aclocal.m4
gdb-6.1/gdb/ada-exp.y
gdb-6.1/gdb/ada-lang.c
gdb-6.1/gdb/ada-lang.h

 (complete output not shown)

ar -rs crashlib.a main.o tools.o global_data.o memory.o filesys.o help.o task.o
build_data.o kernel.o test.o gdb_interface.o net.o dev.o alpha.o x86.o ppc.o ia6
4.o s390.o s390x.o s390dbf.o ppc64.o x86_64.o extensions.o remote.o va_server.o
va_server_v1.o symbols.o cmdline.o lkcd_common.o lkcd_v1.o lkcd_v2_v3.o lkcd_v5.
o lkcd_v7.o lkcd_v8.o lkcd_fix_mem.o s390_dump.o netdump.o diskdump.o xendump.o
lkcd_x86_trace.o unwind_v1.o unwind_v2.o unwind_v3.o unwind_x86_32_64.o xen_hype
r.o xen_hyper_command.o xen_hyper_global_data.o xen_hyper_dump_tables.o
ar: creating crashlib.a
gcc -g -O2 \
 -o ̀cat mergeobj̀ libgdb.a \
 ../bfd/libbfd.a ../readline/libreadline.a ../opcodes/libopcod
es.a ../libiberty/libiberty.a -lm -lncurses ../libiberty/libiberty.a -ldl
 -rdynamic ̀cat mergelibs̀
#

The resultant crash executable will be located in the top-level source directory. Install it in
/usr/bin by entering:

make install
/usr/bin/install crash /usr/bin
#

Building from the source RPM

To build from the source RPM, install the crash-4.0-8.11.src.rpm, cd to the appropriate SPECS
directory, and build the package:

rpm -Uvh crash-4.0-8.11.src.rpm
 1:crash ### [100%]
cd /usr/src/redhat/SPECS
rpmbuild -ba crash.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.19005
+ umask 022
+ cd /usr/src/redhat/BUILD
+ LANG=C
+ export LANG
+ unset DISPLAY
+ cd /usr/src/redhat/BUILD
+ rm -rf crash-4.0-8.11
+ /bin/gzip -dc /usr/src/redhat/SOURCES/crash-4.0-8.11.tar.gz
+ tar -xvvf -
drwxr-xr-x root/root 0 2002-09-12 16:51:40 crash-4.0-8.11/
-rwxrwxr-x root/root 31916 2002-09-12 16:51:40 crash-4.0-8.11/main.c
-rwxrwxr-x root/root 103454 2002-09-12 16:51:40 crash-4.0-8.11/tools.c
-rwxrwxr-x root/root 5802 2002-09-12 16:51:40 crash-4.0-8.11/global_data.c
-rwxrwxr-x root/root 225343 2002-09-12 16:51:40 crash-4.0-8.11/memory.c
-rwxrwxr-x root/root 75492 2002-09-12 16:51:40 crash-4.0-8.11/filesys.c
-rwxrwxr-x root/root 211519 2002-09-12 16:51:40 crash-4.0-8.11/help.c
-rwxrwxr-x root/root 110604 2002-09-12 16:51:40 crash-4.0-8.11/task.c
-rwxrwxr-x root/root 101805 2002-09-12 16:51:40 crash-4.0-8.11/kernel.c
-rwxrwxr-x root/root 2198 2002-09-12 16:51:40 crash-4.0-8.11/test.c
-rwxrwxr-x root/root 18949 2002-09-12 16:51:40 crash-4.0-8.11/gdb_interface.c
-rwxrwxr-x root/root 20239 2002-09-12 16:51:40 crash-4.0-8.11/configure.c

-rwxrwxr-x root/root 29931 2002-09-12 16:51:40 crash-4.0-8.11/net.c
-rwxrwxr-x root/root 99654 2002-09-12 16:51:40 crash-4.0-8.11/dev.c
-rwxrwxr-x root/root 76146 2002-09-12 16:51:40 crash-4.0-8.11/alpha.c
-rwxrwxr-x root/root 74638 2002-09-12 16:51:40 crash-4.0-8.11/x86.c
-rwxrwxr-x root/root 42109 2002-09-12 16:51:40 crash-4.0-8.11/ppc.c
-rwxrwxr-x root/root 76357 2002-09-12 16:51:40 crash-4.0-8.11/ia64.c

 (complete output not shown)

Requires: libc.so.6 libc.so.6(GLIBC_2.0) libc.so.6(GLIBC_2.1) libc.so.6(GLIBC_2.
2) libc.so.6(GLIBC_2.2.3) libc.so.6(GLIBC_2.3) libdl.so.2 libdl.so.2(GLIBC_2.0)
libdl.so.2(GLIBC_2.1) libm.so.6 libm.so.6(GLIBC_2.0) libncurses.so.5 libz.so.1
Processing files: crash-debuginfo-4.0-8.11
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(PayloadFilesHave
Prefix) <= 4.0-1
Checking for unpackaged file(s): /usr/lib/rpm/check-files /var/tmp/crash-root
Wrote: /usr/src/redhat/SRPMS/crash-4.0-8.11.src.rpm
Wrote: /usr/src/redhat/RPMS/i386/crash-4.0-8.11.i386.rpm
Wrote: /usr/src/redhat/RPMS/i386/crash-debuginfo-4.0-8.11.i386.rpm
#

Lastly, install the binary RPM, which copies the crash executable to the /usr/bin directory:

rpm -ivh /usr/src/redhat/RPMS/i386/crash-4.0-8.11.i386.rpm
Preparing... ### [100%]
 1:crash
#

Invocation

When crash is run on a dumpfile, at least two arguments are always required:

1. The kernel object filename, often referred to as the kernel namelist. When initially
built from the kernel sources, its name is vmlinux. In RHEL3 installations, it is copied to
the /boot directory, where the operating system release number is appended, as in
vmlinux-2.4.21-4.ELsmp. In RHEL4, RHEL5 and RHEL6 installations, the vmlinux file is part
of the kernel debuginfo package, and is located in the relevant
/usr/lib/debug/lib/modules/<release> directory.

2. The dumpfile name, typically named vmcore.

For example, if both files are located in the current directory:

crash vmlinux vmcore

When crash is run on a live system, /dev/mem is used as the memory image. In RHEL4, RHEL5
and RHEL6, the /dev/mem driver is restricted on x86 and x86_64 systems, and is replaced by
the /dev/crash driver. In any case, only the kernel object filename is required:

crash vmlinux

Furthermore, when crash is run on a live system, the vmlinux argument is not required when
the kernel object file is located in any of the following locations:

/boot

/usr/lib/debug/lib/modules/<release>
/ (root directory)
any subdirectory of /usr/src
/usr/src/redhat/BUILD/kernel-x.x.x/linux-<release>

When the vmlinux file is not entered on the command line, a search will be made in all of the

directories above until a kernel object file is found that contains a version string that
matches the running kernel, as indicated by /proc/version. If a matching kernel is found, then
crash may be invoked on a live system simply by entering:

crash

In the examples above, it is presumed that the vmlinux kernel has been built with the -g C
flag, which traditionally has not been done by default. To address this requirement,
starting with Red Hat Enterprise Linux 3 (RHEL3), all RHEL kernels are now built with -g C
flag. The manner of accessing the debug data for RHEL3, RHEL4, RHEL5 and RHEL6 kernels
is described in the following sections. Unfortunately, since RHEL2.1 kernels are not built
with -g, the kernel must be rebuilt; directions for rebuilding RHEL2.1 kernels can be found
here.

RHEL3 Kernels

In RHEL3, the vmlinux kernel debug information is stripped and stored in a separate
debuginfo file. The stripped vmlinux file in /boot has an embedded link to its associated
debuginfo file in /usr/lib/debug/boot, so that the crash utility (and the built-in gdb module)
knows where to find it:

RHEL3 kernel namelist in /boot RHEL3 kernel debuginfo file in /usr/lib/debug/boot

vmlinux-<release>.EL
vmlinux-<release>.ELsmp
vmlinux-<release>.ELhugemem

vmlinux-<release>.EL.debug
vmlinux-<release>.ELsmp.debug
vmlinux-<release>.ELhugemem.debug

The debuginfo files for a specific kernel <release> come from a separate RPM that must be
installed for the crash utility to work. For example, the i686 RPM for the examples above
would be named kernel-debuginfo-<release>.i686.rpm, and would install the debuginfo file for
all three of the kernel flavors.

For example, to run crash on a live system, the associated debuginfo package must be
installed:

uname -r
2.4.21-4.ELsmp
rpm -ivh kernel-debuginfo-2.4.21-4.EL.i686.rpm
Preparing... ### [100%]
 1:kernel-debuginfo ### [100%]
ls /usr/lib/debug/boot
vmlinux-2.4.21-4.EL.debug
vmlinux-2.4.21-4.ELhugemem.debug
vmlinux-2.4.21-4.ELsmp.debug
#

Accordingly, if the running kernel's vmlinux file is in one the search locations above, and its
associated debuginfo file is located in the /usr/lib/debug/boot directory or in the current
directory from which crash is invoked, no arguments are required to run on a live system:

crash

However, if the linked debuginfo file is not in either of those locations, it can be added to
the crash command line along with the vmlinux filename. So, for example, if the debuginfo
file was located in /tmp:

http://people.redhat.com/anderson/crash_whitepaper/help_pages/kernel_rebuild.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/kernel_rebuild.html

crash /boot/vmlinux-2.4.21-4.ELsmp /tmp/vmlinux-2.4.21-4.ELsmp.debug

For analyzing dumpfiles however, the vmlinux file name must be on the command line along
with the dumpfile name, as in the following examples:

crash /boot/vmlinux-2.4.21-4.ELsmp vmcore

or if the debuginfo file is not in the standard location:

crash /boot/vmlinux-2.4.21-4.ELsmp /tmp/vmlinux-2.4.21-4.ELsmp.debug vmcore

RHEL4 Kernels

The procedure has been made much simpler for RHEL4 kernels. The kernel is built with the
-g flag, and the resultant vmlinux file is stored in the associated debuginfo package. After
installing the debuginfo package, the vmlinux file for each kernel flavor of a given RHEL4
release will be installed in the directory named:

/usr/lib/debug/lib/modules/<release><flavor>/vmlinux

where for i686 kernels, <flavor> can be either hugemem, smp, or nothing (for uniprocessor
kernels). For example:

uname -r
2.6.9-6.39.ELsmp
rpm -ivh kernel-debuginfo-2.6.9-6.39.EL.i686.rpm
Preparing... ### [100%]
 1:kernel-debuginfo ### [100%]
#
find /usr/lib/debug/lib/modules/2.6.9-6.39.EL* -name vmlinux
/usr/lib/debug/lib/modules/2.6.9-6.39.ELhugemem/vmlinux
/usr/lib/debug/lib/modules/2.6.9-6.39.ELsmp/vmlinux
/usr/lib/debug/lib/modules/2.6.9-6.39.EL/vmlinux
#

Once the debuginfo package is installed, crash can be invoked on the live system with no
arguments, because the vmlinux file will be found automatically:

crash

To run crash on a dumpfile, however, the appropriate vmlinux file and the dumpfile name
must both be on the command line, as in:

crash /usr/lib/debug/lib/modules/2.6.9-6.39.ELsmp/vmlinux vmcore

RHEL5 Kernels

RHEL5 kernels are also built with the -g flag, and the resultant vmlinux file is stored in an
associated debuginfo package. Unlike RHEL4, the kernel debuginfo packages are split into
one package per flavor plus a "common" package user by all kernel flavors. After installing
the debuginfo package, the vmlinux file for each kernel flavor of a given RHEL5 release will
be installed in the directory named:

/usr/lib/debug/lib/modules/<release><flavor>/vmlinux

where for i686 kernels, there are 4 possible <flavor>s, either PAE, xen, debug, or nothing (for
non-PAE SMP kernels). For example:

rpm -ivh kernel-debuginfo-2.6.18-66.el5.i686.rpm \
 kernel-PAE-debuginfo-2.6.18-66.el5.i686.rpm \
 kernel-xen-debuginfo-2.6.18-66.el5.i686.rpm \
 kernel-debuginfo-common-2.6.18-66.el5.i686.rpm
Preparing... ### [100%]
 1:kernel-debuginfo-common### [25%]
 2:kernel-debuginfo ### [50%]
 3:kernel-PAE-debuginfo ### [75%]
 4:kernel-xen-debuginfo ### [100%]
find /usr/lib/debug/lib/modules/2.6.18-66.el5* -name vmlinux
/usr/lib/debug/lib/modules/2.6.18-66.el5/vmlinux
/usr/lib/debug/lib/modules/2.6.18-66.el5PAE/vmlinux
/usr/lib/debug/lib/modules/2.6.18-66.el5xen/vmlinux
#

Once the debuginfo package is installed, crash can be invoked on the live system with no
arguments, because the vmlinux file will be found automatically:

crash

To run crash on a dumpfile, however, the appropriate vmlinux file and the dumpfile name
must both be on the command line, as in:

crash /usr/lib/debug/lib/modules/2.6.18-66.el5/vmlinux vmcore

RHEL6 Kernels

RHEL6 kernels are also built with the -g flag, and the resultant vmlinux file is stored in an
associated debuginfo package. Like RHEL5, the kernel debuginfo packages are split into
one package per flavor plus a "common" package user by all kernel flavors. After installing
the debuginfo package, the vmlinux file for each kernel flavor of a given RHEL6 release will
be installed in the directory named:

/usr/lib/debug/lib/modules/<release><flavor>/vmlinux

where for x86_64 kernels, there are only 2 possible <flavor>s, either the standard kernel or
the debug kernel. For example:

rpm -ivh kernel-debuginfo-common-2.6.32-70.el6.x86_64.rpm \
 kernel-debuginfo-2.6.32-70.el6.x86_64.rpm \
 kernel-debug-debuginfo-2.6.32-70.el6.x86_64.rpm
Preparing... ### [100%]
 1:kernel-debuginfo-common### [25%]
 2:kernel-debuginfo ### [50%]
 3:kernel-debug-debuginfo ### [100%]
find /usr/lib/debug/lib/modules/2.6.32-70.el6* -name vmlinux
/usr/lib/debug/lib/modules/2.6.32-70.el6/vmlinux
/usr/lib/debug/lib/modules/2.6.32-70.el6debug/vmlinux
#

Once the debuginfo package is installed, crash can be invoked on the live system with no
arguments, because the vmlinux file will be found automatically:

crash

To run crash on a dumpfile, however, the appropriate vmlinux file and the dumpfile name
must both be on the command line, as in:

crash /usr/lib/debug/lib/modules/2.6.32-70.el6/vmlinux vmcore

RHEL2.1 Kernels (or kernels built without -g flag)

If the running kernel was not built with the -g C flag, then it is necessary to rebuild a kernel
of the same configuration with the -g C flag. The essential change done by this kernel
rebuild task is a modification of top-level Makefile of the kernel source tree, such that the
CFLAGS definition contains the -g flag. For example, this is the line that must be changed:

CFLAGS := $(CPPFLAGS) -Wall -Wstrict-prototypes -Wno-trigraphs -O2 \
 -fno-strict-aliasing -fno-common

by adding the -g flag:

CFLAGS := $(CPPFLAGS) -Wall -Wstrict-prototypes -Wno-trigraphs -O2 \
 -fno-strict-aliasing -fno-common -g

For example, since RHEL2.1 kernels are not built with -g, a kernel rebuild is required. For a
detailed example of how to rebuild a RHEL2.1 kernel with the -g flag, please refer to these
directions.

Upon rebuilding the kernel, a new vmlinux file will be created that contains the debug data
required by crash. However, the symbol values will not match those of the running or
dumped kernel. To deal with this inequity, the actual symbol values can be gathered from
either the original non-debug vmlinux file or from its associated System.map file. That being
the case, two arguments must be supplied to crash to fully describe the running/dumped
kernel, the newly-created vmlinux file compiled with -g, as well as a source of the real
symbol values. So, for example, if the vmlinux file built with -g were renamed to vmlinux.dbg,
the invocation line would look like this on a live system:

crash vmlinux vmlinux.dbg
(or)
crash /boot/System.map vmlinux.dbg
(or)
crash -S vmlinux.debug

The -S argument above is simply an alternative to entering the default /boot/System.map
string.

Similarly, when looking at a dumpfile, two arguments are required to describe the dumped
kernel, along with the vmcore image:

crash vmlinux vmlinux.dbg vmcore
(or)
crash /boot/System.map vmlinux.dbg vmcore
(or)
crash -S vmlinux.dbg vmcore

Again, for a detailed example of how to rebuild a RHEL2.1 kernel with the -g flag, refer to
these directions.

Invocation output

The arguments may be entered in any order. If the file arguments are not in the current
directory, absolute pathnames must be used. When in doubt, simply enter crash -h to get
an explanation of the command line arguments:

crash -h

Usage:
 crash [-h [opt]][-v][-s][-i file][-d num] [-S] [mapfile] [namelist] [dumpfile]

http://people.redhat.com/anderson/crash_whitepaper/help_pages/kernel_rebuild.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/kernel_rebuild.html

 [namelist]
 The [namelist] argument is a pathname to an uncompressed kernel image
 (a vmlinux file) that has been compiled with the "-g" switch, or
 that has an accessible, associated, debuginfo file. If the [dumpfile]
 argument is entered, then the [namelist] argument must be entered
 If the [namelist] argument is not entered when running on a live
 system, a search will be made in several typical directories for
 for a kernel namelist file that matches the live system.

 [dumpfile]
 The [dumpfile] argument is a pathname to a kernel memory core dump
 file. If the [dumpfile] argument is not entered, the session will be
 invoked on the live system using /dev/mem, which usually requires root
 privileges.

 [mapfile]
 If the live system kernel, or the kernel from which the [dumpfile]
 was derived, was not compiled with the -g switch, then the additional
 [mapfile] argument is required. The [mapfile] argument may consist
 of either the associated System.map file, or the non-debug kernel
 namelist. However, if the [mapfile] argument is used, then the
 [namelist] argument must be a kernel namelist of a similar kernel
 version that was built with the -g switch.

 [-S]
 Use "/boot/System.map" as the [mapfile].

 Examples when running on a live system:

 $ crash
 $ crash /usr/tmp/vmlinux
 $ crash /boot/System.map vmlinux.dbg
 $ crash -S vmlinux.dbg
 $ crash vmlinux vmlinux.dbg

 Examples when running on a dumpfile:

 $ crash vmlinux vmcore
 $ crash /boot/System.map vmlinux.dbg vmcore
 $ crash -S vmlinux.dbg vmcore
 $ crash vmlinux vmlinux.dbg vmcore

 [-h [opt]]
 The -h option alone displays this message. If the [opt] argument is
 a crash command name, the help page for that command is displayed. If
 the string "input" is entered, a page describing the various crash
 command line input options is displayed. If the string "output" is
 entered, a page describing command line output options is displayed.

 [-v]
 Display the versions of crash and gdb making up this executable.

 [-s]
 Do not display any version, GPL, or crash initialization data; proceed
 directly to the "crash>" prompt.

 [-i file]
 Execute the crash command(s) in [file] prior to accepting any user
 input from the "crash>" prompt.

 [-d num]
 Set crash debug level [num]. The higher the number, the more debug data
 will be printed during crash runtime.

Given that all invocation arguments are in order, here is an example of a successful
invocation on a dumpfile, running a kernel that was built with -g, along with a vmcore dump
file was created by the Red Hat Netdump facility:

crash vmlinux-2.4.20-2.1.15.entsmp vmcore

crash 4.0-8.11
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Red Hat, Inc.

Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...

 KERNEL: vmlinux-2.4.20-2.1.15.entsmp
 DUMPFILE: vmcore
 CPUS: 1
 DATE: Wed Mar 12 10:12:56 2003
 UPTIME: 00:38:25
LOAD AVERAGE: 1.16, 0.74, 0.30
 TASKS: 60
 NODENAME: dhcp64-220.boston.redhat.com
 RELEASE: 2.4.20-2.1.15.entsmp
 VERSION: #1 SMP Tue Mar 11 16:12:22 EST 2003
 MACHINE: i686 (501 Mhz)
 MEMORY: 128 MB
 PANIC: "Oops: 0002" (check log for details)
 PID: 0
 COMMAND: "swapper"
 TASK: c038e000
 CPU: 0
 STATE: TASK_RUNNING (PANIC)

crash>

This next example shows the output when the panicking kernel was not built with -g. In
this case, a similar kernel type was built with -g, and the resultant kernel object file was
renamed as vmlinux.dbg. Note that there will be a message concerning the patching of gdb
data; this indicates that the non-matching symbol values from the vmlinux.dbg are being
over-written by the correct symbol values found in the original vmlinux file:

crash vmlinux vmlinux.dbg vmcore

crash 4.0-8.11
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...

please wait... (patching 16053 gdb minimal_symbol values)

DEBUG KERNEL: vmlinux.dbg
 DUMPFILE: vmcore
 CPUS: 1
 DATE: Wed Mar 27 11:02:31 2002
 UPTIME: 00:07:24
LOAD AVERAGE: 0.43, 0.42, 0.19
 TASKS: 68
 NODENAME: anderson.boston.redhat.com
 RELEASE: 2.4.9-26beta.48enterprise
 VERSION: #1 SMP Thu Mar 21 12:33:05 EST 2002
 MACHINE: i686 (501 Mhz)
 MEMORY: 128 MB
 PANIC: "Oops: 0002" (check log for details)
 PID: 1696
 COMMAND: "insmod"
 TASK: c74de000
 CPU: 0
 STATE: TASK_RUNNING (PANIC)

crash>

Invocation on a live system looks essentially the same, except that the DUMPFILE will be
indicated as /dev/mem. In the following example, no arguments were entered, because the
running RHEL3 kernel was found in the /boot directory, and its associated debuginfo file in
the /usr/lib/debug/boot directory. The debuginfo file is listed next to the DEBUGINFO tag:

crash

crash 4.0-8.11
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...

 KERNEL: /boot/vmlinux-2.4.21-4.ELhugemem
 DEBUGINFO: /usr/lib/debug/boot/vmlinux-2.4.21-4.ELhugemem.debug
 DUMPFILE: /dev/mem
 CPUS: 2
 DATE: Thu Aug 21 11:24:38 2003
 UPTIME: 1 days, 23:14:11
LOAD AVERAGE: 0.14, 0.10, 0.08
 TASKS: 106
 NODENAME: crash.boston.redhat.com
 RELEASE: 2.4.21-4.ELhugemem
 VERSION: #1 SMP Wed Aug 13 21:33:31 EDT 2003
 MACHINE: i686 (1993 Mhz)
 MEMORY: 511.5 MB
 PID: 4757
 COMMAND: "crash"
 TASK: 19b82000
 CPU: 1
 STATE: TASK_RUNNING (ACTIVE)

crash>

Invocation Errors

Invocation errors will cause the crash session to abort upon initialization. Typically they
occur as the result of one of the following reasons:

1. The vmlinux file contains no debug data (i.e., was built without the -g flag), and no
additional debug kernel object file name was entered on the command line. The
error message will be of the form:

crash: /boot/vmlinux-2.4.18-14: no debugging data available

2. The vmlinux file does not match the dumpfile. The error message will be of the form:

crash: vmlinux and tmp/vmcore do not match!

3. The vmlinux file could not be found on a live system. The error message will be of the
form:

crash: cannot find booted kernel -- please enter namelist argument

4. The associated debuginfo file cannot be found. The error message will be of the
form:

crash: /boot/vmlinux-2.4.21-4.ELsmp: no debugging data available
crash: vmlinux-2.4.21-4.ELsmp.debug: debuginfo file not found

5. The crash utility binary does not match the vmlinux and/or vmcore arguments. The error
message will be of the form:

WARNING: machine type mismatch:
 crash utility: X86
 vmlinux: X86_64

crash: vmlinux: not a supported file format

Command Input

Upon a successful session invocation on a dump file or a live kernel, the crash> prompt will
appear. Interactive crash commands are gathered using the GNU readline library, taking
advantage of its command line history mechanism, and its vi or emacs command line editing
modes. Commands may also be issued to crash from a file.

Command Line History

The command line history consists of a numbered list of previously-run commands. The full
list of commands may be viewed by entering h at any time. For example:

crash> h

[1] bt -a
[2] ps
[3] foreach bt
[4] set
[5] dis -rl c0221141

crash>

Commands in the history list may be re-run in the following manners

1. To re-run the last command executed, simply enter r or !! and then ENTER.
2. Enter r followed by the appropriate history list number, and then ENTER.
3. Enter r followed by a uniquely-identifying set of characters from the beginning of the

previously-entered command string, and then ENTER.
4. Recycle back through the command history list using the up-arrow and down-arrow

keys until the desired command is re-displayed, and then ENTER.
5. Recycle back through the command history list using the key-strokes appropriate for

the command line editing mode being used (vi or emacs) until the desired command is
re-displayed, and then ENTER.

Command Line Editing

The command line editing mode may be set to either vi (the default) or emacs. The mode
may set in the following manners, listed in increasing order of precedence:

1. Do none of the following, in which case the default vi editing mode will be used.
2. Set the EDITOR environment variable to either vi or emacs.
3. Create an entry in a .crashrc file in the user's $HOME directory. The entry must be a line

of one of the following forms:

set vi
set emacs

4. Create an entry in a .crashrc file be located in the current directory, in the form shown
in (3) above.

5. Use the -e command line option, as in:

crash -e [vi | emacs] ...

Given either editing mode, any previously entered command line can be brought back by
entering the mode-specific key-stroke(s), the command line edited using the proper mode,
and then run by hitting ENTER.

Command Line Input from a File

An input file consisting of a list of commands may be fed to crash in the following manners:

1. Upon invocation, as in:

crash -i inputfile

2. Upon invocation, by entering the commands in a .crashrc file, which can be either in
the user's $HOME directory or in the current directory.

3. On the command line during a crash session, as in:

crash> < inputfile

In all of the three cases above, after the list of commands in the file have completed, the
crash> prompt will appear and commands may then be entered interactively (unless one of
the file commands happens to be the exit command).

Numerical Arguments

Numerical arguments are typically presumed to be decimal unless the argument contains
an a, b, c, d, e or f. In those cases, the preceding 0x is not required. For hexadecimal numbers
that do not contain one of those 6 characters, the preceding 0x is required. So, for
example, a value of 1 gigabyte would have to be expressed as 0x40000000, whereas 3
gigabytes could be expressed as c0000000.

It should be noted that several commands will only accept hexadecimal numerical
arguments. For example, the rd ("read") command only accepts hexadecimal addresses.
Therefore a read from user address of 0x40017000 could be entered as:

crash> rd 40017000 40
40017000: 20000824 00000010 00000048 00000063 $..H...c...
40017010: 00000082 000000ba 000000bb 000000cd
40017020: 000000ce 000000cf 000000d7 000000db
40017030: 000000dc 000000dd 000000de 000000e2
40017040: 000000ed 00000167 6c676e45 20687369 g...English
40017050: 61636f6c 6620656c 7420726f 55206568 locale for the U
40017060: 46004153 20656572 74666f53 65726177 SA.Free Software
40017070: 756f4620 7461646e 2c6e6f69 636e4920 Foundation, Inc
40017080: 3935002e 6d655420 20656c70 63616c50 ..59 Temple Plac
40017090: 202d2065 74697553 33332065 42202c30 e - Suite 330, B

Command Output

crash commands can often be verbose, and it's helpful to control the output, as well as to
be able to scroll backwards to view previous command output. So, by default, command
output that would overflow the user's display screen is piped to /usr/bin/less, along with a
prompt line that informs the user how to scroll forward, backward, or to quit the
command. For example, here is an example of what a ps command might look like:

crash> ps
 PID PPID CPU TASK ST %MEM VSZ RSS COMM
 0 0 0 c030a000 RU 0.0 0 0 [swapper]
 1 0 0 cff98000 IN 0.2 1412 468 init
 2 1 0 c1446000 IN 0.0 0 0 [keventd]
 3 1 0 cfffa000 IN 0.0 0 0 [kapm-idled]
 4 0 0 cfff8000 IN 0.0 0 0 [ksoftirqd_CPU0]
 5 0 0 cffee000 IN 0.0 0 0 [kswapd]
 6 0 0 cffec000 IN 0.0 0 0 [kreclaimd]
 7 0 0 c1826000 IN 0.0 0 0 [bdflush]
 8 0 0 c1824000 IN 0.0 0 0 [kupdated]
 9 1 0 cff90000 IN 0.0 0 0 [mdrecoveryd]
 13 1 0 cf07a000 IN 0.0 0 0 [kjournald]
 89 1 0 ce804000 IN 0.0 0 0 [khubd]
 184 1 0 ce4d4000 IN 0.0 0 0 [kjournald]
 572 1 0 cd938000 IN 0.0 440 48 dhcpcd
 637 1 0 ce4a4000 IN 0.2 1476 612 syslogd
 642 1 0 cd92c000 IN 0.2 2092 432 klogd
 663 1 0 ce2bc000 IN 0.2 1564 612 portmap
 691 1 0 cd84a000 IN 0.3 1652 668 rpc.statd
 803 1 0 cd756000 IN 0.2 1400 452 apmd
 828 1 0 cd6c2000 IN 0.3 18024 684 ypbind
 830 828 0 cd76e000 IN 0.3 18024 684 ypbind
 831 830 0 cd71c000 IN 0.3 18024 684 ypbind
-- MORE -- forward: <SPACE>, <ENTER> or j backward: b or k quit: q

This default output scrolling behavior can be turned off by entering the following line in a
.crashrc file located in either the $HOME or current directories:

http://people.redhat.com/anderson/crash_whitepaper/help_pages/rd.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ps.html

set scroll off

During runtime, the following commands (or their respective builtin aliases) can be used to
turn the scrolling behavior off, and back on, again:

crash> set scroll off
scroll: off
crash> set scroll on
scroll: on
crash> alias

ORIGIN ALIAS COMMAND
builtin man help
builtin ? help
builtin quit q
builtin sf set scroll off
builtin sn set scroll on
builtin hex set radix 16
builtin dec set radix 10
builtin g gdb
builtin px p -x
builtin pd p -d
builtin for foreach
builtin size *
builtin dmesg log
builtin last ps -l
crash> sf
scroll: off
crash> sn
scroll: on
crash>

Alternatively, command output may be redirected to a pipe or to a file using standard shell
redirection syntax. For examples:

crash> task | grep uid
 uid = 3369,
 euid = 3369,
 suid = 3369,
 fsuid = 3369,
crash> foreach bt > bt.all
crash> ps >> process.data
crash> kmem -i | grep SLAB > slab.pages
crash>

When a command's output is redirected to a pipe or file, the default /usr/bin/less behavior
is turned off for that particular command.

Numerical Output

The default numerical output radix for non-pointer values is decimal, which is most often
noticed when using the builtin gdb capability of printing formatted data structures. During
runtime, the following commands (or their respective builtin aliases) can be used to toggle
the output radix from decimal to hexadecimal, and back again:

crash> set radix 16
output radix: 16 (hex)
crash> set scroll 10
output radix: 10 (decimal)
crash> alias

ORIGIN ALIAS COMMAND
builtin man help
builtin ? help
builtin quit q
builtin sf set scroll off

builtin sn set scroll on
builtin hex set radix 16
builtin dec set radix 10
builtin g gdb
builtin px p -x
builtin pd p -d
builtin for foreach
builtin size *
builtin dmesg log
crash> hex
output radix: 16 (hex)
crash> dec
output radix: 10 (decimal)
crash>

Alternatively, the px or pd aliases coerce the "print" command p, to override the current
output radix. For example, here the changing value of jiffies on a live system is printed
using the current default radix, then in hexadecimal, and lastly in decimal:

crash> p jiffies
jiffies = $4 = 69821055
crash> px jiffies
jiffies = $5 = 0x42963aa
crash> pd jiffies
jiffies = $6 = 69821656
crash>

Crash Context

Upon a successful invocation of a crash session, one of the existing Linux tasks is selected
as the current context. It is important to be aware of the current context because several
crash commands are "context-sensitive", meaning that the command is executed from the
view-point of the current context. Therefore, the output of context-sensitive commands
can vary depending upon which context is current.

Upon invocation of a crash session, the selection of the current context is based upon the
following criteria:

On dumpfiles:

The task that was running when die() was called.
The task that was running when panic() was called.
The task that was running when an ALT-SYSRQ-c keyboard interrupt was received.
The task that was running when the character "c" was echoed to /proc/sysrq-trigger.

On a live system:

the crash task itself.

The current context selection is shown in the session invocation data. For example, here is
a session begun on a dumpfile that was created when an insmod task's attempt to install a
module resulted in an "oops" violation:

crash tmp/vm*

crash 4.0-8.11

http://people.redhat.com/anderson/crash_whitepaper/help_pages/p.html

Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...

 KERNEL: tmp/vmlinux
DEBUG KERNEL: tmp/vmlinux.dbg
 DUMPFILE: tmp/vmcore
 CPUS: 1
 DATE: Wed Mar 27 11:02:31 2002
 UPTIME: 00:07:24
LOAD AVERAGE: 0.43, 0.42, 0.19
 TASKS: 68
 NODENAME: anderson.boston.redhat.com
 RELEASE: 2.4.9-26beta.48enterprise
 VERSION: #1 SMP Thu Mar 21 12:33:05 EST 2002
 MACHINE: i686 (501 Mhz)
 MEMORY: 128 MB
 PANIC: "Oops: 0002" (check log for details)
 PID: 1696
 COMMAND: "insmod"
 TASK: c74de000
 CPU: 0
 STATE: TASK_RUNNING (PANIC)

crash>

During runtime, the current context can always be displayed by entering the set command
with no arguments:

crash> set
 PID: 1696
COMMAND: "insmod"
 TASK: c74de000
 CPU: 0
 STATE: TASK_RUNNING (PANIC)
crash>

Changing the Crash Context

The current context can be changed to a new task via the set command. Either of two
"handles" may be used to identify a task, the PID number, or the kernel address of the
task's task_struct. For example:

crash> set 1
 PID: 1
COMMAND: "init"
 TASK: c7f98000
 CPU: 0
 STATE: TASK_RUNNING
crash> set c0a52000

 PID: 1503
COMMAND: "cat"

http://people.redhat.com/anderson/crash_whitepaper/help_pages/set.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/set.html

 TASK: c0a52000
 CPU: 0
 STATE: TASK_INTERRUPTIBLE
crash>

Alternatively, the current context can be set to the task running on a given CPU number,
or back to the panicking task. Using the same dumpfile session shown above, in which
there is only one CPU, the original context may be restored using the -c CPU-number or the -p
("panic task") options:

crash> set -c 0
 PID: 1696
COMMAND: "insmod"
 TASK: c74de000
 CPU: 0
 STATE: TASK_RUNNING (PANIC)
crash> set -p
 PID: 1696
COMMAND: "insmod"
 TASK: c74de000
 CPU: 0
 STATE: TASK_RUNNING (PANIC)
crash>

Context-Sensitive Commands

It is important to be aware that several crash commands are context-sensitive. For
example, the files command displays data about the open files of a task. If it is issued with
no arguments, it displays the open files data of the current context. In this example, the
current context happens to be PID 642, the klogd daemon:

crash> files

PID: 642 TASK: cd92c000 CPU: 0 COMMAND: "klogd"
ROOT: / CWD: /
 FD FILE DENTRY INODE TYPE PATH
 0 ce06c800 ce29ec60 cd8df900 REG /proc/kmsg
 1 ce06cf20 ce29ebe0 cd8df740 SOCK socket:/[858]
 2 ce06c5c0 ce2423a0 ce462c80 REG /boot/System.map-2.4.9-e.3enterprise

However, if the files command is issued with either of the two task handles as an
argument, then it will display the open files data of the specified task. In this example, PID
12731 is specified:

crash> files 12731

PID: 12731 TASK: c8150000 CPU: 0 COMMAND: "vi"
ROOT: / CWD: /tmp
 FD FILE DENTRY INODE TYPE PATH
 0 c988cd80 ced919a0 c87fc3c0 CHR /dev/pts/11
 1 c988cd80 ced919a0 c87fc3c0 CHR /dev/pts/11
 2 c988cd80 ced919a0 c87fc3c0 CHR /dev/pts/11
 4 c2927ae0 c6cad8a0 cd6d5040 REG /tmp/.crontab.12730.swp
 5 c2927a80 c6cad9a0 c5764ac0 REG /tmp/crontab.12730

This type of context-sensitive behaviour is also exhibited by the vm, bt, sig, set, net and task
commands. Unless a PID or task address is specified as an argument, the output will reflect
data concerning the current context.

Other commands may simply default to the current context. For example, the rd command
can read memory from an address that is specified as a user-space address. Since the rd
command does not accept a PID or task address as an argument, it would be necessary to
be aware that the user-space access will come from the address space of the current

http://people.redhat.com/anderson/crash_whitepaper/help_pages/vm.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/rd.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/task.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/bt.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/net.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/sig.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/set.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/files.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/rd.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/files.html

context.

Builtin Help

Readily available help information is built into the crash utility. During a session, entering
the help command with no argument shows the following menu:

crash> help

* files mod runq union

alias foreach mount search vm

ascii fuser net set vtop

bt gdb p sig waitq

btop help ps struct whatis

dev irq pte swap wr

dis kmem ptob sym q

eval list ptov sys

exit log rd task

extend mach repeat timer

crash version: 4.0-8.11 gdb version: 6.1
For help on any command above, enter "help <command>".
For help on input options, enter "help input".
For help on output options, enter "help output".

crash>

Each command has its own man-like help page, which can be viewed by clicking on the
command name above. Each help page details the syntax of the command and its available
options, a description of the command in general, a description of each option, and a set of
examples. During a crash session, a command's help page can be displayed by entering help
followed by the command name. So, for example, to get help on how to use the set
command:

crash> help set

NAME
 set - set a process context or internal crash variable

SYNOPSIS
 set [pid | taskp | [-c cpu] | -p] | [crash_variable [setting]] | -v

DESCRIPTION
 This command either sets a new context, or gets the current context for
 display. The context can be set by the use of:

 pid a process PID.
 taskp a hexadecimal task_struct pointer.
 -c cpu sets the context to the active task on a cpu (dumpfiles only).
 -p sets the context to the panic task, or back to the crash task on
 a live system.
 -v display the current state of internal crash variables.

 If no argument is entered, the current context is displayed. The context
 consists of the PID, the task pointer, the CPU, and task state.

 This command may also be used to set internal crash variables. If no value
 argument is entered, the current value of the crash variable is shown. These
 are the crash variables, acceptable arguments, and purpose:

http://people.redhat.com/anderson/crash_whitepaper/help_pages/swap.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ps.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/q.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ascii.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/search.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/bt.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/mount.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/kmem.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/wr.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/help.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/sig.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/timer.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/btop.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/irq.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/sym.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/p.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/vtop.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/runq.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/sys.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/dev.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/net.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/dis.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/list.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/help.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/files.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/set.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/task.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/rd.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/help.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/output.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/extend.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/eval.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/vm.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/alias.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/log.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/struct.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/gdb.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/set.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/waitq.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/mod.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/input.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ptob.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/fuser.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/exit.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ptov.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/union.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/repeat.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/whatis.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/pointer.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/mach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/pte.html

 scroll on | off controls output scrolling.
 scroll less /usr/bin/less as the output scrolling program.
 scroll more /bin/more as the output scrolling program.
 scroll CRASHPAGER use CRASHPAGER environment variable as the
 output scrolling program.
 radix 10 | 16 sets output radix to 10 or 16.
 refresh on | off controls internal task list refresh.
 print_max number set maximum number of array elements to print.
 console device-name sets debug console device.
 debug number sets crash debug level.
 core on | off if on, drops core when the next error message
 is displayed.
 hash on | off controls internal list verification.
 silent on | off turns off initialization messages; turns off
 crash prompt during input file execution.
 (scrolling is turned off if silent is on)
 edit vi | emacs set line editing mode (from .crashrc file only).
 namelist filename name of kernel (from .crashrc file only).
 dumpfile filename name of core dumpfile (from .crashrc file only).
 zero_excluded on | off controls whether excluded pages from a dumpfile
 should return zero-filled memory.

 Internal variables may be set in four manners:

 1. entering the set command in $HOME/.crashrc.
 2. entering the set command in .crashrc in the current directory.
 3. executing an input file containing the set command.
 4. during runtime with this command.

 During initialization, $HOME/.crashrc is read first, followed by the
 .crashrc file in the current directory. Set commands in the .crashrc file
 in the current directory override those in $HOME/.crashrc. Set commands
 entered with this command or by runtime input file override those
 defined in either .crashrc file. Multiple set command arguments or argument
 pairs may be entered in one command line.

EXAMPLES
 Set the current context to task c2fe8000:

 crash> set c2fe8000
 PID: 15917
 COMMAND: "bash"
 TASK: c2fe8000
 CPU: 0
 STATE: TASK_INTERRUPTIBLE

 Set the context back to the panicking task:

 crash> set -p
 PID: 698
 COMMAND: "gen12"
 TASK: f9d78000
 CPU: 2
 STATE: TASK_RUNNING (PANIC)

 Turn off output scrolling:

 crash> set scroll off
 scroll: off (/usr/bin/less)

 Show the current state of crash internal variables:

 crash> set -v
 scroll: on (/usr/bin/less)
 radix: 10 (decimal)
 refresh: on
 print_max: 256
 console: /dev/pts/2
 debug: 0
 core: off
 hash: on
 silent: off
 edit: vi
 namelist: vmlinux

 dumpfile: vmcore
 zero_excluded: off

 Show the current context:

 crash> set
 PID: 1525
 COMMAND: "bash"
 TASK: c1ede000
 CPU: 0
 STATE: TASK_INTERRUPTIBLE

If for some reason a crash session cannot be invoked, but help information for a particular
crash command is desired, the same help page can be displayed from a shell command line
using the -h option to crash:

crash -h ascii

NAME
 ascii - translate a hexadecimal string to ASCII

SYNOPSIS
 ascii value ...

DESCRIPTION
 Translates 32-bit or 64-bit hexadecimal values to ASCII. If no argument
 is entered, an ASCII chart is displayed.

EXAMPLES
 Translate the hexadecimal value of 0x62696c2f7273752f to ASCII:

 crash> ascii 62696c2f7273752f
 62696c2f7273752f: /usr/lib

 Display an ASCII chart:

 crash> ascii

 0 1 2 3 4 5 6 7
 +-------------------------------
 0 | NUL DLE SP 0 @ P ' p
 1 | SOH DC1 ! 1 A Q a q
 2 | STX DC2 " 2 B R b r
 3 | ETX DC3 # 3 C S c s
 4 | EOT DC4 $ 4 D T d t
 5 | ENQ NAK % 5 E U e u
 6 | ACK SYN & 6 F V f v
 7 | BEL ETB ̀ 7 G W g w
 8 | BS CAN (8 H X h x
 9 | HT EM) 9 I Y i y
 A | LF SUB * : J Z j z
 B | VT ESC + ; K [k {
 C | FF FS , < L \ l |
 D | CR GS _ = M] m }
 E | SO RS . > N ̂ n ~
 F | SI US / ? O - o DEL

#

Lastly, help concerning command input and output can be displayed by entering help input
or help output during runtime, or crash -h input or crash -h output from a shell command line.

The Command Set

Each crash command generally falls into one of the following categories:

http://people.redhat.com/anderson/crash_whitepaper/help_pages/output.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/input.html

Symbolic display of kernel text or data
System state
Utility functions
Session Control Commands

The remainder of this section breaks the command set into categories, and gives a short
description of each command in that category. However, for complete details and
examples, recall that the crash utility has a self-contained help page for each command; to
view the full help page, click on the command name next to its description below.

Symbolic Display of Kernel Text or Data

The following commands typically take full advantage of the power of gdb to display kernel
data structures symbolically.

Command Description

struct

Displays a formatted kernel data structure type located at a given
address, or at an address referred to by a symbol; if no address is
specified, the structure definition is displayed. The output can be
narrowed down to a singular member of the structure, or to display the
offset of every member from the beginning of the structure. A count
may be appended to display an array of structures. Its usage is so
common that two short-cuts exist such that the user need not enter the
"struct" command name:

1. The "pointer-to" * command below can be substituted.
2. If a structure name is entered as the first token on a command line,

the "struct" command is actually not necessary.

union

Same as struct command, but used for kernel data types defined as
unions instead of structures..

*

"Pointer-to" command which can be used in lieu of entering struct or
union; the gdb module first determines whether the argument is a
structure or a union, and then calls the appropriate function.

p

Displays the contents of a kernel variable; the arguments are passed on
to gdb's print command for proper formatting. Two builtin aliases, px and
pd, set the numerical output radix to hexadecimal or decimal for the print
operation, temporarily overriding the current default.

whatis

Displays all available symbol table information concerning a data type or
a data symbol.

sym

Translates a kernel symbol name to its kernel virtual address and
section, or a kernel virtual address to its symbol name and section. It can
also be used to dump the complete list of kernel symbols, or to query
the symbol list for all symbols containing a given sub-string.

dis

Disassembles the text of complete kernel function, or from a specified
address for a given number of instructions, or from the beginning of a
function up to a specified address.

http://people.redhat.com/anderson/crash_whitepaper/help_pages/pointer.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/whatis.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/dis.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/union.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/struct.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/p.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/sym.html

System State

The majority of crash commands come from the following set of "kernel-aware" commands,
which delve into various kernel subsystems on a system-wide or per-task basis. The task-
specific commands are context-sensitive, meaning that they act upon the current context
unless a PID or task address is specified as an argument.

Command Description

bt

Arguably the most useful crash command, bt displays a task's kernel stack
back-trace, including full exception frame dumps. It is context-sensitive,
although the -a option will display the stack traces of the active task on
each CPU. This command is often used within the foreach wrapper
command in order to display the back traces of all tasks with one
command.

dev

Displays data concerning the character and block device assignments,
I/O port usage, I/O memory usage, and PCI device data.

files

This context-sensitive command displays the task's current root
directory and working directories, and then for each open file descriptor,
shows:

its file struct address
its dentry struct address
its inode struct address
the file type
the file's full pathname

Another option acts upon a specified dentry address, showing:

its inode struct address
its superblock struct address
the file type
the file's full pathname

It can be called from the foreach wrapper command.

fuser

Displays a list of tasks that reference a specified filename or inode
address as the current root or working directory, an open file descriptor,
or which mmap the file.

irq

Display data concerning interrupt request numbers and bottom-half
handling.

kmem

This command has numerous options that delve into the state of several
kernel memory subsystems:

general memory usage, similar in scope to /proc/meminfo
kmalloc slab memory allocator, including an option that lists each
slab object and its state, verifying the slab chain
display and verification of free page lists
vmalloc memory allocator vmlist contents
display and verification of the page cache
the mem_map page list

http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/irq.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/fuser.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/files.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/dev.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/kmem.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/bt.html

display NUMA data, if applicable

Also, given an address, this command searches the symbol table, the slab
subsystem, the free list, the page_hash_table, the vmlist, and the mem_map
array, displaying where it was found.

log

Dumps the kernel message buffer chronologically, accounting for any
wrap-around.

mach Displays machine and/or processor specific data.

mod

Displays the list of currently-loaded kernel modules. More importantly, it
loads the debug data from the module object files if they are available,
allowing symbolic debugging capability of kernel modules.

mount

For each mounted filesystem, or for just a specified filesystem, displays:

its vfsmount struct address
its super_block struct address
its type
its device name
its mount point

Options exist to dump a list of a specified filesystem's open files or dirty
inodes. Filesystems may be specified by vfsmount, super_block, or inode
addresses, or by device name or mount point names.

net

Displays various network-related data:

displays each configured network device's net_device address, its
name, and IP address
displays the ARP cache
context-sensitive display of information concerning the open
sockets of a task
translates an IP address expressed as a decimal or hexadecimal
value into a standard numbers-and-dots notation

It can be called from the foreach wrapper command.

ps

Useful process status command, in typical Linux ps command type
output, containing:

PID number
PPID number
CPU number
task address
process state
percent of physical memory consumed
virtual address size
resident set size
command name

Also has an option to show a task's parental hierarchy back to the init
process, and another to show all children of a task.

pte

This command translates the contents of a PTE into its physical page
address and page bit settings, or if it references a swap location, the

http://people.redhat.com/anderson/crash_whitepaper/help_pages/net.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/mach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/mod.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/mount.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/pte.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ps.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/log.html

swap device and offset.

runq Displays list of tasks on the run queue.

sig

A context-sensitive command which displays a task's signal information,
including:

whether an unblocked signal is pending
the pending and blocked signals
the handler data for each signal
queued signals, if any

Other options list the signal number/names combination for a processor
type, and translate the contents of a sigset_t into the signal names
whose bits are set. It can be called from the foreach wrapper command.

swap

For each configured swap device, this command displays the same data
that is shown by the Linux command swapon -s.

sys

Re-displays the same system-related data that is seen during crash
initialization:

the kernel object filename
the dumpfile name
the number of CPUS
the date
system uptime
system load average
the number of tasks
the nodename
the kernel release and version data
the processor type and speed
the amount of memory
the panic string

Other options display information concerning the system call table, and
one allows the root user to panic a live system.

task

This context-sensitive command displays a task's complete task_struct
contents, or one or more members of the structure. This command is
often used within the foreach wrapper command in order to display
task_struct data for all tasks with one command.

timer

Displays the timer queue entries in chronological order, listing the target
function names, the current value of jiffies, and the expiration time of
each entry.

vm

This powerful, context-sensitive command displays a wealth of
information concerning a task's virtual memory data, including:

its mm_struct address
its page directory address
its resident set size
its total virtual memory size
each vm_area_struct address, along with its start and ending virtual
address, flags, and source file if applicable.
optionally, every virtual page referenced by a vm_area_struct can be

http://people.redhat.com/anderson/crash_whitepaper/help_pages/swap.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/task.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/vm.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/timer.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/sig.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/runq.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/sys.html

translated into its physical address, or if not resident, its file and
offset.

Other options translate the flags of a vm_area_struct, or display the full
contents of a task's mm_struct or of each vm_area_struct. It can be called
from the foreach wrapper command.

vtop

This context-sensitive command translates a user or kernel virtual
address to its physical address. Also displayed are:

the full PTE translation from page directory through to the page
table
the vm_area_struct data for user virtual addresses
the mem_map page data associated with the physical page
the swap location or file location if a user virtual page is not
currently mapped

It can be called from the foreach wrapper command.

waitq Lists the tasks linked on a specified kernel wait queue.

Utility Functions

The following commands are a set of useful helper commands serving various purposes,
some simple, others quite powerful.

Command Description

ascii

Translates a numerical value into its ASCII components; with no
arguments, displays an ASCII chart.

btop Translates a byte value (physical address) to its page number.

eval

A simple calculator, evaluates an expression and displays the result in
hexadecimal, decimal, octal and binary, and optionally showing the bit
numbers set in the result.

list

Dumps the entries of a linked list of structures. It can handle lists of
structures that are singly-linked with simple "next" pointers, or those
with embedded list_head structures. The output may be constrained to
simply display the address of each structure in the list, or if directed, also
dump each complete structure, or just one member of each structure.
The gathered list entries are hashed, so a corrupted list that loops back
upon itself will be recognized.

ptob translates a page frame number to its byte value (physical address).

ptov

Translates a physical address into a kernel virtual address by adding the
appropriate PAGE_OFFSET value.

search

Searches a range of user or kernel memory space for given value, with an
optional "don't care" bit-mask argument.

rd

Displays a specified amount of user virtual, kernel virtual, or physical
memory in several formats, such as 8, 16, 32 or 64 bit values,

http://people.redhat.com/anderson/crash_whitepaper/help_pages/vtop.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/btop.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ptob.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/search.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/waitq.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ascii.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/rd.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/eval.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/list.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ptov.html

hexadecimal or decimal, symbolically, and with ASCII translations. When
reading user virtual addresses, the command is context-sensitive.

wr

Modifies the contents of memory on a live system. Write permission on
/dev/mem is required; this command should obviously be used with great
care. The write operation is constrained to one 8, 16, 32 or 64 bit
location.

Session Control Commands

The following commands typcally aid in the efficient running of a crash session.

Command Description

alias

Creates a single-word alias for a command string. Several aliases are
built into crash; user-defined aliases may also be defined in a .crashrc file,
or during a crash session by entering it on the command line or reading it
from an input file.

exit Shuts down the crash session (same as q).

extend

Extend the crash command set by dynamically loading a shared object
library containing one or more user-written commands.

foreach

Quite often it is helpful, or even necessary, to run the same crash
context-sensitive command on a number of tasks by just entering one
command. This wrapper command sets off the execution of a given crash
command on each of a defined set of tasks, temporarily changing the
current context to that of the targeted task before running the
command. The set of tasks that are issued the given command can be
defined by:

one or more PID numbers
one or more task numbers
one or more command name
all user tasks
all kernel tasks
the active task on each CPU

The identifiers above may be mixed if it makes sense, such as using a
combination of PIDs, task addresses, and command names. The context-
sensitive commands that can be issued to the selected tasks are:

bt

vm

task

files

net

set

sig

vtop

A header containing the PID, task address, CPU and command name will
be pre-pended before the command output for each selected task.

http://people.redhat.com/anderson/crash_whitepaper/help_pages/wr.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/bt.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/files.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/exit.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/alias.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/net.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/task.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/gdb.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/sig.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/extend.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/set.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/vm.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/vtop.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/q.html

gdb

This command passes its arguments directly to gdb for processing. This is
typically not necessary, but where ambiguities between crash and gdb
command names exist, this will force the command to be executed by
gdb.

repeat

This wrapper command repeats a crash command indefinitely, optionally
delaying a given number of seconds between each command execution.
Obviously this command is only useful when running on a live system.

set

This primary purpose for this command is to set the crash context to a
new task, or to display the current context. It can also be used to view or
change one of a set of internal crash variables that modify program
behavior, such as the default output radix or scrolling behavior. It can be
called from the foreach wrapper command for viewing the context data of
each task.

q Shuts down the crash session (same as exit).

Crash Usage: A Case Study

The steps taken to debug a kernel crash dump are not etched in stone, and the crash
commands used to debug a kernel issue vary according to the problem exhibited. The
section contains of a case study that shows how the capabilities of the crash utility were
used to to debug a specific kernel problem. However, before doing so, it should be noted
that the following commands are typically the most commonly-used:

bt

Display the backtrace of the current context, or as
specified with arguments. This command is typically the
first command entered after starting a dumpfile session.
Since the initial context is the panic context, it will show
the function trace leading up to the kernel panic. bt -a will
show the trace of the active task on each CPU, since there
may be an interrelationship between the panicking task on
one CPU and the running task(s) on the other CPU(s).
When bt is given as the argument to foreach. displays the
backtraces of all tasks.

struct

Print the contents of a data structure at a specified
address. This command is so common that it is typically
unnecessary to enter the struct command name on the
command line; if the first command line argument is not a
crash or gdb command, but it is the name of a known data
structure, then all the command line arguments are
passed to the struct command. So for example, the
following two commands yield the same result:

crash> struct vm_area_struct d3cb2600

crash> vm_area_struct d3cb2600

Set a new task context by PID, task address, or cpu. Since

http://people.redhat.com/anderson/crash_whitepaper/help_pages/bt.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/struct.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/q.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/gdb.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/set.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/exit.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/repeat.html

set
several crash commands are context-sensitive, it's helpful
to be able to change the context to avoid having to pass
the PID or task address to those context-sensitive
commands in order to access the data of a task that is not
the current context.

p

Prints the contents of a kernel variable; since it's a
gateway to the print command of the mbedded gdb
module, it can also be used to print complex C language
expressions.

rd
Read memory, which may be either kernel virtual, user
virtual, or physical, and display it several different formats
and sizes.

ps
Lists basic task information for each process; it can also
display parent and child hierarchies.

log
Dump the kernel log_buf, which often contains clues
leading up to a subsequent kernel crash.

foreach
Execute a crash command on all tasks, or those specified, in
the system; can be used with bt, vm, task, files, net, set, sig
and vtop.

files
Dump the open file descriptor data of a task; most
usefully, the file, dentry and inode structure addresses for
each open file descriptor.

vm

Dump the virtual memory map of a task, including the vital
information concerning each vm_area_struct making up a
task's address space. It can also dump the physical address
of each page in the address space, or if not mapped, its
location in a file or on the swap device.

A Case Study: "kernel BUG at pipe.c:120!"

Upon bringing up a crash session, a great deal of information can be gained just by the
invocation data. Here is what what displayed in this particular case:

...
 KERNEL: vmlinux-2.4.9-e.10.13enterprise-g
 DUMPFILE: vmcore-incomplete
 CPUS: 2
 DATE: Mon Feb 17 08:20:56 2003
 UPTIME: 4 days, 20:04:41
LOAD AVERAGE: 0.95, 1.04, 1.25
 TASKS: 110
 NODENAME: testbox.redhat.com
 RELEASE: 2.4.9-e.10.13enterprise
 VERSION: #1 SMP Mon Feb 3 12:59:26 EST 2003
 MACHINE: i686 (2788 Mhz)
 MEMORY: 6 GB
 PANIC: "kernel BUG at pipe.c:120!"
 PID: 20571

http://people.redhat.com/anderson/crash_whitepaper/help_pages/net.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/set.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/task.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/rd.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/sig.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/ps.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/bt.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/set.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/files.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/vm.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/foreach.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/vm.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/p.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/files.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/log.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/vtop.html

 COMMAND: "imp"
 TASK: d1566000
 CPU: 1
 STATE: TASK_RUNNING (PANIC)

crash>

In this case the PANIC string "kernel BUG at pipe.c:120!" points to the exact kernel source code
line at which the panic occurred.

Then, getting a backtrace of panicking task is typically the first order of the day:

crash> bt
PID: 20571 TASK: d1566000 CPU: 1 COMMAND: "imp"
 #0 [d1567e44] die at c010785c
 #1 [d1567e54] do_invalid_op at c0107b2c
 #2 [d1567f0c] error_code (via invalid_op) at c01073de
 EAX: 0000001d EBX: ed87b2e0 ECX: c02f6064 EDX: 00005fa1 EBP: 00001000
 DS: 0018 ESI: f640e740 ES: 0018 EDI: 00001000
 CS: 0010 EIP: c0150b6d ERR: ffffffff EFLAGS: 00010292
 #3 [d1567f48] pipe_read at c0150b6d
 #4 [d1567f6c] sys_read at c01468d4
 #5 [d1567fc0] system_call at c01072dc
 EAX: 00000003 EBX: 0000000a ECX: 40b4e05c EDX: 00002000
 DS: 002b ESI: 00002000 ES: 002b EDI: 40b4e05c
 SS: 002b ESP: bffe9e88 EBP: bffe9eb8
 CS: 0023 EIP: 40aaa1d4 ERR: 00000003 EFLAGS: 00000286

The backtrace shows that the call to die() was generated by an invalid_op exception. The
exception was caused by the BUG() call in the pipe_read() function:

 if (count && PIPE_WAITING_WRITERS(*inode) &&
 !(filp->f_flags & O_NONBLOCK)) {
 /*
 * We know that we are going to sleep: signal
 * writers synchronously that there is more
 * room.
 */
 wake_up_interruptible_sync(PIPE_WAIT(*inode));
 if (!PIPE_EMPTY(*inode))
 BUG();
 goto do_more_read;
 }

In the code segment above, the pipe_read() code has previously down'd the semaphore of the
inode associated with the pipe, giving it exclusive access. It had read all data in the pipe,
but still needed more to satisfy the count requested. Finding that there was a writer with
more data -- and who was waiting on the semaphore -- it woke up the writer. However,
after doing the wakeup, it did a sanity-check on the pipe contents, and found that it was
no longer empty -- which is theoretically impossible since it was still holding the
semaphore. It appeared that the writer process wrote to the pipe while the reader process
still had exclusive access -- somehow overriding the semaphore.

Since the semaphore mechanism was seemingly not working, it was first necessary to look
at the actual semaphore structure associated with the pipe's inode. This first required looking
at the first argument to the pipe_read() function; the whatis command shows that it is a struct
file pointer:

crash> whatis pipe_read
ssize_t pipe_read(struct file *, char *, size_t, loff_t *);
crash>

http://people.redhat.com/anderson/crash_whitepaper/help_pages/whatis.html

Using the bt -f option, each frame in the backtrace is expanded to show all stack data in
the frame. Looking at the expansion of the sys_read() frame, we can see that the last thing
pushed on the stack before calling pipe_read() was the file pointer address of edf3f740:

...
#3 [d1567f48] pipe_read at c0150b6d
 [RA: c01468d6 SP: d1567f4c FP: d1567f6c SIZE: 36]
 d1567f4c: c026701c 00000078 fffffff2 00001000
 d1567f5c: 00000000 edf3f740 ffffffea 00002000
 d1567f6c: c01468d6
 #4 [d1567f6c] sys_read at c01468d4
 [RA: c01072e3 SP: d1567f70 FP: d1567fc0 SIZE: 84]
 d1567f70: edf3f740 40b4f05c 00002000 edf3f760
 d1567f80: c03683d0 fffffffb 00000001 c0120d3b
 d1567f90: 00000046 00000046 0000000b c0350960
 d1567fa0: 0000000b f639eb00 c0108e0e 00000020
 d1567fb0: d1566000 00002000 40b4e05c bffe9eb8
 d1567fc0: c01072e3
...

The task at hand is finding the inode containing the suspect semaphore from the file
structure address. The file structure's f_dentry member points to its dentry structure, whose
d_inode member in turn points to the pipe's inode. The struct command can be used to dump
the complete contents of a data structure at a given address; by tagging the .member onto
the structure name, we can print just the member desired. By following the structure
chain, the inode address can be determined like so:

crash> struct file.f_dentry edf3f740
 f_dentry = 0xdb0ec440,
crash> struct dentry.d_inode db0ec440
 d_inode = 0xf640e740,
crash> struct inode.i_sem f640e740

 i_sem = {
 count = {
 counter = 2
 },
 sleepers = 0,
 wait = {
 lock = {
 lock = 1
 },
 task_list = {
 next = 0xf640e7ac,
 prev = 0xf640e7ac
 }
 }
 },
crash>

The dump of the semaphore structure above showed the problem: the counter value of 2 is
illegal. It should never be greater than 1; in this case a value of 2 allows two successful down
operations, i.e., giving two tasks access to the pipe at the same time.

(As an aside, determining the inode address above could also be accomplished by using the
context-sensitive files command, which dumps the associated file, dentry and inode
structure addresses for each open file descriptor of a task. The dumped file descriptor list
would contain one with a reference to the file structure at edf3f740, and would also show
the associated inode address of f640e740.)

Before getting a dumpfile, this same panic had occurred several times. It was erroneously
presumed that the problem was in the pipe-handling code, but it was eventually
determined not to be the case. By instrumenting a kernel with debug code, the starting
counter value of a pipe was found to be 3. Compounding that problem was the fact that the

http://people.redhat.com/anderson/crash_whitepaper/help_pages/files.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/bt.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/struct.html

inode slab cache is one of a few special cases that presume that the freed inode's contents
are left in a legitimate state so that they do not have to be completely reinitialized with
each subsequent reallocation. So when the pipe's inode was created, it received an inode
with a bogus counter value.

Confirming the existence of bogus inode structures in the slab cache was a multi-stepped
procedure. Using the command kmem command to access the inode slab cache, we can get
the addresses of all free and currently-allocated inodes. Since there are typically several
thousand inodes, the output is extremely verbose, but here is the beginning of it:

crash> kmem -S inode_cache
CACHE NAME OBJSIZE ALLOCATED TOTAL SLABS SSIZE
c7666564 inode_cache 448 11563 12339 1371 4k
SLAB MEMORY TOTAL ALLOCATED FREE
d1d82000 d1d82040 9 9 0
FREE / [ALLOCATED]
 [d1d82040]
 [d1d82200]
 [d1d823c0]
 [d1d82580]
 [d1d82740]
 [d1d82900]
 [d1d82ac0]
 [d1d82c80]
 [d1d82e40]
SLAB MEMORY TOTAL ALLOCATED FREE
f4e52000 f4e52040 9 7 2
FREE / [ALLOCATED]
 f4e52040 (cpu 1 cache)
 f4e52200 (cpu 1 cache)
 [f4e523c0]
 [f4e52580]
 [f4e52740]
 [f4e52900]
 [f4e52ac0]
 [f4e52c80]
 [f4e52e40]
...

In the truncated output above, all of the inode address in the slab cache are dumped; the
ones currently in use are surrounded by brackets, the free ones are not. So, for example,
the inodes at addresses f4e52040 and f4e52200 are free; the others are not. The full output
was piped to a script that pulled out just the free inode addresses (i.e., output lines
starting with three spaces), and redirected them into a file. The file was modified to be a
crash input file by making each extracted inode address to be the arguments of the struct
command, using its short-cut method that allows the dropping of the struct command
name; therefore the input file contained hundreds of crash commands of the form:

inode.i_sem f4e52040
inode.i_sem f4e52200
inode.i_sem f5cdc040
inode.i_sem f5cdc200
inode.i_sem f5cdc3c0
inode.i_sem f5cdc580
...

Note that the struct command would be used by default above, as documented in its help
page; if the first command line argument is not a crash or gdb command, but it is the name
of a known data structure, it passes the arguments to the struct command.

Using the capability of feeding an input file, in this case consisting of hundreds of short-cut
struct commands like those above, the output was again quite verbose, consisting of
structure member dumps of the form:

http://people.redhat.com/anderson/crash_whitepaper/help_pages/struct.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/struct.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/struct.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/kmem.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/struct.html

crash> < input.file
crash> inode.i_sem f4e52040
 i_sem = {
 count = {
 counter = 1
 },
 sleepers = 0,
 wait = {
 lock = {
 lock = 1
 },
 task_list = {
 next = 0xf4e520ac,
 prev = 0xf4e520ac
 }
 }
 },
crash> inode.i_sem f4e52200
 i_sem = {
 count = {
 counter = 1
 },
 sleepers = 0,
 wait = {
 lock = {
 lock = 1
 },
 task_list = {
 next = 0xf4e5226c,
 prev = 0xf4e5226c
 }
 }
 },
...

However, it was a simple matter of piping the output to grep, and looking for counter values
not equal to 1:

crash> < input.file | grep counter | grep -v "= 1"
 counter = 3
 counter = 3
 counter = 3
 counter = 3
crash>

This turned out to be the smoking gun. Another round of debugging with an instrumented
kernel that trapped attempts to free an inode with a semaphore counter of 3 caught the
perpetrator in the act.

Command Extensions

Frequently users wish to add an additional option to an existing crash command, or add a
brand new command, in order to address a kernel issue they are debugging or developing.
For those reasons, the crash utility was designed with extensibility in mind. There are two
ways to add new functionality:

1. adding new code and compiling it into the crash executable,
2. creating a shared object library that can be dynamically loaded by using the extend

command.

This section consists of a quick guide that describes how to get started using both

http://people.redhat.com/anderson/crash_whitepaper/help_pages/extend.html

methods.

Adding new code and compiling it into the crash executable

The current set of crash commands can be seen by entering the help command with no
arguments:

crash> help

* files mod runq union
alias foreach mount search vm
ascii fuser net set vtop
bt gdb p sig waitq
btop help ps struct whatis
dev irq pte swap wr
dis kmem ptob sym q
eval list ptov sys
exit log rd task
extend mach repeat timer

crash version: 4.0-8.11 gdb version: 6.1
For help on any command above, enter "help ".
For help on input options, enter "help input".
For help on output options, enter "help output".

crash>

For each command in the menu above, there is an entry in a data structure in the file
global_data.c, which is located in the top-level directory of the crash source code tree:

/*
 * To add a new command, declare it in defs.h and enter it in this table.
 */

struct command_table_entry base_command_table[] = {
 {"*", cmd_pointer, help_pointer, 0},
 {"alias", cmd_alias, help_alias, 0},
 {"ascii", cmd_ascii, help_ascii, 0},
 {"bt", cmd_bt, help_bt, REFRESH_TASK_TABLE},
 {"btop", cmd_btop, help_btop, 0},
 {"dev", cmd_dev, help_dev, 0},
 {"dis", cmd_dis, help_dis, 0},
 {"eval", cmd_eval, help_eval, 0},
 {"exit", cmd_quit, help_exit, 0},
 {"extend", cmd_extend, help_extend, 0},
 {"files", cmd_files, help_files, REFRESH_TASK_TABLE},
 {"foreach", cmd_foreach, help_foreach, REFRESH_TASK_TABLE},
 {"fuser", cmd_fuser, help_fuser, REFRESH_TASK_TABLE},
 {"gdb", cmd_gdb, help_gdb, REFRESH_TASK_TABLE},
 {"help", cmd_help, help_help, 0},
 {"irq", cmd_irq, help_irq, 0},
 {"kmem", cmd_kmem, help_kmem, 0},
 {"list", cmd_list, help__list, REFRESH_TASK_TABLE},
 {"log", cmd_log, help_log, 0},
 {"mach", cmd_mach, help_mach, 0},
 {"mod", cmd_mod, help_mod, 0},
 {"mount", cmd_mount, help_mount, 0},
 {"net", cmd_net, help_net, REFRESH_TASK_TABLE},
 {"p", cmd_p, help_p, 0},
 {"ps", cmd_ps, help_ps, REFRESH_TASK_TABLE},
 {"pte", cmd_pte, help_pte, 0},
 {"ptob", cmd_ptob, help_ptob, 0},
 {"ptov", cmd_ptov, help_ptov, 0},
 {"q", cmd_quit, help_quit, 0},
 {"rd", cmd_rd, help_rd, 0},
 {"repeat", cmd_repeat, help_repeat, 0},
 {"runq", cmd_runq, help_runq, REFRESH_TASK_TABLE},
 {"search", cmd_search, help_search, 0},
 {"set", cmd_set, help_set, REFRESH_TASK_TABLE},

http://people.redhat.com/anderson/crash_whitepaper/help_pages/help.html

 {"sig", cmd_sig, help_sig, REFRESH_TASK_TABLE},
 {"struct", cmd_struct, help_struct, 0},
 {"swap", cmd_swap, help_swap, 0},
 {"sym", cmd_sym, help_sym, 0},
 {"sys", cmd_sys, help_sys, REFRESH_TASK_TABLE},
 {"task", cmd_task, help_task, REFRESH_TASK_TABLE},
 {"test", cmd_test, NULL, HIDDEN_COMMAND},
 {"timer", cmd_timer, help_timer, 0},
 {"union", cmd_union, help_union, 0},
 {"vm", cmd_vm, help_vm, REFRESH_TASK_TABLE},
 {"vtop", cmd_vtop, help_vtop, REFRESH_TASK_TABLE},
 {"waitq", cmd_waitq, help_waitq, REFRESH_TASK_TABLE},
 {"whatis", cmd_whatis, help_whatis, 0},
 {"wr", cmd_wr, help_wr, 0},
 {(char *)NULL}
};

Each entry consists of the following simple data structure:

struct command_table_entry { /* one for each command in menu */
 char *name;
 cmd_func_t func;
 char **help_data;
 ulong flags;
};

The structure members consist of:

name
The character string that appears in the help menu output. It
must be unique among other crash commands, and preferably
should not clash with any gdb command.

func
A pointer to the function that performs the command. To add
an option to an existing command, find the file that contains
this function, and modify it as desired.

help_data
A pointer to an array of character strings that make up the help
data for that command. Although optional, it's certainly useful
to create help data for any new commands or options.

flags

If REFRESH_TASK_TABLE, the set of running tasks on a live system will
be updated just prior to executing the command.
If HIDDEN_COMMAND, the command will not be shown in the help
menu. The only command with this flag is the test command,
whose function cmd_test() exists solely as an builtin aid for
quickly developing new or temporary commands.

For a newly-written command to appear in the help menu, it simply requires a reference to
it in the structure above. To test a new command without adding it to the menu, use the
hidden "test" command, found in test.c:

void
cmd_test(void)
{
 int c;

 while ((c = getopt(argcnt, args, "")) != EOF) {
 switch(c)

 {
 default:
 argerrs++;
 break;
 }
 }

 if (argerrs)
 cmd_usage(pc->curcmd, SYNOPSIS);

 while (args[optind]) {
 ;
 optind++;
 }
}

The test command contains the basic template used by crash commands to accept dash-
arguments, which are fielded by the getopt() routine, while all other command line
arguments are fielded in the while loop. To add an option to the test command (or any
other existing command), simply fit it into the appropriate argument-gathering
mechanism. Or, for that matter, if no arguments are required, put the functionality at the
end of the command's function. Here is a trivial example of a change to the cmd_test()
function, with the modifications highlighted:

void
cmd_test(void)
{
 int c;

 while ((c = getopt(argcnt, args, "xa:")) != EOF) {
 switch(c)
 {
 case 'x':
 fprintf(fp, "arg: -x\n");
 break;
 case 'a':
 fprintf(fp, "arg: -a %s\n", optarg);
 break;
 default:
 argerrs++;
 break;
 }
 }

 if (argerrs)
 cmd_usage(pc->curcmd, SYNOPSIS);

 while (args[optind]) {
 fprintf(fp, "arg: %s\n", args[optind]);
 ;
 optind++;
 }

 fprintf(fp, "do test work here...\n");
}

Then re-compile crash by entering make:

make

TARGET: X86
 CRASH: 4.0-8.11
 GDB: 6.1

cc -c -g -DX86 -D_FILE_OFFSET_BITS=64 build_data.c
cc -c -g -DX86 -D_FILE_OFFSET_BITS=64 test.c
ar -rs crashlib.a main.o tools.o global_data.o memory.o filesys.o help.o task.o
build_data.o kernel.o test.o gdb_interface.o net.o dev.o alpha.o x86.o ppc.o ia6
4.o s390.o s390x.o s390dbf.o ppc64.o x86_64.o extensions.o remote.o va_server.o

va_server_v1.o symbols.o cmdline.o lkcd_common.o lkcd_v1.o lkcd_v2_v3.o lkcd_v5.
o lkcd_v7.o lkcd_v8.o lkcd_fix_mem.o s390_dump.o netdump.o diskdump.o xendump.o
lkcd_x86_trace.o unwind_v1.o unwind_v2.o unwind_v3.o unwind_x86_32_64.o xen_hype
r.o xen_hyper_command.o xen_hyper_global_data.o xen_hyper_dump_tables.o
gcc -g -O2 \
 -o ̀cat mergeobj̀ libgdb.a \
 ../bfd/libbfd.a ../readline/libreadline.a ../opcodes/libopcod
es.a ../libiberty/libiberty.a -lm -lncurses ../libiberty/libiberty.a -ldl
 -rdynamic ̀cat mergelibs̀
#

Then run the test command with the tree possible argument types:

crash> test -x -a dasharg this that the other
arg: -x
arg: -a dasharg
arg: this
arg: that
arg: the
arg: other
do test work here...
crash>

The easiest way to implement a new command's functionality is to use an existing
command as a template. There is a broad range of utility routines that handle argument
strings, read memory, access data structures and their members, display data, and so on,
that obviate the need to reinvent the wheel to accomplish a task. Look at what other
similar commands do, and copy their mechanisms.

Creating a shared object library and loading it with extend

While adding a new command and/or command option in the manner above is useful, it
would require the same integration mechanism with each subsequent release of the crash
utility. Since that could become tedious, another extension mechanism exists in which
share objects containing one or more crash commands can be written, and then dynamically
attached to a running crash session, using the extend command. Once loaded, the
command(s) in the shared object library automatically appear in the help menu, as if they
were compiled into the crash executable. As an quick aid in creating a shared object, the
help page for the extend contains an example C program tagged onto the end, which adds a
new echo command (which simply echoes back all arguments). The C program piece can be
cut and pasted into a file, say echo.c for example, and then compiled like so:

gcc -nostartfiles -shared -rdynamic -o echo.so echo.c -fPIC -D<machine-type> $(TARGET_CFLAGS)

where <machine-type> is the appropriate architecture X86, X86_64, IA64, PPC64, S390 or S390X),
and where $(TARGET_CFLAGS) is -D_FILE_OFFSET_BITS=64 on 32-bit architectures, and -m64 on ppc64.
So for an x86 build, the compile line would be:

gcc -nostartfiles -shared -rdynamic -o echo.so echo.c -fPIC -DX86 -D_FILE_OFFSET_BITS=64

The resultant echo.so file may be dynamically linked into crash during runtime using the
extend command:

crash> extend echo.so
./echo.so: shared object loaded
crash>

Or, to automatically load the shared library during crash session initialization, put the
following string into a .crashrc file located in the current directory, or in the user's $HOME

http://people.redhat.com/anderson/crash_whitepaper/help_pages/extend.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/extend.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/extend.html
http://people.redhat.com/anderson/crash_whitepaper/help_pages/extend.html

directory:

extend echo.so

Here is the help menu once the library is loaded; note the integration of the new echo
command:

crash> help

* extend mach repeat timer
alias files mod runq union
ascii foreach mount search vm
bt fuser net set vtop
btop gdb p sig waitq
dev help ps struct whatis
dis irq pte swap wr
echo kmem ptob sym q
eval list ptov sys
exit log rd task

crash version: 4.0-8.11 gdb version: 6.1
For help on any command above, enter "help ".
For help on input options, enter "help input".
For help on output options, enter "help output".

With this extension mechanism, the most that would be required to use the shared library
with subsequent versions of crash would be a simple re-compile of the echo.c file.

 GNU Free Documentation License
 Version 1.2, November 2002

 Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that

contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section

 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

