
 Matthew RuffellMatthew Ruffell

Everything You Wanted to Know AboutEverything You Wanted to Know About
Kernel Livepatch in UbuntuKernel Livepatch in Ubuntu

20 Apr 202020 Apr 2020 • • Programming Programming • • WriteupsWriteups

One of the more recent killer features implemented by most major Linux distros One of the more recent killer features implemented by most major Linux distros these daysthese days
is the ability to patch the kernel while it is running, without the is the ability to patch the kernel while it is running, without the need for a reboot.need for a reboot.

While this may sound like sorcery for some, this is a very real feature, called Livepatch.While this may sound like sorcery for some, this is a very real feature, called Livepatch.
Livepatch uses ftrace in new and interesting ways, by patching in calls at the beginning ofLivepatch uses ftrace in new and interesting ways, by patching in calls at the beginning of
existing functions to new patched functions, delivered as kernel modules.existing functions to new patched functions, delivered as kernel modules.

This lets you update and fix bugs on the fly, although its use is typically reserved for securityThis lets you update and fix bugs on the fly, although its use is typically reserved for security
critical fixes only.critical fixes only.

The whole concept is extremely interesting, so today we will look into what Livepatch is, howThe whole concept is extremely interesting, so today we will look into what Livepatch is, how
it is implemented across several distros, we will write some Livepatches of our own, and lookit is implemented across several distros, we will write some Livepatches of our own, and look
at how Livepatch works in Ubuntu for end users.at how Livepatch works in Ubuntu for end users.

Why Do We Need Livepatch?Why Do We Need Livepatch?
Working in Sustaining Engineering at Canonical, it is pretty common to see bug reports fromWorking in Sustaining Engineering at Canonical, it is pretty common to see bug reports from
machines which have very high uptimes, such as six to twelve months, or sometimes evenmachines which have very high uptimes, such as six to twelve months, or sometimes even

https://ruffell.nz/
https://ruffell.nz/category/programming.html
https://ruffell.nz/category/writeups.html

longer.longer.

These machines normally run important workloads which can’t be interrupted for a reboot,These machines normally run important workloads which can’t be interrupted for a reboot,
since they might be a part of critical public infrastructure, or a busy build system. Thesince they might be a part of critical public infrastructure, or a busy build system. The
Ubuntu Kernel Team typically releases a new updated Ubuntu Kernel Team typically releases a new updated kernel for each distribution release onkernel for each distribution release on
a a 3 week SRU cycle3 week SRU cycle with additional updates always within a day of two of a new CVE being with additional updates always within a day of two of a new CVE being
released.released.

Machines with important workloads aren’t going to want to reboot every six months, letMachines with important workloads aren’t going to want to reboot every six months, let
alone every three weeks for each new kernel release. Keeping these machines safe and up toalone every three weeks for each new kernel release. Keeping these machines safe and up to
date with security fixes is a must, and this is the motivation behind Livepatch.date with security fixes is a must, and this is the motivation behind Livepatch.

What is Livepatch?What is Livepatch?
Livepatch is the ability for the kernel to change the flow of code execution from a broken orLivepatch is the ability for the kernel to change the flow of code execution from a broken or
vulnerable function, to a new, fixed function during runtime.vulnerable function, to a new, fixed function during runtime.

In most cases, the new function is the exact same as the function it is replacing, but withIn most cases, the new function is the exact same as the function it is replacing, but with
minor changes, such as adding a check for null, or changing the order of some locks orminor changes, such as adding a check for null, or changing the order of some locks or
adding a quick logic fix.adding a quick logic fix.

The code redirection is achieved with The code redirection is achieved with ftraceftrace. ftrace is a tool which lets you trace kernel. ftrace is a tool which lets you trace kernel
function calls, but it can also add and remove instructions from functions as well. A goodfunction calls, but it can also add and remove instructions from functions as well. A good
example is kprobes, which can patch in blocks of code to existing functions, usually used toexample is kprobes, which can patch in blocks of code to existing functions, usually used to
print debug values. kprobes are mostly ftrace based these days, which is important, since weprint debug values. kprobes are mostly ftrace based these days, which is important, since we
don’t want kprobes and Livepatch to clash and patch the same function at the same time, sodon’t want kprobes and Livepatch to clash and patch the same function at the same time, so
ftrace controls function consistency.ftrace controls function consistency.

Livepatch is implemented by compiling the new fixed function into a kernel module andLivepatch is implemented by compiling the new fixed function into a kernel module and
loading it into the system. ftrace is then used to redirect calls from the old function to theloading it into the system. ftrace is then used to redirect calls from the old function to the
new function in the kernel module. This process actually has to be done very carefully, andnew function in the kernel module. This process actually has to be done very carefully, and
we will discuss it in the next section, when we cover different consistency models.we will discuss it in the next section, when we cover different consistency models.

For the actual implementation, it is remarkably simple.For the actual implementation, it is remarkably simple.

Have you ever disassembled a kernel function before and wondered why every kernelHave you ever disassembled a kernel function before and wondered why every kernel
function begins with a full sized padded function begins with a full sized padded nopnop instruction? instruction?

For example, let’s look at For example, let’s look at sysrq_handle_crash()sysrq_handle_crash() , as seen in my previous article , as seen in my previous article BeginningBeginning
Kernel Crash Debugging on Ubuntu 18.10Kernel Crash Debugging on Ubuntu 18.10..

https://kernel.ubuntu.com/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://ruffell.nz/programming/writeups/2019/02/22/beginning-kernel-crash-debugging-on-ubuntu-18-10.html

Well, what ftrace does is patch out the Well, what ftrace does is patch out the nopnop with a with a callcall which points towards the new which points towards the new
function. If you look carefully, the function. If you look carefully, the nopnop is located before the function starts manipulating is located before the function starts manipulating
the stack, which means everything is consistent, and very elegant.the stack, which means everything is consistent, and very elegant.

Credit and license for imageCredit and license for image

The above image demonstrates this behaviour very well. Now, this technique works great atThe above image demonstrates this behaviour very well. Now, this technique works great at
a function level, where logic changes but data does not.a function level, where logic changes but data does not.

Limitations quickly arise within Livepatch when data changes are required. If a new memberLimitations quickly arise within Livepatch when data changes are required. If a new member
is needed to be added or removed from a struct implemented within the function or the file,is needed to be added or removed from a struct implemented within the function or the file,
these changes cannot be passed onto the Livepatched version, since you cannot modifythese changes cannot be passed onto the Livepatched version, since you cannot modify
data structures during runtime, as they may be in use by different tasks on different cpus.data structures during runtime, as they may be in use by different tasks on different cpus.
The same goes for changing the function signature, since the calling function would have toThe same goes for changing the function signature, since the calling function would have to
rearrange variables pushed on the stack. Livepatch is also limited to modifying functionsrearrange variables pushed on the stack. Livepatch is also limited to modifying functions
which are traceable by ftrace, and not all kernel functions can be traced.which are traceable by ftrace, and not all kernel functions can be traced.

Because of these limitations, and the complexity that arises from consistency models whichBecause of these limitations, and the complexity that arises from consistency models which
we will discuss about next, Livepatch is more of a temporary band-aid we will discuss about next, Livepatch is more of a temporary band-aid solution, reserved forsolution, reserved for

https://en.wikipedia.org/wiki/File:Linux_kernel_live_patching_kpatch.svg

fixing critical security issues until such a time comes when the host can be rebooted into afixing critical security issues until such a time comes when the host can be rebooted into a
updated kernel.updated kernel.

Consistency Models and VaryingConsistency Models and Varying
ImplementationsImplementations
As mentioned in the previous section, the real complexity behind Livepatch is the decisionAs mentioned in the previous section, the real complexity behind Livepatch is the decision
making process required when ftrace actually performs the switch from the old function tomaking process required when ftrace actually performs the switch from the old function to
the new function.the new function.

Say the changes to the new function are basic. Adding a null pointer check sort of basic. TheSay the changes to the new function are basic. Adding a null pointer check sort of basic. The
semantics of the function itself haven’t changed, and there is no existing state to manage.semantics of the function itself haven’t changed, and there is no existing state to manage.
All we have to do then is check to see if any tasks are running which are using the oldAll we have to do then is check to see if any tasks are running which are using the old
function. This can be done by examining the stack of sleeping tasks. If the function is notfunction. This can be done by examining the stack of sleeping tasks. If the function is not
found in any of them, we can easily patch the change in.found in any of them, we can easily patch the change in.

But what happens if a task is using the old function? Do we make a rule and say all tasksBut what happens if a task is using the old function? Do we make a rule and say all tasks
must be stopped, we patch, and then start them all again? Or do we add complexity bymust be stopped, we patch, and then start them all again? Or do we add complexity by
adding a list of tasks that use the old function, and tasks that use the new function, andadding a list of tasks that use the old function, and tasks that use the new function, and
maintain a trampoline which decides between each function for a given task?maintain a trampoline which decides between each function for a given task?

What happens if the Livepatch changes the order that locks are acquired and released? TheWhat happens if the Livepatch changes the order that locks are acquired and released? The
affected tasks which hold those locks need to be patched when the locks are no longer held,affected tasks which hold those locks need to be patched when the locks are no longer held,
and the entire system needs to switch over to the new function at the same time. How doand the entire system needs to switch over to the new function at the same time. How do
we co-ordinate this?we co-ordinate this?

This is where consistency models come in, and is the driving force behind the differentThis is where consistency models come in, and is the driving force behind the different
implementations of Livepatch. Each distribution has its own opinion on how things shouldimplementations of Livepatch. Each distribution has its own opinion on how things should
be done, and we will look at all of them.be done, and we will look at all of them.

kpatchkpatch
kpatchkpatch is developed by Red Hat, and is developed by Red Hat, and uses the simplest consistency model. kpatch operatesuses the simplest consistency model. kpatch operates
pretty much as previously pretty much as previously explained, by using ftrace to change the explained, by using ftrace to change the nopnop instruction in the instruction in the
old function old function to a to a callcall instruction, pointing to the new function. instruction, pointing to the new function.

https://en.wikipedia.org/wiki/Kpatch

kpatch keeps the system consistent by first stopping all running tasks. The stack traces ofkpatch keeps the system consistent by first stopping all running tasks. The stack traces of
each task is then examined. If the old function is not found in any of the tasks stack traces,each task is then examined. If the old function is not found in any of the tasks stack traces,
then ftrace applies the patch, and all future calls to the patched function will use the newthen ftrace applies the patch, and all future calls to the patched function will use the new
function.function.

This approach is atomic and safe, since there is only one view of the function at a time, it isThis approach is atomic and safe, since there is only one view of the function at a time, it is
either old, or new. There are no consistency issues that arise if the new function changeseither old, or new. There are no consistency issues that arise if the new function changes
data structures differently to the old function, and the structure is passed to tasks whichdata structures differently to the old function, and the structure is passed to tasks which
haven’t been migrated to the new function.haven’t been migrated to the new function.

The limitations of kpatch involve not being able to modify data structures, and if a process isThe limitations of kpatch involve not being able to modify data structures, and if a process is
still using the patched function, patching fails, and all tasks are restarted again, to attemptstill using the patched function, patching fails, and all tasks are restarted again, to attempt
the patch at a later time. There is some overhead in stopping and starting all tasks, whichthe patch at a later time. There is some overhead in stopping and starting all tasks, which
results in a small loss of service as those tasks are stopped.results in a small loss of service as those tasks are stopped.

kGraftkGraft
kGraftkGraft is developed by SUSE, and is by is developed by SUSE, and is by far the most complex consistency model. kGraftfar the most complex consistency model. kGraft
employs a per task consistency employs a per task consistency model, where all tasks remain running on the system, andmodel, where all tasks remain running on the system, and

https://en.wikipedia.org/wiki/KGraft

tasks are patched one tasks are patched one by one. This gives no downtime at all, since all tasks keep runningby one. This gives no downtime at all, since all tasks keep running
during Livepatch, and patching can never “fail” in entirety.during Livepatch, and patching can never “fail” in entirety.

kGraft achieves this by maintaining consistent “world views” to userspace processes, kernelkGraft achieves this by maintaining consistent “world views” to userspace processes, kernel
threads and interrupt handlers, during their execution in kernel space.threads and interrupt handlers, during their execution in kernel space.

For example, let’s say we have a userspace process making a syscall, and a Livepatch requestFor example, let’s say we have a userspace process making a syscall, and a Livepatch request
came in midway through this syscall.came in midway through this syscall.

If the syscall involved calling the function which will be patched multiple times, onIf the syscall involved calling the function which will be patched multiple times, on
subsequent calling of the patched function, the semantics might have changed since thesubsequent calling of the patched function, the semantics might have changed since the
first time it was executed. If locking orders have changed, we might be facing a deadlock,first time it was executed. If locking orders have changed, we might be facing a deadlock,
which will end in certain failure.which will end in certain failure.

https://en.wikipedia.org/wiki/KGraft

Instead, what kGraft does is insert a trampoline which is the target of the Instead, what kGraft does is insert a trampoline which is the target of the callcall instruction instruction
which is replacing the which is replacing the nopnop . The trampoline points to both the old function and the new. The trampoline points to both the old function and the new
function. If the task has not yet been migrated to use the new function, the trampolinefunction. If the task has not yet been migrated to use the new function, the trampoline
jumps to the old function and execution continues. If the task has been migrated, then thejumps to the old function and execution continues. If the task has been migrated, then the
new function is called.new function is called.

This means that any userspace process in a syscall, or kernel task, or interrupt handler still inThis means that any userspace process in a syscall, or kernel task, or interrupt handler still in
kernel space will always use the old function.kernel space will always use the old function.

This continues until each user space process finishes it syscall, or kernel task completes, orThis continues until each user space process finishes it syscall, or kernel task completes, or
interrupt handler completes. At this stage, that task is then migrated over to the newinterrupt handler completes. At this stage, that task is then migrated over to the new
function. When all tasks have been migrated, the trampoline is removed, and the function. When all tasks have been migrated, the trampoline is removed, and the callcall

instruction is updated to point directly to the new function.instruction is updated to point directly to the new function.

The benefits of kGraft is that all tasks are kept running during Livepatch. Downsides includeThe benefits of kGraft is that all tasks are kept running during Livepatch. Downsides include
keeping two different implementations of the same function around at the same time. Thiskeeping two different implementations of the same function around at the same time. This
can cause problems when long running processes, like those waiting on disk or network I/Ocan cause problems when long running processes, like those waiting on disk or network I/O
get stuck in kernel space, and won’t be patched until they complete. This can lead toget stuck in kernel space, and won’t be patched until they complete. This can lead to
inconsistencies if the new function changes internal data structures differently to theinconsistencies if the new function changes internal data structures differently to the
original, since both functions can still be executed in parallel.original, since both functions can still be executed in parallel.

KspliceKsplice
KspliceKsplice is developed by Oracle, and has a consistency model similar to kpatch. Ksplice stops is developed by Oracle, and has a consistency model similar to kpatch. Ksplice stops
all tasks before patching the functions atomically.all tasks before patching the functions atomically.

The differentiating feature to Ksplice, is the ability to patch functions which require changesThe differentiating feature to Ksplice, is the ability to patch functions which require changes
to data structures. This process is not automatic though, as a programmer must implementto data structures. This process is not automatic though, as a programmer must implement
extra code to the Livepatch module which handles the transition from the old data structureextra code to the Livepatch module which handles the transition from the old data structure
to the new.to the new.

https://en.wikipedia.org/wiki/Ksplice

Livepatch (Mainline Linux)Livepatch (Mainline Linux)
Livepatch was mainlined into the Linux kernel during the 4.0 development cycle.Livepatch was mainlined into the Linux kernel during the 4.0 development cycle.

The The Livepatch implementationLivepatch implementation is a hybrid between the kpatch and kGraft implementations, is a hybrid between the kpatch and kGraft implementations,
taking the best ideas from both. Livepatch uses kGraft’s per task consistency and syscall exittaking the best ideas from both. Livepatch uses kGraft’s per task consistency and syscall exit
migration, alongside kpatch’s stack trace based switching.migration, alongside kpatch’s stack trace based switching.

Patches are applied on a per task basis, one task at a time. There is no downtime as tasks doPatches are applied on a per task basis, one task at a time. There is no downtime as tasks do
not need to be stopped. This also means that the trampoline based solution is used.not need to be stopped. This also means that the trampoline based solution is used.

The consistency model for mainline operates in a set of steps:The consistency model for mainline operates in a set of steps:

1. Firstly, the stack trace of sleeping tasks is checked. If the function to be patched is notFirstly, the stack trace of sleeping tasks is checked. If the function to be patched is not
found in the stack trace, the task is patched to use the new function. If this fails for afound in the stack trace, the task is patched to use the new function. If this fails for a
particular task, it will re-examine the stack trace periodically and attempt to patch at aparticular task, it will re-examine the stack trace periodically and attempt to patch at a
later time. Most, if not all tasks will be patched in this step.later time. Most, if not all tasks will be patched in this step.

2. The second step is to patch the task once it completes and exits from kernel space,The second step is to patch the task once it completes and exits from kernel space,
such as a syscall finishing or a interrupt handler completing. This is useful for longsuch as a syscall finishing or a interrupt handler completing. This is useful for long
running I/O or cpubound tasks. In some cases, SIGSTOP must be issued to I/O boundrunning I/O or cpubound tasks. In some cases, SIGSTOP must be issued to I/O bound
tasks to force it to exit the kernel, be patched, and then send SIGCONT so it cantasks to force it to exit the kernel, be patched, and then send SIGCONT so it can
continue.continue.

3. For the kernel “swapper” task, which is executed whenever the CPU is idle and neverFor the kernel “swapper” task, which is executed whenever the CPU is idle and never
exits the kernel, it has a special exits the kernel, it has a special klp_update_patch_state()klp_update_patch_state() call in the idle loop call in the idle loop
which patches the task before the CPU enters the idle state.which patches the task before the CPU enters the idle state.

What Consistency Model Does Ubuntu Use?What Consistency Model Does Ubuntu Use?
Ubuntu uses the Livepatch (mainline) consistency model, which has the best of both kpatchUbuntu uses the Livepatch (mainline) consistency model, which has the best of both kpatch
and kGraft. All code is the same as what is shipped in the mainline kernel, and there are noand kGraft. All code is the same as what is shipped in the mainline kernel, and there are no
custom changes.custom changes.

Writing our Own LivepatchesWriting our Own Livepatches
Now that we have learned a bit about what Livepatch is, how it works, and the carefulNow that we have learned a bit about what Livepatch is, how it works, and the careful
consideration that goes into selecting a consistency model, let’s start making someconsideration that goes into selecting a consistency model, let’s start making some
Livepatches of our own.Livepatches of our own.

Structure of a LivepatchStructure of a Livepatch
For our first Livepatch, I think we will follow the sample which is provided in the mainlineFor our first Livepatch, I think we will follow the sample which is provided in the mainline
kernel. Download a copy of kernel. Download a copy of livepatch-sample.clivepatch-sample.c and have a read. and have a read.

Note, the Livepatch API has changed over time, so if you want to build for 4.4 Note, the Livepatch API has changed over time, so if you want to build for 4.4 Xenial, use theXenial, use the
livepatch-sample.clivepatch-sample.c from the Xenial kernel sources. If you get an error from the Xenial kernel sources. If you get an error insmod: ERROR:insmod: ERROR:

https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/samples/livepatch/livepatch-sample.c

could not insert module livepatch-sample.ko: Invalid parameterscould not insert module livepatch-sample.ko: Invalid parameters then you are then you are
using the wrong Livepatch API.using the wrong Livepatch API.

I am going to explain the latest API, as found in 5.4 Focal.I am going to explain the latest API, as found in 5.4 Focal.

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>#include <linux/module.h>
#include <linux/kernel.h>#include <linux/kernel.h>
#include <linux/livepatch.h>#include <linux/livepatch.h>

#include <linux/seq_file.h>#include <linux/seq_file.h>
staticstatic intint livepatch_cmdline_proc_showlivepatch_cmdline_proc_show((structstruct seq_fileseq_file **mm,, voidvoid **vv))
{{
 seq_printfseq_printf((mm,, "%s"%s\n\n"",, "this has been live patched""this has been live patched"););
 returnreturn 00;;
}}

staticstatic structstruct klp_funcklp_func funcsfuncs[][] == {{
 {{
 ..old_nameold_name == "cmdline_proc_show""cmdline_proc_show",,
 ..new_funcnew_func == livepatch_cmdline_proc_showlivepatch_cmdline_proc_show,,
 },}, {{ }}
};};

staticstatic structstruct klp_objectklp_object objsobjs[][] == {{
 {{
 /* name being NULL means vmlinux *//* name being NULL means vmlinux */
 ..funcsfuncs == funcsfuncs,,
 },}, {{ }}
};};

staticstatic structstruct klp_patchklp_patch patchpatch == {{
 ..modmod == THIS_MODULETHIS_MODULE,,
 ..objsobjs == objsobjs,,
};};

staticstatic intint livepatch_initlivepatch_init((voidvoid))
{{
 returnreturn klp_enable_patchklp_enable_patch((&&patchpatch););
}}

staticstatic voidvoid livepatch_exitlivepatch_exit((voidvoid))
{{
}}

module_initmodule_init((livepatch_initlivepatch_init););
module_exitmodule_exit((livepatch_exitlivepatch_exit););
MODULE_LICENSEMODULE_LICENSE(("GPL""GPL"););
MODULE_INFOMODULE_INFO((livepatchlivepatch,, "Y""Y"););

As you can already see, since the Livepatch is a kernel module, it follows the same processAs you can already see, since the Livepatch is a kernel module, it follows the same process
required when writing a kernel module. We required when writing a kernel module. We #include#include the kernel module header files of the kernel module header files of
linux/module.hlinux/module.h and and linux/kernel.hlinux/kernel.h , and declare our , and declare our module_init()module_init() and and
module_exit()module_exit() function pointers. function pointers.

To say we are making a Livepatch, we also include To say we are making a Livepatch, we also include linux/livepatch.hlinux/livepatch.h , set the module info, set the module info
marco to marco to livepatch, Ylivepatch, Y and have the module init function call and have the module init function call klp_enable_patch()klp_enable_patch() , the, the
entry point to the Livepatch subsystem.entry point to the Livepatch subsystem.

Declaring the Livepatch itself is pretty simple. In this example, we will patchDeclaring the Livepatch itself is pretty simple. In this example, we will patch
cmdline_proc_show()cmdline_proc_show() , the function which retruns the kernel commandline when you read, the function which retruns the kernel commandline when you read

from from /proc/cmdline/proc/cmdline ..

We define a new function, We define a new function, livepatch_cmdline_proc_show()livepatch_cmdline_proc_show() , and give the “fixed”, and give the “fixed”
implementation. We then map the new function to the old function by defining a struct ofimplementation. We then map the new function to the old function by defining a struct of
type type klp_funcklp_func , in this case called , in this case called funcs[]funcs[] , and filling in the members , and filling in the members .old_name.old_name and and
.new_func.new_func ..

Since we might need to replace more than one function in our Livepatch, we can createSince we might need to replace more than one function in our Livepatch, we can create
many of these function mappings, since many of these function mappings, since funcs[]funcs[] is an array. is an array.

We then tell Livepatch what to patch with struct We then tell Livepatch what to patch with struct klp_objectklp_object . We set . We set .funcs.funcs to our array to our array
of functions, and set of functions, and set .name.name to be another Livepatch module this has a dependency on, or to be another Livepatch module this has a dependency on, or
simply simply NULLNULL if we want to target if we want to target vmlinuxvmlinux ..

Finally, this is wrapped into a struct Finally, this is wrapped into a struct klp_patchklp_patch , where we declare the module name, and, where we declare the module name, and
the object struct. This is the struct we pass a reference to when the object struct. This is the struct we pass a reference to when klp_enable_patch()klp_enable_patch() is is
called.called.

We can build the module with the following We can build the module with the following MakefileMakefile ::

obj-m := livepatch-sample.oobj-m := livepatch-sample.o
KDIR := /lib/modules/$(shell uname -r)/buildKDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)PWD := $(shell pwd)
default:default:
 $(MAKE) -C $(KDIR) M=$(PWD) modules $(MAKE) -C $(KDIR) M=$(PWD) modules
clean:clean:
 $(MAKE) -C $(KDIR) M=$(PWD) clean $(MAKE) -C $(KDIR) M=$(PWD) clean

You need to install a compiler, and the kernel header for your running kernel:You need to install a compiler, and the kernel header for your running kernel:

$ $ sudo sudo apt apt install install linux-headers-linux-headers-`̀unameuname -r-r`̀
$ $ sudo sudo apt apt install install build-essentialbuild-essential

Then go ahead and run Then go ahead and run makemake ::

$ $ makemake
make make -C-C /lib/modules/5.4.0-21-generic/build /lib/modules/5.4.0-21-generic/build MM==/home/ubuntu/simple modules/home/ubuntu/simple modules
make[1]: Entering directory make[1]: Entering directory '/usr/src/linux-headers-5.4.0-21-generic''/usr/src/linux-headers-5.4.0-21-generic'

 CC CC [[M] /home/ubuntu/simple/livepatch-sample.oM] /home/ubuntu/simple/livepatch-sample.o
 Building modules, stage 2. Building modules, stage 2.
 MODPOST 1 modules MODPOST 1 modules
 CC CC [[M] /home/ubuntu/simple/livepatch-sample.mod.oM] /home/ubuntu/simple/livepatch-sample.mod.o
 LD LD [[M] /home/ubuntu/simple/livepatch-sample.koM] /home/ubuntu/simple/livepatch-sample.ko
make[1]: Leaving directory make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-21-generic''/usr/src/linux-headers-5.4.0-21-generic'

I did this on Focal, but this should work on any Ubuntu kernel from 4.4 Xenial and upward,I did this on Focal, but this should work on any Ubuntu kernel from 4.4 Xenial and upward,
as they all have Livepatch enabled.as they all have Livepatch enabled.

We then have the end result, We then have the end result, livepatch-sample.kolivepatch-sample.ko . Lets do a before and after read of. Lets do a before and after read of
/proc/cmdline/proc/cmdline as we load the module: as we load the module:

How cool is that? We have successfully Livepatched our system. Checking How cool is that? We have successfully Livepatched our system. Checking dmesgdmesg shows us shows us
the progress of Livepatch:the progress of Livepatch:

Note, we didn’t sign our kernel module, which is why module verification failed. This is onlyNote, we didn’t sign our kernel module, which is why module verification failed. This is only
really important if you are using secureboot. Otherwise, our kernel gained taint flags forreally important if you are using secureboot. Otherwise, our kernel gained taint flags for
loading the Livepatch module.loading the Livepatch module.

Making a Slightly More Complex LivepatchMaking a Slightly More Complex Livepatch
The previous Livepatch example used a completely new basic function to write back aThe previous Livepatch example used a completely new basic function to write back a
replaced kernel command line. What happens if we want to actually patch existing code?replaced kernel command line. What happens if we want to actually patch existing code?

The next example will follow along the case for using kpatch-build, using the The next example will follow along the case for using kpatch-build, using the primaryprimary
example in the example in the kpatch repositorykpatch repository..

What we want to do is change how the text is displayed for What we want to do is change how the text is displayed for VmallocChunkVmallocChunk in in
/proc/meminfo/proc/meminfo . The following patch for Linux 5.4 makes it capitalised:. The following patch for Linux 5.4 makes it capitalised:

$ $ catcat /proc/cmdline /proc/cmdline
BOOT_IMAGEBOOT_IMAGE==/boot/vmlinuz-5.4.0-21-generic /boot/vmlinuz-5.4.0-21-generic rootroot==UUIDUUID==f9f909c3-782a-43c2-a59d-c78f9f909c3-782a-43c2-a59d-c78
$ $ sudo sudo insmod livepatch-sample.koinsmod livepatch-sample.ko
$ $ catcat /proc/cmdline /proc/cmdline
this has been live patchedthis has been live patched

[33.100762] livepatch_sample: loading out-of-tree module taints kernel.[33.100762] livepatch_sample: loading out-of-tree module taints kernel.
[33.100764] livepatch_sample: tainting kernel with TAINT_LIVEPATCH[33.100764] livepatch_sample: tainting kernel with TAINT_LIVEPATCH
[33.100793] livepatch_sample: module verification failed: signature and/or r[33.100793] livepatch_sample: module verification failed: signature and/or r
[33.111720] livepatch: enabling patch 'livepatch_sample'[33.111720] livepatch: enabling patch 'livepatch_sample'
[33.114679] livepatch: 'livepatch_sample': starting patching transition[33.114679] livepatch: 'livepatch_sample': starting patching transition
[33.883586] livepatch: 'livepatch_sample': patching complete[33.883586] livepatch: 'livepatch_sample': patching complete

https://github.com/dynup/kpatch

Writing the Livepatch OurselvesWriting the Livepatch Ourselves
Okay, let’s follow a similar format to last time. Let’s copy the new function into our LivepatchOkay, let’s follow a similar format to last time. Let’s copy the new function into our Livepatch
template, like so:template, like so:

diff --git a/fs/proc/meminfo.c b/fs/proc/meminfo.cdiff --git a/fs/proc/meminfo.c b/fs/proc/meminfo.c
index 8c1f1bb1a5ce..3053c1bce50d 100644index 8c1f1bb1a5ce..3053c1bce50d 100644
--- a/fs/proc/meminfo.c--- a/fs/proc/meminfo.c
+++ b/fs/proc/meminfo.c+++ b/fs/proc/meminfo.c
@@ -117,7 +117,7 @@ static int meminfo_proc_show(struct seq_file *m, void *v)@@ -117,7 +117,7 @@ static int meminfo_proc_show(struct seq_file *m, void *v)
 seq_printf(m, "VmallocTotal: %8lu kB\n", seq_printf(m, "VmallocTotal: %8lu kB\n",
 (unsigned long)VMALLOC_TOTAL >> 10); (unsigned long)VMALLOC_TOTAL >> 10);
 show_val_kb(m, "VmallocUsed: ", vmalloc_nr_pages()); show_val_kb(m, "VmallocUsed: ", vmalloc_nr_pages());
- show_val_kb(m, "VmallocChunk: ", 0ul);- show_val_kb(m, "VmallocChunk: ", 0ul);
+ show_val_kb(m, "VMALLOCCHUNK: ", 0ul);+ show_val_kb(m, "VMALLOCCHUNK: ", 0ul);
 show_val_kb(m, "Percpu: ", pcpu_nr_pages()); show_val_kb(m, "Percpu: ", pcpu_nr_pages());

 #ifdef CONFIG_MEMORY_FAILURE #ifdef CONFIG_MEMORY_FAILURE

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>#include <linux/module.h>
#include <linux/kernel.h>#include <linux/kernel.h>
#include <linux/livepatch.h>#include <linux/livepatch.h>

staticstatic intint livepatch_meminfo_proc_showlivepatch_meminfo_proc_show((structstruct seq_fileseq_file **mm,, voidvoid **vv))
{{
 structstruct sysinfosysinfo ii;;
 unsignedunsigned longlong committedcommitted;;
 longlong cachedcached;;
 longlong availableavailable;;
 unsignedunsigned longlong pagespages[[NR_LRU_LISTSNR_LRU_LISTS];];
 unsignedunsigned longlong sreclaimablesreclaimable,, sunreclaimsunreclaim;;
 intint lrulru;;

 si_meminfosi_meminfo((&&ii););
 si_swapinfosi_swapinfo((&&ii););
 committedcommitted == percpu_counter_read_positivepercpu_counter_read_positive((&&vm_committed_asvm_committed_as););

 cachedcached == global_node_page_stateglobal_node_page_state((NR_FILE_PAGESNR_FILE_PAGES)) --
 total_swapcache_pagestotal_swapcache_pages()() -- ii..bufferrambufferram;;
 ifif ((cachedcached << 00))
 cachedcached == 00;;

 forfor ((lrulru == LRU_BASELRU_BASE;; lrulru << NR_LRU_LISTSNR_LRU_LISTS;; lrulru++++))
 pagespages[[lrulru]] == global_node_page_stateglobal_node_page_state((NR_LRU_BASENR_LRU_BASE ++ lrulru););

 availableavailable == si_mem_availablesi_mem_available();();
 sreclaimablesreclaimable == global_node_page_stateglobal_node_page_state((NR_SLAB_RECLAIMABLENR_SLAB_RECLAIMABLE););
 sunreclaimsunreclaim == global_node_page_stateglobal_node_page_state((NR_SLAB_UNRECLAIMABLENR_SLAB_UNRECLAIMABLE););

 show_val_kbshow_val_kb((mm,, "MemTotal: ""MemTotal: ",, ii..totalramtotalram););
 show_val_kbshow_val_kb((mm,, "MemFree: ""MemFree: ",, ii..freeramfreeram););
 show_val_kbshow_val_kb((mm,, "MemAvailable: ""MemAvailable: ",, availableavailable););
 show_val_kbshow_val_kb((mm,, "Buffers: ""Buffers: ",, ii..bufferrambufferram););

 show_val_kbshow_val_kb((mm,, "Cached: ""Cached: ",, cachedcached););
 show_val_kbshow_val_kb((mm,, "SwapCached: ""SwapCached: ",, total_swapcache_pagestotal_swapcache_pages());());
 show_val_kbshow_val_kb((mm,, "Active: ""Active: ",, pagespages[[LRU_ACTIVE_ANONLRU_ACTIVE_ANON]] ++
 pagespages[[LRU_ACTIVE_FILELRU_ACTIVE_FILE]);]);
 show_val_kbshow_val_kb((mm,, "Inactive: ""Inactive: ",, pagespages[[LRU_INACTIVE_ANONLRU_INACTIVE_ANON]] ++
 pagespages[[LRU_INACTIVE_FILELRU_INACTIVE_FILE]);]);
 show_val_kbshow_val_kb((mm,, "Active(anon): ""Active(anon): ",, pagespages[[LRU_ACTIVE_ANONLRU_ACTIVE_ANON]);]);
 show_val_kbshow_val_kb((mm,, "Inactive(anon): ""Inactive(anon): ",, pagespages[[LRU_INACTIVE_ANONLRU_INACTIVE_ANON]);]);
 show_val_kbshow_val_kb((mm,, "Active(file): ""Active(file): ",, pagespages[[LRU_ACTIVE_FILELRU_ACTIVE_FILE]);]);
 show_val_kbshow_val_kb((mm,, "Inactive(file): ""Inactive(file): ",, pagespages[[LRU_INACTIVE_FILELRU_INACTIVE_FILE]);]);
 show_val_kbshow_val_kb((mm,, "Unevictable: ""Unevictable: ",, pagespages[[LRU_UNEVICTABLELRU_UNEVICTABLE]);]);
 show_val_kbshow_val_kb((mm,, "Mlocked: ""Mlocked: ",, global_zone_page_stateglobal_zone_page_state((NR_MLOCKNR_MLOCK));));

#ifdef CONFIG_HIGHMEM#ifdef CONFIG_HIGHMEM
 show_val_kbshow_val_kb((mm,, "HighTotal: ""HighTotal: ",, ii..totalhightotalhigh););
 show_val_kbshow_val_kb((mm,, "HighFree: ""HighFree: ",, ii..freehighfreehigh););
 show_val_kbshow_val_kb((mm,, "LowTotal: ""LowTotal: ",, ii..totalramtotalram -- ii..totalhightotalhigh););
 show_val_kbshow_val_kb((mm,, "LowFree: ""LowFree: ",, ii..freeramfreeram -- ii..freehighfreehigh););
#endif#endif

#ifndef CONFIG_MMU#ifndef CONFIG_MMU
 show_val_kbshow_val_kb((mm,, "MmapCopy: ""MmapCopy: ",,
 ((unsignedunsigned longlong))atomic_long_readatomic_long_read((&&mmap_pages_allocatedmmap_pages_allocated));));
#endif#endif

 show_val_kbshow_val_kb((mm,, "SwapTotal: ""SwapTotal: ",, ii..totalswaptotalswap););
 show_val_kbshow_val_kb((mm,, "SwapFree: ""SwapFree: ",, ii..freeswapfreeswap););
 show_val_kbshow_val_kb((mm,, "Dirty: ""Dirty: ",,
 global_node_page_stateglobal_node_page_state((NR_FILE_DIRTYNR_FILE_DIRTY));));
 show_val_kbshow_val_kb((mm,, "Writeback: ""Writeback: ",,
 global_node_page_stateglobal_node_page_state((NR_WRITEBACKNR_WRITEBACK));));
 show_val_kbshow_val_kb((mm,, "AnonPages: ""AnonPages: ",,
 global_node_page_stateglobal_node_page_state((NR_ANON_MAPPEDNR_ANON_MAPPED));));
 show_val_kbshow_val_kb((mm,, "Mapped: ""Mapped: ",,
 global_node_page_stateglobal_node_page_state((NR_FILE_MAPPEDNR_FILE_MAPPED));));
 show_val_kbshow_val_kb((mm,, "Shmem: ""Shmem: ",, ii..sharedramsharedram););
 show_val_kbshow_val_kb((mm,, "KReclaimable: ""KReclaimable: ",, sreclaimablesreclaimable ++
 global_node_page_stateglobal_node_page_state((NR_KERNEL_MISC_RECLAIMABLENR_KERNEL_MISC_RECLAIMABLE));));
 show_val_kbshow_val_kb((mm,, "Slab: ""Slab: ",, sreclaimablesreclaimable ++ sunreclaimsunreclaim););
 show_val_kbshow_val_kb((mm,, "SReclaimable: ""SReclaimable: ",, sreclaimablesreclaimable););
 show_val_kbshow_val_kb((mm,, "SUnreclaim: ""SUnreclaim: ",, sunreclaimsunreclaim););
 seq_printfseq_printf((mm,, "KernelStack: %8lu kB"KernelStack: %8lu kB\n\n"",,
 global_zone_page_stateglobal_zone_page_state((NR_KERNEL_STACK_KBNR_KERNEL_STACK_KB));));
 show_val_kbshow_val_kb((mm,, "PageTables: ""PageTables: ",,
 global_zone_page_stateglobal_zone_page_state((NR_PAGETABLENR_PAGETABLE));));

 show_val_kbshow_val_kb((mm,, "NFS_Unstable: ""NFS_Unstable: ",,
 global_node_page_stateglobal_node_page_state((NR_UNSTABLE_NFSNR_UNSTABLE_NFS));));
 show_val_kbshow_val_kb((mm,, "Bounce: ""Bounce: ",,
 global_zone_page_stateglobal_zone_page_state((NR_BOUNCENR_BOUNCE));));
 show_val_kbshow_val_kb((mm,, "WritebackTmp: ""WritebackTmp: ",,
 global_node_page_stateglobal_node_page_state((NR_WRITEBACK_TEMPNR_WRITEBACK_TEMP));));
 show_val_kbshow_val_kb((mm,, "CommitLimit: ""CommitLimit: ",, vm_commit_limitvm_commit_limit());());
 show_val_kbshow_val_kb((mm,, "Committed_AS: ""Committed_AS: ",, committedcommitted););
 seq_printfseq_printf((mm,, "VmallocTotal: %8lu kB"VmallocTotal: %8lu kB\n\n"",,
 ((unsignedunsigned longlong))VMALLOC_TOTALVMALLOC_TOTAL >>>> 1010););
 show_val_kbshow_val_kb((mm,, "VmallocUsed: ""VmallocUsed: ",, vmalloc_nr_pagesvmalloc_nr_pages());());
 show_val_kbshow_val_kb((mm,, "VMALLOCCHUNK: ""VMALLOCCHUNK: ",, 0ul0ul););
 show_val_kbshow_val_kb((mm,, "Percpu: ""Percpu: ",, pcpu_nr_pagespcpu_nr_pages());());

#ifdef CONFIG_MEMORY_FAILURE#ifdef CONFIG_MEMORY_FAILURE

 seq_printfseq_printf((mm,, "HardwareCorrupted: %5lu kB"HardwareCorrupted: %5lu kB\n\n"",,
 atomic_long_readatomic_long_read((&&num_poisoned_pagesnum_poisoned_pages)) <<<< ((PAGE_SHIFTPAGE_SHIFT -- 1010));));
#endif#endif

#ifdef CONFIG_TRANSPARENT_HUGEPAGE#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 show_val_kbshow_val_kb((mm,, "AnonHugePages: ""AnonHugePages: ",,
 global_node_page_stateglobal_node_page_state((NR_ANON_THPSNR_ANON_THPS)) ** HPAGE_PMD_NRHPAGE_PMD_NR););
 show_val_kbshow_val_kb((mm,, "ShmemHugePages: ""ShmemHugePages: ",,
 global_node_page_stateglobal_node_page_state((NR_SHMEM_THPSNR_SHMEM_THPS)) ** HPAGE_PMD_NRHPAGE_PMD_NR););
 show_val_kbshow_val_kb((mm,, "ShmemPmdMapped: ""ShmemPmdMapped: ",,
 global_node_page_stateglobal_node_page_state((NR_SHMEM_PMDMAPPEDNR_SHMEM_PMDMAPPED)) ** HPAGE_PMD_NRHPAGE_PMD_NR););
 show_val_kbshow_val_kb((mm,, "FileHugePages: ""FileHugePages: ",,
 global_node_page_stateglobal_node_page_state((NR_FILE_THPSNR_FILE_THPS)) ** HPAGE_PMD_NRHPAGE_PMD_NR););
 show_val_kbshow_val_kb((mm,, "FilePmdMapped: ""FilePmdMapped: ",,
 global_node_page_stateglobal_node_page_state((NR_FILE_PMDMAPPEDNR_FILE_PMDMAPPED)) ** HPAGE_PMD_NRHPAGE_PMD_NR););
#endif#endif

#ifdef CONFIG_CMA#ifdef CONFIG_CMA
 show_val_kbshow_val_kb((mm,, "CmaTotal: ""CmaTotal: ",, totalcma_pagestotalcma_pages););
 show_val_kbshow_val_kb((mm,, "CmaFree: ""CmaFree: ",,
 global_zone_page_stateglobal_zone_page_state((NR_FREE_CMA_PAGESNR_FREE_CMA_PAGES));));
#endif#endif

 hugetlb_report_meminfohugetlb_report_meminfo((mm););

 arch_report_meminfoarch_report_meminfo((mm););

 returnreturn 00;;
}}

staticstatic structstruct klp_funcklp_func funcsfuncs[][] == {{
 {{
 ..old_nameold_name == "meminfo_proc_show""meminfo_proc_show",,
 ..new_funcnew_func == livepatch_meminfo_proc_showlivepatch_meminfo_proc_show,,
 },}, {{ }}
};};

staticstatic structstruct klp_objectklp_object objsobjs[][] == {{
 {{
 /* name being NULL means vmlinux *//* name being NULL means vmlinux */
 ..funcsfuncs == funcsfuncs,,
 },}, {{ }}
};};

staticstatic structstruct klp_patchklp_patch patchpatch == {{
 ..modmod == THIS_MODULETHIS_MODULE,,
 ..objsobjs == objsobjs,,
};};

staticstatic intint livepatch_initlivepatch_init((voidvoid))
{{
 returnreturn klp_enable_patchklp_enable_patch((&&patchpatch););
}}

staticstatic voidvoid livepatch_exitlivepatch_exit((voidvoid))
{{
}}

module_initmodule_init((livepatch_initlivepatch_init););
module_exitmodule_exit((livepatch_exitlivepatch_exit););

We can pretty much keep the same We can pretty much keep the same MakefileMakefile as last time: as last time:

obj-m := livepatch-meminfo.oobj-m := livepatch-meminfo.o
KDIR := /lib/modules/$(shell uname -r)/buildKDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)PWD := $(shell pwd)
default:default:
 $(MAKE) -C $(KDIR) M=$(PWD) modules $(MAKE) -C $(KDIR) M=$(PWD) modules
clean:clean:
 $(MAKE) -C $(KDIR) M=$(PWD) clean $(MAKE) -C $(KDIR) M=$(PWD) clean

When we build, we see some unresolved symbols:When we build, we see some unresolved symbols:

MODULE_LICENSEMODULE_LICENSE(("GPL""GPL"););
MODULE_INFOMODULE_INFO((livepatchlivepatch,, "Y""Y"););

$ $ makemake
make make -C-C /lib/modules/5.4.0-21-generic/build /lib/modules/5.4.0-21-generic/build MM==/home/ubuntu/meminfo modules/home/ubuntu/meminfo modules
make[1]: Entering directory make[1]: Entering directory '/usr/src/linux-headers-5.4.0-21-generic''/usr/src/linux-headers-5.4.0-21-generic'
 CC CC [[M] /home/ubuntu/meminfo/livepatch-meminfo.oM] /home/ubuntu/meminfo/livepatch-meminfo.o
/home/ubuntu/meminfo/livepatch-meminfo.c: In /home/ubuntu/meminfo/livepatch-meminfo.c: In functionfunction ‘livepatch_meminfo_proc_s ‘livepatch_meminfo_proc_s
/home/ubuntu/meminfo/livepatch-meminfo.c:19:9: error: implicit declaration of /home/ubuntu/meminfo/livepatch-meminfo.c:19:9: error: implicit declaration of ff
 19 | si_swapinfo 19 | si_swapinfo((&i&i));;
 | ^~~~~~~~~~~ | ^~~~~~~~~~~
/home/ubuntu/meminfo/livepatch-meminfo.c:20:51: error: ‘vm_committed_as’ undecl/home/ubuntu/meminfo/livepatch-meminfo.c:20:51: error: ‘vm_committed_as’ undecl
 20 | committed 20 | committed == percpu_counter_read_positive percpu_counter_read_positive((&vm_committed_as&vm_committed_as));;
 | ^~~~~~~~~~~~~~~ | ^~~~~~~~~~~~~~~
/home/ubuntu/meminfo/livepatch-meminfo.c:20:51: note: each undeclared identifie/home/ubuntu/meminfo/livepatch-meminfo.c:20:51: note: each undeclared identifie
/home/ubuntu/meminfo/livepatch-meminfo.c:23:25: error: implicit declaration of /home/ubuntu/meminfo/livepatch-meminfo.c:23:25: error: implicit declaration of
 23 | total_swapcache_pages 23 | total_swapcache_pages()() - i.bufferram - i.bufferram;;
 | ^~~~~~~~~~~~~~~~~~~~~ | ^~~~~~~~~~~~~~~~~~~~~
/home/ubuntu/meminfo/livepatch-meminfo.c:34:9: error: implicit declaration of /home/ubuntu/meminfo/livepatch-meminfo.c:34:9: error: implicit declaration of ff
 34 | show_val_kb 34 | show_val_kb((m, m, "MemTotal: ""MemTotal: ", i.totalram, i.totalram));;
 | ^~~~~~~~~~~ | ^~~~~~~~~~~
/home/ubuntu/meminfo/livepatch-meminfo.c:90:44: error: implicit declaration of /home/ubuntu/meminfo/livepatch-meminfo.c:90:44: error: implicit declaration of
 90 | show_val_kb 90 | show_val_kb((m, m, "CommitLimit: ""CommitLimit: ", vm_commit_limit, vm_commit_limit())());;
 | ^~~~~~~~~~~~~~~ | ^~~~~~~~~~~~~~~
/home/ubuntu/meminfo/livepatch-meminfo.c:117:44: error: ‘totalcma_pages’ undecl/home/ubuntu/meminfo/livepatch-meminfo.c:117:44: error: ‘totalcma_pages’ undecl
 117 | show_val_kb 117 | show_val_kb((m, m, "CmaTotal: ""CmaTotal: ", totalcma_pages, totalcma_pages));;
 | ^~~~~~~~~~~~~~ | ^~~~~~~~~~~~~~
 | totalram_pages | totalram_pages
/home/ubuntu/meminfo/livepatch-meminfo.c:122:9: error: implicit declaration of /home/ubuntu/meminfo/livepatch-meminfo.c:122:9: error: implicit declaration of
 122 | hugetlb_report_meminfo 122 | hugetlb_report_meminfo((mm));;
 | ^~~~~~~~~~~~~~~~~~~~~~ | ^~~~~~~~~~~~~~~~~~~~~~
 | arch_report_meminfo | arch_report_meminfo
cc1: some warnings being treated as errorscc1: some warnings being treated as errors
make[2]: make[2]: ****** [[scripts/Makefile.build:275: /home/ubuntu/meminfo/livepatch-meminfscripts/Makefile.build:275: /home/ubuntu/meminfo/livepatch-meminf
make[1]: make[1]: ****** [[Makefile:1719: /home/ubuntu/meminfo] Error 2Makefile:1719: /home/ubuntu/meminfo] Error 2
make[1]: Leaving directory make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-21-generic''/usr/src/linux-headers-5.4.0-21-generic'
make: make: ****** [[Makefile:5: default] Error 2Makefile:5: default] Error 2

Not to worry! We are just missing some header files. Look at the symbols and use cscope toNot to worry! We are just missing some header files. Look at the symbols and use cscope to
find what header files they live in, and find what header files they live in, and #include#include them: them:

#include <linux/seq_file.h>#include <linux/seq_file.h>
#include <linux/swap.h>#include <linux/swap.h>
#include <linux/mman.h>#include <linux/mman.h>
#include <linux/cma.h>#include <linux/cma.h>
#include <linux/hugetlb.h>#include <linux/hugetlb.h>

Now lets build:Now lets build:

Unfortunately for us, this basic example calls Unfortunately for us, this basic example calls show_val_kb()show_val_kb() . This isn’t defined in any. This isn’t defined in any
header files, and is actually local to header files, and is actually local to fs/proc/meminfo.cfs/proc/meminfo.c ..

So close but so far! Now, these functions which are local to their modules don’t actuallySo close but so far! Now, these functions which are local to their modules don’t actually
export their symbols to a stripped vmlinuz, which means we have a problem. Even if we tryexport their symbols to a stripped vmlinuz, which means we have a problem. Even if we try
be cheeky and make a forward declaration and label it be cheeky and make a forward declaration and label it externextern ::

The compiler is onto us!The compiler is onto us!

$ $ makemake
make make -C-C /lib/modules/5.4.0-21-generic/build /lib/modules/5.4.0-21-generic/build MM==/home/ubuntu/meminfo modules/home/ubuntu/meminfo modules
make[1]: Entering directory make[1]: Entering directory '/usr/src/linux-headers-5.4.0-21-generic''/usr/src/linux-headers-5.4.0-21-generic'
 CC CC [[M] /home/ubuntu/meminfo/livepatch-meminfo.oM] /home/ubuntu/meminfo/livepatch-meminfo.o
/home/ubuntu/meminfo/livepatch-meminfo.c: In /home/ubuntu/meminfo/livepatch-meminfo.c: In functionfunction ‘livepatch_meminfo_proc_s ‘livepatch_meminfo_proc_s
/home/ubuntu/meminfo/livepatch-meminfo.c:38:9: error: implicit declaration of /home/ubuntu/meminfo/livepatch-meminfo.c:38:9: error: implicit declaration of ff
 38 | show_val_kb 38 | show_val_kb((m, m, "MemTotal: ""MemTotal: ", i.totalram, i.totalram));;
 | ^~~~~~~~~~~ | ^~~~~~~~~~~
cc1: some warnings being treated as errorscc1: some warnings being treated as errors
make[2]: make[2]: ****** [[scripts/Makefile.build:275: /home/ubuntu/meminfo/livepatch-meminfscripts/Makefile.build:275: /home/ubuntu/meminfo/livepatch-meminf
make[1]: make[1]: ****** [[Makefile:1719: /home/ubuntu/meminfo] Error 2Makefile:1719: /home/ubuntu/meminfo] Error 2
make[1]: Leaving directory make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-21-generic''/usr/src/linux-headers-5.4.0-21-generic'
make: make: ****** [[Makefile:5: default] Error 2Makefile:5: default] Error 2

staticstatic voidvoid show_val_kbshow_val_kb((structstruct seq_fileseq_file **mm,, constconst charchar **ss,, unsignedunsigned longlong numnum))
{{
 seq_put_decimal_ull_widthseq_put_decimal_ull_width((mm,, ss,, numnum <<<< ((PAGE_SHIFTPAGE_SHIFT -- 1010),), 88););
 seq_writeseq_write((mm,, " kB" kB\n\n"",, 44););
}}

externextern voidvoid show_val_kbshow_val_kb((structstruct seq_fileseq_file **mm,, constconst charchar **ss,, unsignedunsigned longlong numnum););

While the module object builds, it cannot be linked, since the compiler does not know theWhile the module object builds, it cannot be linked, since the compiler does not know the
offsets or locations of the functions which reside in the unstripped vmlinux / strippedoffsets or locations of the functions which reside in the unstripped vmlinux / stripped
vmlinuz binaries.vmlinuz binaries.

So, how do we fix this? I struggled with this issue for quite a long time, until I went back andSo, how do we fix this? I struggled with this issue for quite a long time, until I went back and
read the Livepatch documentation more closely.read the Livepatch documentation more closely.

From From Documentation/livepatch/livepatch.txtDocumentation/livepatch/livepatch.txt::

The patch contains only functions that are really modified. But theyThe patch contains only functions that are really modified. But they
might want to access functions or data from the original source filemight want to access functions or data from the original source file
that may only be locally accessible. This can be solved by a specialthat may only be locally accessible. This can be solved by a special
relocation section in the generated livepatch module, seerelocation section in the generated livepatch module, see
Documentation/livepatch/module-elf-format.txt for more details.Documentation/livepatch/module-elf-format.txt for more details.

If you go ahead and read If you go ahead and read Documentation/livepatch/module-elf-format.txtDocumentation/livepatch/module-elf-format.txt, we find that we, we find that we
need to add ELF sections to the object file which tell the kernel Livepatch subsystem how toneed to add ELF sections to the object file which tell the kernel Livepatch subsystem how to
apply relocations for each of these functions into the kernel we are targeting.apply relocations for each of these functions into the kernel we are targeting.

There are two ELF sections that need adding;There are two ELF sections that need adding;

SHF_RELA_LIVEPATCHSHF_RELA_LIVEPATCH
SHN_LIVEPATCHSHN_LIVEPATCH

SHF_RELA_LIVEPATCH is used to declare the functions which need to be redirected withSHF_RELA_LIVEPATCH is used to declare the functions which need to be redirected with
ftrace, that is, the functions that are actually being Livepatched.ftrace, that is, the functions that are actually being Livepatched.

$ $ makemake
make make -C-C /lib/modules/5.4.0-21-generic/build /lib/modules/5.4.0-21-generic/build MM==/home/ubuntu/meminfo modules/home/ubuntu/meminfo modules
make[1]: Entering directory make[1]: Entering directory '/usr/src/linux-headers-5.4.0-21-generic''/usr/src/linux-headers-5.4.0-21-generic'
 CC CC [[M] /home/ubuntu/meminfo/livepatch-meminfo.oM] /home/ubuntu/meminfo/livepatch-meminfo.o
 Building modules, stage 2. Building modules, stage 2.
 MODPOST 1 modules MODPOST 1 modules
ERROR: ERROR: "arch_report_meminfo""arch_report_meminfo" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] undefi/home/ubuntu/meminfo/livepatch-meminfo.ko] undefi
ERROR: ERROR: "hugetlb_report_meminfo""hugetlb_report_meminfo" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] und/home/ubuntu/meminfo/livepatch-meminfo.ko] und
ERROR: ERROR: "totalcma_pages""totalcma_pages" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: ERROR: "num_poisoned_pages""num_poisoned_pages" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] undefin/home/ubuntu/meminfo/livepatch-meminfo.ko] undefin
ERROR: ERROR: "pcpu_nr_pages""pcpu_nr_pages" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: ERROR: "vmalloc_nr_pages""vmalloc_nr_pages" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined
ERROR: ERROR: "vm_commit_limit""vm_commit_limit" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: ERROR: "show_val_kb""show_val_kb" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: ERROR: "total_swapcache_pages""total_swapcache_pages" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] unde/home/ubuntu/meminfo/livepatch-meminfo.ko] unde
ERROR: ERROR: "vm_committed_as""vm_committed_as" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: ERROR: "si_swapinfo""si_swapinfo" [[/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
make[2]: make[2]: ****** [[scripts/Makefile.modpost:94: __modpost] Error 1scripts/Makefile.modpost:94: __modpost] Error 1
make[1]: make[1]: ****** [[Makefile:1632: modules] Error 2Makefile:1632: modules] Error 2
make[1]: Leaving directory make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-21-generic''/usr/src/linux-headers-5.4.0-21-generic'
make: make: ****** [[Makefile:5: default] Error 2Makefile:5: default] Error 2

https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://www.kernel.org/doc/Documentation/livepatch/module-elf-format.txt

SHN_LIVEPATCH are all the local symbols that the fixed function calls, and need to be fixedSHN_LIVEPATCH are all the local symbols that the fixed function calls, and need to be fixed
up.up.

Each section needs entries of the from:Each section needs entries of the from:

.klp.rela.objname.section_name.klp.rela.objname.section_name

An example for An example for SHF_RELA_LIVEPATCHSHF_RELA_LIVEPATCH would be: would be:

.klp.rela.vmlinux.text.meminfo.proc_show.klp.rela.vmlinux.text.meminfo.proc_show

These ELF sections need to know the addresses and offsets from the vmlinux binary.These ELF sections need to know the addresses and offsets from the vmlinux binary.

Now, inserting these by hand is actually really hard, and does not scale at all.Now, inserting these by hand is actually really hard, and does not scale at all.

This is the idea behind This is the idea behind kpatch-buildkpatch-build , and automated build program which can generate, and automated build program which can generate
Livepatches from source diffs, and programatically fetch and insert these ELF sections whichLivepatches from source diffs, and programatically fetch and insert these ELF sections which
contain the symbol relocation tables.contain the symbol relocation tables.

Using kpatch-build to Generate the LivepatchUsing kpatch-build to Generate the Livepatch
Firstly we need to download and build kpatch-build:Firstly we need to download and build kpatch-build:

$ sudo apt install dpkg-dev devscripts elfutils ccache$ sudo apt install dpkg-dev devscripts elfutils ccache
$ sudo apt build-dep linux$ sudo apt build-dep linux
$ git clone https://github.com/dynup/kpatch.git$ git clone https://github.com/dynup/kpatch.git
$ cd kpatch$ cd kpatch
$ make$ make

The next step is to download the The next step is to download the ddebddeb (debug-deb) package for the kernel we wish to (debug-deb) package for the kernel we wish to
make a Livepatch module for. A list of all kernel ddeb packages can be found make a Livepatch module for. A list of all kernel ddeb packages can be found at the ddebat the ddeb
package repositorypackage repository..

I will be targeting 5.4.0-24-generic, so I need to download I will be targeting 5.4.0-24-generic, so I need to download linux-image-unsigned-5.4.0-24-linux-image-unsigned-5.4.0-24-
generic-dbgsym_5.4.0-24.28_amd64.ddebgeneric-dbgsym_5.4.0-24.28_amd64.ddeb..

$ wget http://ddebs.ubuntu.com/ubuntu/pool/main/l/linux/linux-image-unsigned-5.$ wget http://ddebs.ubuntu.com/ubuntu/pool/main/l/linux/linux-image-unsigned-5.
$ sudo dpkg -i linux-image-unsigned-5.4.0-24-generic-dbgsym_5.4.0-24.28_amd64.d$ sudo dpkg -i linux-image-unsigned-5.4.0-24-generic-dbgsym_5.4.0-24.28_amd64.d

http://ddebs.ubuntu.com/ubuntu/pool/main/l/linux/
http://ddebs.ubuntu.com/ubuntu/pool/main/l/linux/linux-image-unsigned-5.4.0-24-generic-dbgsym_5.4.0-24.28_amd64.ddeb

The resulting debug vmlinux will be placed at The resulting debug vmlinux will be placed at /lib/debug/boot/vmlinux-5.4.0-24-/lib/debug/boot/vmlinux-5.4.0-24-

genericgeneric ..

kpatch-buildkpatch-build operates on source diffs. Save the diff to operates on source diffs. Save the diff to ~/meminfo-string.patch~/meminfo-string.patch like so: like so:

Now we are ready to build!Now we are ready to build!

Run the following command:Run the following command:

kpatch-buildkpatch-build works by first downloading the source archive of the kernel you are works by first downloading the source archive of the kernel you are
targeting, which is determined by the vmlinux package you pass in. From there, the standardtargeting, which is determined by the vmlinux package you pass in. From there, the standard
vmlinux is built normally. Once that completes, the source tree is patched with the patch youvmlinux is built normally. Once that completes, the source tree is patched with the patch you
specified, and rebuilt. Since most patches are small, only changed object files are rebuilt. Inspecified, and rebuilt. Since most patches are small, only changed object files are rebuilt. In
this case, only this case, only meminfo.omeminfo.o gets rebuilt. gets rebuilt.

Since we now know that only Since we now know that only meminfo.omeminfo.o got changed, the single object is compiled again got changed, the single object is compiled again
with with -ffunction-sections -fdata-sections-ffunction-sections -fdata-sections in both the patched and unpatched forms. in both the patched and unpatched forms.

$ cat ~/meminfo-string.patch $ cat ~/meminfo-string.patch
diff --git a/fs/proc/meminfo.c b/fs/proc/meminfo.cdiff --git a/fs/proc/meminfo.c b/fs/proc/meminfo.c
index 8c1f1bb1a5ce..3053c1bce50d 100644index 8c1f1bb1a5ce..3053c1bce50d 100644
--- a/fs/proc/meminfo.c--- a/fs/proc/meminfo.c
+++ b/fs/proc/meminfo.c+++ b/fs/proc/meminfo.c
@@ -117,7 +117,7 @@ static int meminfo_proc_show(struct seq_file *m, void *v)@@ -117,7 +117,7 @@ static int meminfo_proc_show(struct seq_file *m, void *v)
 seq_printf(m, "VmallocTotal: %8lu kB\n", seq_printf(m, "VmallocTotal: %8lu kB\n",
 (unsigned long)VMALLOC_TOTAL >> 10); (unsigned long)VMALLOC_TOTAL >> 10);
 show_val_kb(m, "VmallocUsed: ", vmalloc_nr_pages()); show_val_kb(m, "VmallocUsed: ", vmalloc_nr_pages());
- show_val_kb(m, "VmallocChunk: ", 0ul);- show_val_kb(m, "VmallocChunk: ", 0ul);
+ show_val_kb(m, "VMALLOCCHUNK: ", 0ul);+ show_val_kb(m, "VMALLOCCHUNK: ", 0ul);
 show_val_kb(m, "Percpu: ", pcpu_nr_pages()); show_val_kb(m, "Percpu: ", pcpu_nr_pages());

 #ifdef CONFIG_MEMORY_FAILURE #ifdef CONFIG_MEMORY_FAILURE

$ kpatch/kpatch-build/kpatch-build -t vmlinux --vmlinux /lib/debug/boot/vmlinux$ kpatch/kpatch-build/kpatch-build -t vmlinux --vmlinux /lib/debug/boot/vmlinux
Using cache at /home/matthew/.kpatch/srcUsing cache at /home/matthew/.kpatch/src
Testing patch file(s)Testing patch file(s)
Reading special section dataReading special section data
readelf: Error: LEB value too largereadelf: Error: LEB value too large
readelf: Error: LEB value too largereadelf: Error: LEB value too large
Building original sourceBuilding original source
Building patched sourceBuilding patched source
Extracting new and modified ELF sectionsExtracting new and modified ELF sections
meminfo.o: changed function: meminfo_proc_showmeminfo.o: changed function: meminfo_proc_show
Patched objects: vmlinuxPatched objects: vmlinux
Building patch module: livepatch-meminfo-string.koBuilding patch module: livepatch-meminfo-string.ko
SUCCESSSUCCESS

Then each unpatched and patched object set is then analysed by Then each unpatched and patched object set is then analysed by create-diff-objectcreate-diff-object to to
determine what functions have been modified, and to extract the changed functions. Thisdetermine what functions have been modified, and to extract the changed functions. This
program also checks for Livepatch compatibility.program also checks for Livepatch compatibility.

The really special part of The really special part of create-diff-objectcreate-diff-object is that it creates the necessary ELF symbol is that it creates the necessary ELF symbol
relocation sections to the patched objectfile.relocation sections to the patched objectfile.

It adds It adds kpatch.funcskpatch.funcs and and .rela.kpatch.funcs.rela.kpatch.funcs which tell ftrace what functions are which tell ftrace what functions are
actually going to be Livepatched.actually going to be Livepatched.

It adds It adds .kpatch.dynrelas.kpatch.dynrelas and and .rela.kpatch.dynrelas.rela.kpatch.dynrelas which are used to fixup symbol which are used to fixup symbol
relocations for local function calls in the fixed function to symbols in vmlinux.relocations for local function calls in the fixed function to symbols in vmlinux.

From there, From there, kpatch-buildkpatch-build generates a new kernel module containing all Livepatches, generates a new kernel module containing all Livepatches,
which is ready to be used.which is ready to be used.

Let’s test it out shall we?Let’s test it out shall we?

$ sudo insmod livepatch-meminfo-string.ko$ sudo insmod livepatch-meminfo-string.ko
$ grep -i chunk /proc/meminfo$ grep -i chunk /proc/meminfo
VMALLOCCHUNK: 0 kBVMALLOCCHUNK: 0 kB

It worked! Great! Let’s see what It worked! Great! Let’s see what dmesgdmesg has to say: has to say:

Pretty much the same as last time.Pretty much the same as last time.

As for those ELF sections, we can examine the kernel module to see them:As for those ELF sections, we can examine the kernel module to see them:

$ readelf --sections livepatch-meminfo-string.ko $ readelf --sections livepatch-meminfo-string.ko
There are 52 section headers, starting at offset 0xac7e8:There are 52 section headers, starting at offset 0xac7e8:

Section Headers:Section Headers:
 [Nr] Name Type Address Offset [Nr] Name Type Address Offset
 Size EntSize Flags Link Info Align Size EntSize Flags Link Info Align
......
 [20] .kpatch.funcs PROGBITS 0000000000000000 00001fa8 [20] .kpatch.funcs PROGBITS 0000000000000000 00001fa8
 0000000000000038 0000000000000000 A 0 0 8 0000000000000038 0000000000000000 A 0 0 8
 [21] .rela.kpatch.func RELA 0000000000000000 00001fe0 [21] .rela.kpatch.func RELA 0000000000000000 00001fe0
 0000000000000048 0000000000000018 I 48 20 8 0000000000000048 0000000000000018 I 48 20 8

[5611.674220] livepatch_meminfo_string: loading out-of-tree module taints kern[5611.674220] livepatch_meminfo_string: loading out-of-tree module taints kern
[5611.674223] livepatch_meminfo_string: tainting kernel with TAINT_LIVEPATCH[5611.674223] livepatch_meminfo_string: tainting kernel with TAINT_LIVEPATCH
[5611.674259] livepatch_meminfo_string: module verification failed: signature [5611.674259] livepatch_meminfo_string: module verification failed: signature
[5611.856109] livepatch: enabling patch 'livepatch_meminfo_string'[5611.856109] livepatch: enabling patch 'livepatch_meminfo_string'
[5611.859603] livepatch: 'livepatch_meminfo_string': starting patching transit[5611.859603] livepatch: 'livepatch_meminfo_string': starting patching transit
[5611.860277] livepatch: 'livepatch_meminfo_string': patching complete[5611.860277] livepatch: 'livepatch_meminfo_string': patching complete

......
 [51] .klp.rela.vmlinux RELA 0000000000000000 000ac308 [51] .klp.rela.vmlinux RELA 0000000000000000 000ac308
 00000000000004e0 0000000000000018 AIo 48 10 8 00000000000004e0 0000000000000018 AIo 48 10 8

Using Livepatch to Fix A Real BugUsing Livepatch to Fix A Real Bug
Now, I really wanted to make a Livepatch to fix a real bug, but for the moment I must admitNow, I really wanted to make a Livepatch to fix a real bug, but for the moment I must admit
defeat.defeat.

I went into writing this blog post thinking that Livepatch could be an awesome tool to helpI went into writing this blog post thinking that Livepatch could be an awesome tool to help
fix customer issues, but the problem is, there are some severe limitations as to what can befix customer issues, but the problem is, there are some severe limitations as to what can be
Livepatched, and even when you believe a patch could be compatible, a GCC optimisationLivepatched, and even when you believe a patch could be compatible, a GCC optimisation
could completely ruin your plans.could completely ruin your plans.

I have two examples.I have two examples.

Example One: Inline FunctionsExample One: Inline Functions
The first, is a bug that was actually a regression to the SRU I made for the The first, is a bug that was actually a regression to the SRU I made for the bug fixed by mybug fixed by my
previous blog post, previous blog post, Resolving Large NVMe Performance Degradation in the Ubuntu 4.4Resolving Large NVMe Performance Degradation in the Ubuntu 4.4
KernelKernel..

Anyway, the bug is documented by my colleague who I worked the case with:Anyway, the bug is documented by my colleague who I worked the case with:

Mounting LVM snapshots with xfs can hit kernel BUG in nvme driverMounting LVM snapshots with xfs can hit kernel BUG in nvme driver..

commit 5a8d75a1b8c99bdc926ba69b7b7dbe4fae81a5afcommit 5a8d75a1b8c99bdc926ba69b7b7dbe4fae81a5af
Author: Ming Lei <Author: Ming Lei <ming.lei@redhat.comming.lei@redhat.com>>
Date: Fri Apr 14 13:58:29 2017 -0600Date: Fri Apr 14 13:58:29 2017 -0600
Subject: block: fix bio_will_gap() for first bvec with offsetSubject: block: fix bio_will_gap() for first bvec with offset

You can read the commit here: You can read the commit here: block: fix bio_will_gap() for first bvec with offsetblock: fix bio_will_gap() for first bvec with offset..

The important part is the three function prototypes in each changed function:The important part is the three function prototypes in each changed function:

$ readelf --relocs livepatch-meminfo-string.ko$ readelf --relocs livepatch-meminfo-string.ko
......
Relocation section '.klp.rela.vmlinux..text.meminfo_proc_show' at offset 0xac30Relocation section '.klp.rela.vmlinux..text.meminfo_proc_show' at offset 0xac30
 Offset Info Type Sym. Value Sym. Name + Adden Offset Info Type Sym. Value Sym. Name + Adden
00000000003f 005400000004 R_X86_64_PLT32 0000000000000000 .klp.sym.vmlinux.00000000003f 005400000004 R_X86_64_PLT32 0000000000000000 .klp.sym.vmlinux.
000000000046 005500000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.000000000046 005500000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.
......

https://ruffell.nz/programming/writeups/2019/07/20/resolving-nvme-performance-degradation.html
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1869229
https://github.com/torvalds/linux/commit/5a8d75a1b8c99bdc926ba69b7b7dbe4fae81a5af

-static inline bool bio_will_gap(struct request_queue *q, struct bio *prev,-static inline bool bio_will_gap(struct request_queue *q, struct bio *prev,
- struct bio *next)- struct bio *next)
+static inline bool bio_will_gap(struct request_queue *q,+static inline bool bio_will_gap(struct request_queue *q,
+ struct request *prev_rq,+ struct request *prev_rq,
+ struct bio *prev,+ struct bio *prev,
+ struct bio *next)+ struct bio *next)

static inline bool req_gap_back_merge(struct request *req, struct bio *bio)static inline bool req_gap_back_merge(struct request *req, struct bio *bio)

static inline bool req_gap_front_merge(struct request *req, struct bio *bio)static inline bool req_gap_front_merge(struct request *req, struct bio *bio)

Inlined functions. Sometimes these will work, as the callers will just embed the code in them.Inlined functions. Sometimes these will work, as the callers will just embed the code in them.
Most of the time they won’t though.Most of the time they won’t though.

The thing is, the kernel redefines the meaning of The thing is, the kernel redefines the meaning of inlineinline in in
include/linux/compiler_types.hinclude/linux/compiler_types.h ::

#if !defined(CONFIG_OPTIMIZE_INLINING)#if !defined(CONFIG_OPTIMIZE_INLINING)
#define inline inline __attribute__((__always_inline__)) __gnu_inline \#define inline inline __attribute__((__always_inline__)) __gnu_inline \
 __inline_maybe_unused notrace __inline_maybe_unused notrace
#else#else
#define inline inline __gnu_inline \#define inline inline __gnu_inline \
 __inline_maybe_unused notrace __inline_maybe_unused notrace
#endif#endif

We see that if you select We see that if you select inlineinline , you also get , you also get notracenotrace . Only tracable functions can be. Only tracable functions can be
Livepatched as we know, meaning that this is a dead end if you are not using tools likeLivepatched as we know, meaning that this is a dead end if you are not using tools like
kpatch-buildkpatch-build . Most patches like this will mostly error out with . Most patches like this will mostly error out with kpatch-buildkpatch-build too. too.

Example Two: GCC OptimisationsExample Two: GCC Optimisations
The next bug is a neat little Null pointer dereference if you have the sysctlThe next bug is a neat little Null pointer dereference if you have the sysctl
kernel.core_patternkernel.core_pattern set to “|” and run a program which crashes. set to “|” and run a program which crashes.

You can read all about it here:You can read all about it here:

unkillable process (kernel NULL pointer dereference)unkillable process (kernel NULL pointer dereference)

There’s a patch made by Sudip Mukherjee which was more elegant than the one I putThere’s a patch made by Sudip Mukherjee which was more elegant than the one I put
forward in the process of getting mainlined now. You can see it here:forward in the process of getting mainlined now. You can see it here:

diff --git a/fs/coredump.c b/fs/coredump.cdiff --git a/fs/coredump.c b/fs/coredump.c
index f8296a82d01d..408418e6aa13 100644index f8296a82d01d..408418e6aa13 100644
--- a/fs/coredump.c--- a/fs/coredump.c
+++ b/fs/coredump.c+++ b/fs/coredump.c
@@ -211,6 +211,8 @@ static int format_corename(struct core_name *cn, struct cor@@ -211,6 +211,8 @@ static int format_corename(struct core_name *cn, struct cor
 return -ENOMEM; return -ENOMEM;

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1863086

Now, if we run Now, if we run kpatch-buildkpatch-build over this: over this:

It fails! Why does it say the changed function was It fails! Why does it say the changed function was do_coredump()do_coredump() , when the above patch, when the above patch
clearly patches clearly patches format_corename()format_corename() ? There are no inlined functions here.? There are no inlined functions here.

To get some answers, we need to look at the vmlinux binaries to see what symbols areTo get some answers, we need to look at the vmlinux binaries to see what symbols are
exported.exported.

 (*argv)[(*argc)++] = 0; (*argv)[(*argc)++] = 0;
 ++pat_ptr; ++pat_ptr;
+ if (!(*pat_ptr))+ if (!(*pat_ptr))
+ return -ENOMEM;+ return -ENOMEM;
 } }

 /* Repeat as long as we have more pattern to process and more output /* Repeat as long as we have more pattern to process and more output

$ kpatch/kpatch-build/kpatch-build -t vmlinux --vmlinux /lib/debug/boot/vmlinux$ kpatch/kpatch-build/kpatch-build -t vmlinux --vmlinux /lib/debug/boot/vmlinux
Using cache at /home/matthew/.kpatch/srcUsing cache at /home/matthew/.kpatch/src
Testing patch file(s)Testing patch file(s)
Reading special section dataReading special section data
readelf: Error: LEB value too largereadelf: Error: LEB value too large
readelf: Error: LEB value too largereadelf: Error: LEB value too large
Building original sourceBuilding original source
Building patched sourceBuilding patched source
Extracting new and modified ELF sectionsExtracting new and modified ELF sections
coredump.o: changed function: do_coredumpcoredump.o: changed function: do_coredump
/home/matthew/work/kernel/kpatch/kpatch-build/create-diff-object: ERROR: coredu/home/matthew/work/kernel/kpatch/kpatch-build/create-diff-object: ERROR: coredu
ERROR: 1 error(s) encountered. Check /home/matthew/.kpatch/build.log for more dERROR: 1 error(s) encountered. Check /home/matthew/.kpatch/build.log for more d

$ readelf -s /lib/debug/boot/vmlinux-5.4.0-24-generic$ readelf -s /lib/debug/boot/vmlinux-5.4.0-24-generic
......
 29993: 0000000000000000 0 FILE LOCAL DEFAULT ABS coredump.c 29993: 0000000000000000 0 FILE LOCAL DEFAULT ABS coredump.c
 29994: ffffffff8247f938 0 NOTYPE LOCAL DEFAULT 13 __ksymtab_dump_emit 29994: ffffffff8247f938 0 NOTYPE LOCAL DEFAULT 13 __ksymtab_dump_emit
 29995: ffffffff824a80eb 10 OBJECT LOCAL DEFAULT 17 __kstrtab_dump_emit 29995: ffffffff824a80eb 10 OBJECT LOCAL DEFAULT 17 __kstrtab_dump_emit
 29996: ffffffff8247f95c 0 NOTYPE LOCAL DEFAULT 13 __ksymtab_dump_skip 29996: ffffffff8247f95c 0 NOTYPE LOCAL DEFAULT 13 __ksymtab_dump_skip
 29997: ffffffff824a80e1 10 OBJECT LOCAL DEFAULT 17 __kstrtab_dump_skip 29997: ffffffff824a80e1 10 OBJECT LOCAL DEFAULT 17 __kstrtab_dump_skip
 29998: ffffffff8247f92c 0 NOTYPE LOCAL DEFAULT 13 __ksymtab_dump_align 29998: ffffffff8247f92c 0 NOTYPE LOCAL DEFAULT 13 __ksymtab_dump_align
 29999: ffffffff824a80d6 11 OBJECT LOCAL DEFAULT 17 __kstrtab_dump_align 29999: ffffffff824a80d6 11 OBJECT LOCAL DEFAULT 17 __kstrtab_dump_align
 30000: ffffffff8247f974 0 NOTYPE LOCAL DEFAULT 13 __ksymtab_dump_trunc 30000: ffffffff8247f974 0 NOTYPE LOCAL DEFAULT 13 __ksymtab_dump_trunc
 30001: ffffffff824a80c8 14 OBJECT LOCAL DEFAULT 17 __kstrtab_dump_trunc 30001: ffffffff824a80c8 14 OBJECT LOCAL DEFAULT 17 __kstrtab_dump_trunc
 30002: ffffffff813610b0 156 FUNC LOCAL DEFAULT 1 umh_pipe_setup 30002: ffffffff813610b0 156 FUNC LOCAL DEFAULT 1 umh_pipe_setup
 30003: ffffffff81361150 208 FUNC LOCAL DEFAULT 1 zap_process 30003: ffffffff81361150 208 FUNC LOCAL DEFAULT 1 zap_process
 30004: ffffffff813612e0 100 FUNC LOCAL DEFAULT 1 expand_corename.isra 30004: ffffffff813612e0 100 FUNC LOCAL DEFAULT 1 expand_corename.isra
 30005: ffffffff827144c0 4 OBJECT LOCAL DEFAULT 24 core_name_size 30005: ffffffff827144c0 4 OBJECT LOCAL DEFAULT 24 core_name_size
 30006: ffffffff81361350 195 FUNC LOCAL DEFAULT 1 cn_vprintf 30006: ffffffff81361350 195 FUNC LOCAL DEFAULT 1 cn_vprintf
 30007: ffffffff81361420 106 FUNC LOCAL DEFAULT 1 cn_printf 30007: ffffffff81361420 106 FUNC LOCAL DEFAULT 1 cn_printf
 30008: ffffffff81361490 247 FUNC LOCAL DEFAULT 1 cn_esc_printf 30008: ffffffff81361490 247 FUNC LOCAL DEFAULT 1 cn_esc_printf
 30009: ffffffff82d3f560 4096 OBJECT LOCAL DEFAULT 54 zeroes.62762 30009: ffffffff82d3f560 4096 OBJECT LOCAL DEFAULT 54 zeroes.62762
 30010: ffffffff81361660 1383 FUNC LOCAL DEFAULT 1 format_corename.isra 30010: ffffffff81361660 1383 FUNC LOCAL DEFAULT 1 format_corename.isra
 30011: ffffffff81361bd0 36 FUNC LOCAL DEFAULT 1 kmalloc_array.constp 30011: ffffffff81361bd0 36 FUNC LOCAL DEFAULT 1 kmalloc_array.constp
 30012: ffffffff82d40560 0 OBJECT LOCAL DEFAULT 54 __key.10435 30012: ffffffff82d40560 0 OBJECT LOCAL DEFAULT 54 __key.10435
 30013: ffffffff82d40560 4 OBJECT LOCAL DEFAULT 54 core_dump_count.6271 30013: ffffffff82d40560 4 OBJECT LOCAL DEFAULT 54 core_dump_count.6271

Next, the freshly built vmlinux:Next, the freshly built vmlinux:

If you look closely, the original vmlinux has the following two symbols:If you look closely, the original vmlinux has the following two symbols:

While the built one does not! There are missing symbols in our freshly built vmlinux binaries.While the built one does not! There are missing symbols in our freshly built vmlinux binaries.
This is likely down to the “ISRA” optimisation round which GCC does. Maybe compiler flagsThis is likely down to the “ISRA” optimisation round which GCC does. Maybe compiler flags
are slightly different between builds. I am not sure. All I do know, is that this patch hasare slightly different between builds. I am not sure. All I do know, is that this patch has
problems.problems.

Limitations in LivepatchLimitations in Livepatch
As we can see, there are some real limitations to which patches are suitable for Livepatch.As we can see, there are some real limitations to which patches are suitable for Livepatch.
This is probably the biggest reason why Livepatches are reserved for security fixes only, sinceThis is probably the biggest reason why Livepatches are reserved for security fixes only, since
most normal fixes won’t work.most normal fixes won’t work.

 30014: ffffffff81362730 56 FUNC LOCAL DEFAULT 1 do_coredump.cold 30014: ffffffff81362730 56 FUNC LOCAL DEFAULT 1 do_coredump.cold
 30015: ffffffff82079530 12 OBJECT LOCAL DEFAULT 7 __func__.62732 30015: ffffffff82079530 12 OBJECT LOCAL DEFAULT 7 __func__.62732
......

$ readelf -s ~/.kpatch/src/vmlinux$ readelf -s ~/.kpatch/src/vmlinux
......
 92711: 0000000000000000 0 FILE LOCAL DEFAULT ABS coredump.c 92711: 0000000000000000 0 FILE LOCAL DEFAULT ABS coredump.c
 92712: ffffffff8248f918 0 NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_emit 92712: ffffffff8248f918 0 NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_emit
 92713: ffffffff824b80cb 10 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_emit 92713: ffffffff824b80cb 10 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_emit
 92714: ffffffff8248f93c 0 NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_skip 92714: ffffffff8248f93c 0 NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_skip
 92715: ffffffff824b80c1 10 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_skip 92715: ffffffff824b80c1 10 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_skip
 92716: ffffffff8248f90c 0 NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_alig 92716: ffffffff8248f90c 0 NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_alig
 92717: ffffffff824b80b6 11 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_alig 92717: ffffffff824b80b6 11 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_alig
 92718: ffffffff8248f954 0 NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_trun 92718: ffffffff8248f954 0 NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_trun
 92719: ffffffff824b80a8 14 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_trun 92719: ffffffff824b80a8 14 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_trun
 92720: ffffffff814baff0 156 FUNC LOCAL DEFAULT 8647 umh_pipe_setup 92720: ffffffff814baff0 156 FUNC LOCAL DEFAULT 8647 umh_pipe_setup
 92721: ffffffff81761a10 208 FUNC LOCAL DEFAULT 32162 zap_process 92721: ffffffff81761a10 208 FUNC LOCAL DEFAULT 32162 zap_process
 92722: ffffffff81761ba0 100 FUNC LOCAL DEFAULT 32166 expand_corename.isr 92722: ffffffff81761ba0 100 FUNC LOCAL DEFAULT 32166 expand_corename.isr
 92723: ffffffff8276d518 4 OBJECT LOCAL DEFAULT 106303 core_name_size 92723: ffffffff8276d518 4 OBJECT LOCAL DEFAULT 106303 core_name_size
 92724: ffffffff81761c10 195 FUNC LOCAL DEFAULT 32168 cn_vprintf 92724: ffffffff81761c10 195 FUNC LOCAL DEFAULT 32168 cn_vprintf
 92725: ffffffff81761ce0 106 FUNC LOCAL DEFAULT 32170 cn_printf 92725: ffffffff81761ce0 106 FUNC LOCAL DEFAULT 32170 cn_printf
 92726: ffffffff81761d50 247 FUNC LOCAL DEFAULT 32172 cn_esc_printf 92726: ffffffff81761d50 247 FUNC LOCAL DEFAULT 32172 cn_esc_printf
 92727: ffffffff83017f60 4096 OBJECT LOCAL DEFAULT 117495 zeroes.62762 92727: ffffffff83017f60 4096 OBJECT LOCAL DEFAULT 117495 zeroes.62762
 92728: ffffffff82ec62d0 0 OBJECT LOCAL DEFAULT 116793 __key.10435 92728: ffffffff82ec62d0 0 OBJECT LOCAL DEFAULT 116793 __key.10435
 92729: ffffffff83018f60 4 OBJECT LOCAL DEFAULT 117496 core_dump_count.62 92729: ffffffff83018f60 4 OBJECT LOCAL DEFAULT 117496 core_dump_count.62
 92730: ffffffff81761f16 27 FUNC LOCAL DEFAULT 32178 do_coredump.cold 92730: ffffffff81761f16 27 FUNC LOCAL DEFAULT 32178 do_coredump.cold
 92731: ffffffff822adba0 12 OBJECT LOCAL DEFAULT 97893 __func__.62732 92731: ffffffff822adba0 12 OBJECT LOCAL DEFAULT 97893 __func__.62732
......

 30010: ffffffff81361660 1383 FUNC LOCAL DEFAULT 1 format_corename.isra 30010: ffffffff81361660 1383 FUNC LOCAL DEFAULT 1 format_corename.isra
 30011: ffffffff81361bd0 36 FUNC LOCAL DEFAULT 1 kmalloc_array.constp 30011: ffffffff81361bd0 36 FUNC LOCAL DEFAULT 1 kmalloc_array.constp

The best cheat sheet for what patches work is the The best cheat sheet for what patches work is the Patch Author GuidePatch Author Guide in the kpatch in the kpatch
repository.repository.

As soon as I can fix a real bug with Livepatch, I will write a follow up blogpost.As soon as I can fix a real bug with Livepatch, I will write a follow up blogpost.

Installing and Configuring Livepatch onInstalling and Configuring Livepatch on
UbuntuUbuntu
Interested in using Livepatch in your production environment, but don’t want to navigate allInterested in using Livepatch in your production environment, but don’t want to navigate all
the complexity behind researching compatible patches, writing or generating Livepatchthe complexity behind researching compatible patches, writing or generating Livepatch
modules, testing for regressions or scaling deployment?modules, testing for regressions or scaling deployment?

Well, you can use the Well, you can use the Canonical Livepatch ServiceCanonical Livepatch Service..

The Canonical Livepatch Service is easy to set up, and automatically delivers critical securityThe Canonical Livepatch Service is easy to set up, and automatically delivers critical security
fixes to your machines. These Livepatches have been thoroughly tested and are safe to use.fixes to your machines. These Livepatches have been thoroughly tested and are safe to use.

You can find a list of supported distribution releases and kernel versions on the You can find a list of supported distribution releases and kernel versions on the LivepatchLivepatch
Wiki pageWiki page..

The rule of thumb is that Livepatch is available for LTS GA kernels, and HWE kernels whichThe rule of thumb is that Livepatch is available for LTS GA kernels, and HWE kernels which
are from the next LTS GA kernel.are from the next LTS GA kernel.

So for example, 4.4 GA kernel on Xenial, or the 4.15 HWE kernel on xenial, since it wasSo for example, 4.4 GA kernel on Xenial, or the 4.15 HWE kernel on xenial, since it was
Bionic’s GA kernel. Bionic will have 4.15 and soon, the 5.4 HWE kernel from Focal.Bionic’s GA kernel. Bionic will have 4.15 and soon, the 5.4 HWE kernel from Focal.

The Canonical Livepatch service is pretty easy to set up. All you need to do is:The Canonical Livepatch service is pretty easy to set up. All you need to do is:

1. Visit the Visit the Canonical Livepatch PortalCanonical Livepatch Portal to generate your API key. to generate your API key.
2. Install the Livepatch system daemon with Install the Livepatch system daemon with $ sudo snap install canonical-$ sudo snap install canonical-

livepatchlivepatch

3. Setup Livepatch with the API key: Setup Livepatch with the API key: $ sudo canonical-livepatch enable <TOKEN>$ sudo canonical-livepatch enable <TOKEN>

You can try Livepatch for free for up to 3 machines, which is pretty neat if you want to use itYou can try Livepatch for free for up to 3 machines, which is pretty neat if you want to use it
on your own personal PC or server. If you need to scale for your production environment,on your own personal PC or server. If you need to scale for your production environment,
then you can sign up for then you can sign up for Ubuntu AdvantageUbuntu Advantage which includes the Canonical Livepatch Service. which includes the Canonical Livepatch Service.

The The DatasheetDatasheet covers any more questions you might have, such as on-premise availability or covers any more questions you might have, such as on-premise availability or
pricing.pricing.

So how do we tell if the Canonical Livepatch Service is working? Well, you can run:So how do we tell if the Canonical Livepatch Service is working? Well, you can run:

$ canonical-livepatch status$ canonical-livepatch status
last check: 1 minute agolast check: 1 minute ago
kernel: 4.4.0-168.197-generickernel: 4.4.0-168.197-generic
server check-in: succeededserver check-in: succeeded

https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md
https://ubuntu.com/livepatch
https://wiki.ubuntu.com/Kernel/Livepatch
https://auth.livepatch.canonical.com/
https://ubuntu.com/support
https://assets.ubuntu.com/v1/ef19ede0-Datasheet_Livepatch_AW_Web_30.07.18.pdf

patch state: ✓ all applicable livepatch modules insertedpatch state: ✓ all applicable livepatch modules inserted
patch version: 65.1patch version: 65.1

We can also check dmesg, to see if the module has been inserted correctly:We can also check dmesg, to see if the module has been inserted correctly:

We can see that we are running patch version 65.1. What does that mean? How do we seeWe can see that we are running patch version 65.1. What does that mean? How do we see
what is in each patch?what is in each patch?

Well, you can sign up for the Well, you can sign up for the Ubuntu Security AnnounceUbuntu Security Announce mailing list. All new Livepatches are mailing list. All new Livepatches are
announced here, under announced here, under [LSN-VERSION][LSN-VERSION] tags. For example, the patch we just installed tags. For example, the patch we just installed
above is documented here:above is documented here:

[LSN-0065-1] Linux kernel vulnerability[LSN-0065-1] Linux kernel vulnerability

Otherwise you can also browse the source code repositories.Otherwise you can also browse the source code repositories.

Xenial Livepatch Source CodeXenial Livepatch Source Code
Bionic Livepatch Source CodeBionic Livepatch Source Code

If we have a look at the If we have a look at the Xenial 65.1 patch for 4.4.0-168-genericXenial 65.1 patch for 4.4.0-168-generic, we have vmx fixes, mwifiex, we have vmx fixes, mwifiex
wifi driver fixes, btrfs fixes, and i915 graphics fixes. We can also see that they are built withwifi driver fixes, btrfs fixes, and i915 graphics fixes. We can also see that they are built with
kpatch-buildkpatch-build : : Makefile for Xenial 65.1 patchMakefile for Xenial 65.1 patch..

Most users probably aren’t interested in what are in their Livepatches, but if you areMost users probably aren’t interested in what are in their Livepatches, but if you are
interested, feel free to review.interested, feel free to review.

ConclusionConclusion
Well, there we have it. We looked into how Livepatch works at a semi-technical level, weWell, there we have it. We looked into how Livepatch works at a semi-technical level, we
implemented a few Livepatches of our own and got them working.implemented a few Livepatches of our own and got them working.

It’s a pity that I haven’t managed to make a Livepatch to fix a real bug just yet, since I keepIt’s a pity that I haven’t managed to make a Livepatch to fix a real bug just yet, since I keep
selecting fixes which aren’t compatible, but as soon as I find one which is, I will write anotherselecting fixes which aren’t compatible, but as soon as I find one which is, I will write another
blog post about it.blog post about it.

We also had a look at the Canonical Livepatch Service, and I was pretty happy with how easyWe also had a look at the Canonical Livepatch Service, and I was pretty happy with how easy
it is to operate, compared to the endless trouble of making these modules yourself.it is to operate, compared to the endless trouble of making these modules yourself.

I think Livepatch is a very cool kernel technology, so keep an eye out on future blog postsI think Livepatch is a very cool kernel technology, so keep an eye out on future blog posts
where I delve into it some more.where I delve into it some more.

[234.112955] lkp_Ubuntu_4_4_0_168_197_generic_65: loading out-of-tree module [234.112955] lkp_Ubuntu_4_4_0_168_197_generic_65: loading out-of-tree module
[234.113077] lkp_Ubuntu_4_4_0_168_197_generic_65: module verification failed:[234.113077] lkp_Ubuntu_4_4_0_168_197_generic_65: module verification failed:
[237.331850] livepatch: tainting kernel with TAINT_LIVEPATCH[237.331850] livepatch: tainting kernel with TAINT_LIVEPATCH
[237.331852] livepatch: enabling patch 'lkp_Ubuntu_4_4_0_168_197_generic_65'[237.331852] livepatch: enabling patch 'lkp_Ubuntu_4_4_0_168_197_generic_65'

https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce
https://lists.ubuntu.com/archives/ubuntu-security-announce/2020-April/005391.html
https://git.launchpad.net/~ubuntu-livepatch/+git/xenial-livepatches/
https://git.launchpad.net/~ubuntu-livepatch/+git/bionic-livepatches/
https://git.launchpad.net/~ubuntu-livepatch/+git/xenial-livepatches/tree/Ubuntu-4.4.0-168.197/Ubuntu-4.4.0-168.197.diff
https://git.launchpad.net/~ubuntu-livepatch/+git/xenial-livepatches/tree/Ubuntu-4.4.0-168.197/Makefile

I hope you enjoyed the read, and as always, feel free to I hope you enjoyed the read, and as always, feel free to contact mecontact me..

Matthew RuffellMatthew Ruffell

Related PostsRelated Posts
Debugging a Zero Page Reference Counter Overflow on the UbuntuDebugging a Zero Page Reference Counter Overflow on the Ubuntu
4.15 Kernel 4.15 Kernel 02 Sep 202002 Sep 2020

Deploying an OpenStack Cluster in Ubuntu 19.10 Deploying an OpenStack Cluster in Ubuntu 19.10 13 Feb 202013 Feb 2020

Analysis of an Out Of Memory Kernel Bug in the Ubuntu 4.15 KernelAnalysis of an Out Of Memory Kernel Bug in the Ubuntu 4.15 Kernel
13 Dec 201913 Dec 2019

https://ruffell.nz/about
https://ruffell.nz/programming/writeups/2020/09/02/debugging-a-zero-page-reference-counter-overflow-on-4-15-kernel.html
https://ruffell.nz/programming/writeups/2020/02/13/deploying-a-openstack-cluster-in-ubuntu-19.10.html
https://ruffell.nz/programming/writeups/2019/12/13/analysis-of-out-of-memory-kernel-bug-in-ubuntu-4-15-kernel.html

