20 Apr 2020 « Programming * Writeups

One of the more recent killer features implemented by most major Linux distros these days
is the ability to patch the kernel while it is running, without the need for a reboot.

While this may sound like sorcery for some, this is a very real feature, called Livepatch.
Livepatch uses ftrace in new and interesting ways, by patching in calls at the beginning of
existing functions to new patched functions, delivered as kernel modules.

This lets you update and fix bugs on the fly, although its use is typically reserved for security
critical fixes only.

& Terminal ~ MonApr20 13:29

m ubuntu@ubuntu: ~ 8 = = livepatch-sample.c

required ke

seq_printf(m,
ivepatch modules inserted return 0;
}

static struct klp_func funcs[] = {
{
ubuntu@ubuntu: ~/simple

uild M=/h

inux-head static struct klp_object objs[] = {
{

) . .funcs = funcs,
u/simple/livepatch-sample.mod.o

untu/sinple/livepatch-samp
make[1]: Leaving dire g re/lt

={

[sudo] password for u

: s cat [proc/cndline
this has been live pat(hid
: 3

return klp_enable_patch(&patch);
}

static vold livepatch_exit(void)

The whole concept is extremely interesting, so today we will look into what Livepatch is, how
it is implemented across several distros, we will write some Livepatches of our own, and look
at how Livepatch works in Ubuntu for end users.

Why Do We Need Livepatch?

Working in Sustaining Engineering at Canonical, it is pretty common to see bug reports from
machines which have very high uptimes, such as six to twelve months, or sometimes even

https://ruffell.nz/
https://ruffell.nz/category/programming.html
https://ruffell.nz/category/writeups.html

longer.

These machines normally run important workloads which can't be interrupted for a reboot,
since they might be a part of critical public infrastructure, or a busy build system. The
Ubuntu Kernel Team typically releases a new updated kernel for each distribution release on
a 3 week SRU cycle with additional updates always within a day of two of a new CVE being
released.

Machines with important workloads aren’t going to want to reboot every six months, let
alone every three weeks for each new kernel release. Keeping these machines safe and up to
date with security fixes is a must, and this is the motivation behind Livepatch.

What is Livepatch?

Livepatch is the ability for the kernel to change the flow of code execution from a broken or
vulnerable function, to a new, fixed function during runtime.

In most cases, the new function is the exact same as the function it is replacing, but with
minor changes, such as adding a check for null, or changing the order of some locks or
adding a quick logic fix.

The code redirection is achieved with ftrace. ftrace is a tool which lets you trace kernel
function calls, but it can also add and remove instructions from functions as well. A good
example is kprobes, which can patch in blocks of code to existing functions, usually used to
print debug values. kprobes are mostly ftrace based these days, which is important, since we
don’t want kprobes and Livepatch to clash and patch the same function at the same time, so
ftrace controls function consistency.

Livepatch is implemented by compiling the new fixed function into a kernel module and
loading it into the system. ftrace is then used to redirect calls from the old function to the
new function in the kernel module. This process actually has to be done very carefully, and
we will discuss it in the next section, when we cover different consistency models.

For the actual implementation, it is remarkably simple.

Have you ever disassembled a kernel function before and wondered why every kernel
function begins with a full sized padded nop instruction?

For example, let's look at sysrq_handle_crash() , as seen in my previous article Beginning
Kernel Crash Debugging on Ubuntu 18.10.

crash> dis sysrqg_handle_crash
41d930 <sysrq handle crashs>: DWORD PTR [rax+rax*1+0x0]

de <sysrq_handle_crash+5=: rbp
) dsS srq_handle_crash+ DWORD PTR [rip+8x13637a8],0x1 # Oxffffffffad7810e8
Oxffffffffs dS srg_handle_crash+: rbp,rsp

srg_handle_crash+

) srq_handle_crash+ BYTE PTR ds:0x0,0x1
Oxffffffffs d9 sysrq_handle_crash+)]
axffffffff8c41d94f <sysrq_handle_crash+
crash> [J

https://kernel.ubuntu.com/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://ruffell.nz/programming/writeups/2019/02/22/beginning-kernel-crash-debugging-on-ubuntu-18-10.html

Well, what ftrace does is patch out the nop with a call which points towards the new
function. If you look carefully, the nop is located before the function starts manipulating
the stack, which means everything is consistent, and very elegant.

Before call (noop)
patching
Original
Function
return
After
patching

return

Credit and license for image

The above image demonstrates this behaviour very well. Now, this technique works great at
a function level, where logic changes but data does not.

Limitations quickly arise within Livepatch when data changes are required. If a new member
is needed to be added or removed from a struct implemented within the function or the file,
these changes cannot be passed onto the Livepatched version, since you cannot modify
data structures during runtime, as they may be in use by different tasks on different cpus.
The same goes for changing the function signature, since the calling function would have to
rearrange variables pushed on the stack. Livepatch is also limited to modifying functions
which are traceable by ftrace, and not all kernel functions can be traced.

Because of these limitations, and the complexity that arises from consistency models which
we will discuss about next, Livepatch is more of a temporary band-aid solution, reserved for

https://en.wikipedia.org/wiki/File:Linux_kernel_live_patching_kpatch.svg

fixing critical security issues until such a time comes when the host can be rebooted into a
updated kernel.

Consistency Models and Varying
Implementations

As mentioned in the previous section, the real complexity behind Livepatch is the decision
making process required when ftrace actually performs the switch from the old function to
the new function.

Say the changes to the new function are basic. Adding a null pointer check sort of basic. The
semantics of the function itself haven’t changed, and there is no existing state to manage.
All we have to do then is check to see if any tasks are running which are using the old
function. This can be done by examining the stack of sleeping tasks. If the function is not
found in any of them, we can easily patch the change in.

But what happens if a task is using the old function? Do we make a rule and say all tasks
must be stopped, we patch, and then start them all again? Or do we add complexity by

adding a list of tasks that use the old function, and tasks that use the new function, and

maintain a trampoline which decides between each function for a given task?

What happens if the Livepatch changes the order that locks are acquired and released? The
affected tasks which hold those locks need to be patched when the locks are no longer held,
and the entire system needs to switch over to the new function at the same time. How do
we co-ordinate this?

This is where consistency models come in, and is the driving force behind the different
implementations of Livepatch. Each distribution has its own opinion on how things should
be done, and we will look at all of them.

kpatch

kpatch is developed by Red Hat, and uses the simplest consistency model. kpatch operates
pretty much as previously explained, by using ftrace to change the nop instruction in the
old function to a call instruction, pointing to the new function.

https://en.wikipedia.org/wiki/Kpatch

Before call S, |
patching
Original
Function
return
After
patching

return

return

kpatch keeps the system consistent by first stopping all running tasks. The stack traces of
each task is then examined. If the old function is not found in any of the tasks stack traces,
then ftrace applies the patch, and all future calls to the patched function will use the new
function.

This approach is atomic and safe, since there is only one view of the function at a time, it is
either old, or new. There are no consistency issues that arise if the new function changes
data structures differently to the old function, and the structure is passed to tasks which
haven't been migrated to the new function.

The limitations of kpatch involve not being able to modify data structures, and if a process is
still using the patched function, patching fails, and all tasks are restarted again, to attempt
the patch at a later time. There is some overhead in stopping and starting all tasks, which
results in a small loss of service as those tasks are stopped.

kGraft

kGraft is developed by SUSE, and is by far the most complex consistency model. kGraft
employs a per task consistency model, where all tasks remain running on the system, and

https://en.wikipedia.org/wiki/KGraft

tasks are patched one by one. This gives no downtime at all, since all tasks keep running
during Livepatch, and patching can never “fail” in entirety.

kGraft achieves this by maintaining consistent “world views"” to userspace processes, kernel
threads and interrupt handlers, during their execution in kernel space.

For example, let's say we have a userspace process making a syscall, and a Livepatch request
came in midway through this syscall.

Userspace

Kernel

lkernel_func

. ()
bu func();
99)/E 4

v
buggy_func();

N
FAIL! v

If the syscall involved calling the function which will be patched multiple times, on
subsequent calling of the patched function, the semantics might have changed since the
first time it was executed. If locking orders have changed, we might be facing a deadlock,
which will end in certain failure.

Userspace per-process “new universe” flags
Kernel
—> buggy_func
kernel_func
v > reality_check 1
heavy work }
: which universe
are you
: coming from?
b Vf
uggyT unc(); o
v
(& J
I P

https://en.wikipedia.org/wiki/KGraft

Instead, what kGraft does is insert a trampoline which is the target of the call instruction
which is replacing the nop . The trampoline points to both the old function and the new
function. If the task has not yet been migrated to use the new function, the trampoline
jumps to the old function and execution continues. If the task has been migrated, then the

new function is called.

This means that any userspace process in a syscall, or kernel task, or interrupt handler still in
kernel space will always use the old function.

Userspace
Kernel
el_func
v
Y
heavy work
b vf 0]
uggyT unci);
- v
] |

This continues until each user space process finishes it syscall, or kernel task completes, or
interrupt handler completes. At this stage, that task is then migrated over to the new
function. When all tasks have been migrated, the trampoline is removed, and the call
instruction is updated to point directly to the new function.

The benefits of kGraft is that all tasks are kept running during Livepatch. Downsides include
keeping two different implementations of the same function around at the same time. This
can cause problems when long running processes, like those waiting on disk or network /O
get stuck in kernel space, and won't be patched until they complete. This can lead to
inconsistencies if the new function changes internal data structures differently to the
original, since both functions can still be executed in parallel.

Ksplice
Ksplice is developed by Oracle, and has a consistency model similar to kpatch. Ksplice stops
all tasks before patching the functions atomically.

The differentiating feature to Ksplice, is the ability to patch functions which require changes
to data structures. This process is not automatic though, as a programmer must implement

extra code to the Livepatch module which handles the transition from the old data structure
to the new.

https://en.wikipedia.org/wiki/Ksplice

Livepatch (Mainline Linux)

Livepatch was mainlined into the Linux kernel during the 4.0 development cycle.

The Livepatch implementation is a hybrid between the kpatch and kGraft implementations,
taking the best ideas from both. Livepatch uses kGraft's per task consistency and syscall exit
migration, alongside kpatch’s stack trace based switching.

Patches are applied on a per task basis, one task at a time. There is no downtime as tasks do
not need to be stopped. This also means that the trampoline based solution is used.

The consistency model for mainline operates in a set of steps:

1. Firstly, the stack trace of sleeping tasks is checked. If the function to be patched is not
found in the stack trace, the task is patched to use the new function. If this fails for a
particular task, it will re-examine the stack trace periodically and attempt to patch at a
later time. Most, if not all tasks will be patched in this step.

2. The second step is to patch the task once it completes and exits from kernel space,
such as a syscall finishing or a interrupt handler completing. This is useful for long
running I/O or cpubound tasks. In some cases, SIGSTOP must be issued to I/O bound
tasks to force it to exit the kernel, be patched, and then send SIGCONT so it can
continue.

3. For the kernel “swapper” task, which is executed whenever the CPU is idle and never
exits the kernel, it has a special klp_update_patch_state() call in the idle loop
which patches the task before the CPU enters the idle state.

What Consistency Model Does Ubuntu Use?

Ubuntu uses the Livepatch (mainline) consistency model, which has the best of both kpatch
and kGraft. All code is the same as what is shipped in the mainline kernel, and there are no
custom changes.

Writing our Own Livepatches

Now that we have learned a bit about what Livepatch is, how it works, and the careful
consideration that goes into selecting a consistency model, let’s start making some
Livepatches of our own.

Structure of a Livepatch

For our first Livepatch, | think we will follow the sample which is provided in the mainline
kernel. Download a copy of livepatch-sample.c and have a read.

Note, the Livepatch API has changed over time, so if you want to build for 4.4 Xenial, use the
livepatch-sample.c from the Xenial kernel sources. If you get an error insmod: ERROR:

https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/samples/livepatch/livepatch-sample.c

could not insert module livepatch-sample.ko: Invalid parameters then you are
using the wrong Livepatch API.

| am going to explain the latest API, as found in 5.4 Focal.

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/livepatch.h>

#include <linux/seq_file.h>
static int livepatch_cmdline_proc_show(struct seq_file *m, void *v)

{
seg_printf(m, "%s\n", "this has been live patched");

return 0;
ks
static struct klp_func funcs[] = {
{
.old_name = "cmdline_proc_show",
.new_func = livepatch_cmdline_proc_show,
b, {3}
s
static struct klp_object objs[] = {
{
/* name being NULL means vmlinux */
.funcs = funcs,
b, {2
s

static struct klp_patch patch = {
.mod = THIS_MODULE,

.0bjs = objs,
};
static int livepatch_init(void)
{
return klp_enable_patch(&patch);
ks
static void livepatch_exit(void)
{
ks

module_init(livepatch_init);
module_exit(livepatch_exit);
MODULE_LICENSE(C"GPL™);

MODULE_INFO(livepatch, "Y");

As you can already see, since the Livepatch is a kernel module, it follows the same process
required when writing a kernel module. We #include the kernel module header files of
linux/module.h and linux/kernel.h , and declare our module_init() and
module_exit() function pointers.

To say we are making a Livepatch, we also include 1linux/livepatch.h , set the module info
marco to livepatch, Y and have the module init function call klp_enable_patch() , the
entry point to the Livepatch subsystem.

Declaring the Livepatch itself is pretty simple. In this example, we will patch
cmdline_proc_show() , the function which retruns the kernel commandline when you read
from /proc/cmdline .

We define a new function, livepatch_cmdline_proc_show() , and give the “fixed"
implementation. We then map the new function to the old function by defining a struct of
type klp_func , in this case called funcs[] , and filling in the members .old_name and

.hew_func .

Since we might need to replace more than one function in our Livepatch, we can create
many of these function mappings, since funcs[] is an array.

We then tell Livepatch what to patch with struct klp_object . We set .funcs to our array
of functions, and set .name to be another Livepatch module this has a dependency on, or
simply NULL if we want to target vmlinux .

Finally, this is wrapped into a struct klp_patch , where we declare the module name, and
the object struct. This is the struct we pass a reference to when klp_enable_patch() is
called.

We can build the module with the following Makefile :

obj-m := livepatch-sample.o
KDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
default:

$(MAKE) -C $(KDIR) M=$(PWD) modules
clean:

$(MAKE) -C $(KDIR) M=$(PWD) clean

You need to install a compiler, and the kernel header for your running kernel:

$ sudo apt install linux-headers-"uname -r°
$ sudo apt install build-essential

Then go ahead and run make :

$ make
make -C /lib/modules/5.4.0-21-generic/build M=/home/ubuntu/simple modules
make[1]: Entering directory '/usr/src/linux-headers-5.4.0-21-generic’

CC [M] /home/ubuntu/simple/livepatch-sample.o
Building modules, stage 2.
MODPOST 1 modules
CC [M] /home/ubuntu/simple/livepatch-sample.mod.o
LD [M] /home/ubuntu/simple/livepatch-sample.ko
make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-21-generic’

| did this on Focal, but this should work on any Ubuntu kernel from 4.4 Xenial and upward,
as they all have Livepatch enabled.

We then have the end result, 1ivepatch-sample.ko . Lets do a before and after read of
/proc/cmdline as we load the module:

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-5.4.0-21-generic root=UUID=f9f909c3-782a-43c2-a59d-c78
$ sudo insmod livepatch-sample.ko

$ cat /proc/cmdline

this has been live patched

How cool is that? We have successfully Livepatched our system. Checking dmesg shows us

the progress of Livepatch:

33

e

33.
.100764]
33.
33.
33.
33.

100762]

100793]
111720]
114679]
883586]

livepatch_sample: loading out-of-tree module taints kernel.
livepatch_sample: tainting kernel with TAINT_LIVEPATCH
livepatch_sample: module verification failed: signature and/or r
livepatch: enabling patch 'livepatch_sample'

livepatch: 'livepatch_sample': starting patching transition
livepatch: 'livepatch_sample': patching complete

Note, we didn’t sign our kernel module, which is why module verification failed. This is only

really important if you are using secureboot. Otherwise, our kernel gained taint flags for

loading the Livepatch module.

Making a Slightly More Complex Livepatch

The previous Livepatch example used a completely new basic function to write back a

replaced kernel command line. What happens if we want to actually patch existing code?

The next example will follow along the case for using kpatch-build, using the primary

example in the kpatch repository.

What we want to do is change how the text is displayed for VmallocChunk in

/proc/meminfo . The following patch for Linux 5.4 makes it capitalised:

https://github.com/dynup/kpatch

diff --git a/fs/proc/meminfo.c b/fs/proc/meminfo.c
index 8clflbbla5ce..3053clbce50d 100644
--- a/fs/proc/meminfo.c
+++ b/fs/proc/meminfo.c
@@ -117,7 +117,7 @@ static int meminfo_proc_show(struct seq_file *m, void *v)
seqg_printf(m, "VmallocTotal: %8lu kB\n",
(Cunsigned 1ong)VMALLOC_TOTAL >> 10);

show_val_kb(m, "VmallocUsed: ", vmalloc_nr_pages());
- show_val_kb(m, "VmallocChunk: ", Qul);
+ show_val_kb(m, "VMALLOCCHUNK: ", Qul);

show_val_kb(m, "Percpu: , pcpu_nr_pages());

#ifdef CONFIG_MEMORY_FAILURE

Writing the Livepatch Ourselves

Okay, let's follow a similar format to last time. Let's copy the new function into our Livepatch
template, like so:

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/livepatch.h>

static int livepatch_meminfo_proc_show(struct seq_file *m, void *v)
{

struct sysinfo i;

unsigned long committed;

long cached;

long available;

unsigned long pages[NR_LRU_LISTS];

unsigned long sreclaimable, sunreclaim;

int lru;

si_meminfo(&i);
si_swapinfo(&i);
committed = percpu_counter_read_positive(&vm_committed_as);

cached = global_node_page_state(NR_FILE_PAGES) -
total_swapcache_pages() - i.bufferram;
if (cached < 0)
cached = 0;

for (lru = LRU_BASE; 1ru < NR_LRU_LISTS; lru++)
pages[lru] = global_node_page_state(NR_LRU_BASE + 1ru);

available = si_mem_available();
sreclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE);
sunreclaim = global_node_page_state(NR_SLAB_UNRECLAIMABLE);

show_val_kb(m, "MemTotal: ", i.totalram);
show_val_kb(m, "MemFree: ", i.freeram);
show_val_kb(m, "MemAvailable: ", available);
show_val_kb(m, "Buffers: ", i.bufferram);

show_val_kb(m,
show_val_kb(m,
show_val_kb(m,

show_val_kb(m,

show_val_kb(m,
show_val_kb(m,
show_val_kb(m,
show_val_kb(m,
show_val_kb(m,
show_val_kb(m,

#ifdef CONFIG_HIGHMEM

ftendif

show_val_kb(m,
show_val_kb(m,
show_val_kb(m,
show_val_kb(m,

#ifndef CONFIG_MMU

ftendif

show_val_kb(m,

"Cached:
"SwapCached:
"Active:

"Inactive:

"Active(anon):

"Inactive(anon):

"Active(file):

"Inactive(file):

"Unevictable:
"Mlocked:

"HighTotal:
"HighFree:
"LowTotal:
"LowFree:

"MmapCopy:

", cached);
, total_swapcache_pages());
", pages[LRU_ACTIVE_ANON] +
pages[LRU_ACTIVE_FILE]);
", pages[LRU_INACTIVE_ANON] +
pages[LRU_INACTIVE_FILE]);
", pages[LRU_ACTIVE_ANON]);
, pages[LRU_INACTIVE_ANON]);
, pages[LRU_ACTIVE_FILE]);
", pages[LRU_INACTIVE_FILE]);
, pages[LRU_UNEVICTABLE]);
, global_zone_page_state(NR_MLOCK));

", i.totalhigh);

.freehigh);

.totalram - 1i.totalhigh);
.freeram - i.freehigh);

- M-\l -
e i

(Cunsigned long)atomic_long_read(&mmap_pages_allocated));

show_val_kb(m,
show_val_kb(m,
show_val_kb(m,

"SwapTotal:
"SwapFree:
"Dirty:

, 1.totalswap);
, 1.freeswap);

global_node_page_ state(NR FILE_DIRTY));

show_val_kb(m,

"Writeback:

global_node_page_ state(NR WRITEBACK));

show_val_kb(m,

"AnonPages:

global_node_page_ state(NR ANON_MAPPED));

show_val_kb(m,

"Mapped:

global_node_page_ state(NR FILE_MAPPED));

show_val_kb(m,
show_val_kb(m,

"Shmem:
"KReclaimable:

, 1.sharedram);
, sreclaimable +

global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE));

show_val_kb(m,
show_val_kb(m,
show_val_kb(m,
seqg_printf(m,

"Slab:
"SReclaimable:
"SUnreclaim:

"KernelStack:

, sreclaimable + sunreclaim);
, sreclaimable);
, sunreclaim);

%8lu kB\n",

global_zone_page_state(NR_KERNEL_STACK_KB));

show_val_kb(m,

"PageTables:

n
b

global_zone_page_state(NR_PAGETABLE));

show_val_kb(m,

"NFS_Unstable:

n
)

global_node_page_ state(NR UNSTABLE_NFS));

show_val_kb(m,

"Bounce:

global zone_page_ state(NR BOUNCE));

show_val_kb(m,

"WritebackTmp:

n
b

global_node_page_state(NR_WRITEBACK_TEMP));

show_val_kb(m,
show_val_kb(m,
seqg_printf(m,

"CommitLimit:
"Committed_AS:

"VmallocTotal:

, vm_commit_limit());
, committed);

%8lu kB\n",

(Cunsigned 1ong)VMALLOC_TOTAL >> 10);

show_val_kb(m,
show_val_kb(m,
show_val_kb(m,

"VmallocUsed:
"VMALLOCCHUNK :
"Percpu:

#ifdef CONFIG_MEMORY_FAILURE

, vmalloc_nr_pages());
", Qul);
", pcpu_nr_pages());

ftendif

#ifdef

ftendif

#ifdef

#tendif

}

static

1

static

1

static

1

static

{
}

static

{
}

module_
module_

seq_printf(m, "HardwareCorrupted: %5lu kB\n",
atomic_long_read(&num_poisoned_pages) << (PAGE_SHIFT - 10));

CONFIG_TRANSPARENT_HUGEPAGE
show_val_kb(m, "AnonHugePages: ",
global_node_page_state(NR_ANON_THPS) * HPAGE_PMD_NR);
show_val_kb(m, "ShmemHugePages: ",
global_node_page_state(NR_SHMEM_THPS) * HPAGE_PMD_NR);
show_val_kb(m, "ShmemPmdMapped: ",
global_node_page_state(NR_SHMEM_PMDMAPPED) * HPAGE_PMD_NR);
show_val_kb(m, "FileHugePages: ",
global_node_page_state(NR_FILE_THPS) * HPAGE_PMD_NR);
show_val_kb(m, "FilePmdMapped: ",

global_node_page_state(NR_FILE_PMDMAPPED) * HPAGE_PMD_NR);

CONFIG_CMA
show_val_kb(m, "CmaTotal: ", totalcma_pages);

show_val_kb(m, "CmaFree: s
global_zone_page_state(NR_FREE_CMA_PAGES));

hugetlb_report_meminfo(m);

arch_report_meminfo(m);

return 0;

struct klp_func funcs[] = {
{
.old_name
.hew_func

"meminfo_proc_show",
livepatch_meminfo_proc_show,

4%

struct klp_object objs[] = {
{

/* name being NULL means vmlinux */
.funcs = funcs,

4%

struct klp_patch patch = {
.mod = THIS_MODULE,
.objs = objs,

int livepatch_init(void)

return klp_enable_patch(&patch);

void livepatch_exit(void)

init(livepatch_init);
exit(livepatch_exit);

MODULE_LICENSEC"GPL™);
MODULE_INFO(livepatch, "Y");

We can pretty much keep the same Makefile as last time:

obj-m := livepatch-meminfo.o
KDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
default:

$(MAKE) -C $(KDIR) M=$(PWD) modules
clean:

$(MAKE) -C $(KDIR) M=$(PWD) clean

When we build, we see some unresolved symbols:

$ make
make -C /lib/modules/5.4.0-21-generic/build M=/home/ubuntu/meminfo modules
make[1]: Entering directory '/usr/src/linux-headers-5.4.0-21-generic’

CC [M] /home/ubuntu/meminfo/livepatch-meminfo.o
/home/ubuntu/meminfo/livepatch-meminfo.c: In function ‘livepatch_meminfo_proc_s
/home/ubuntu/meminfo/livepatch-meminfo.c:19:9: error: implicit declaration of f

19 | si_swapinfo(&i);
| Aomsrmsmmsrsrimsrsrns
/home/ubuntu/meminfo/livepatch-meminfo.c:20:51: error: ‘vm_committed_as’ undecl
20 | committed = percpu_counter_read_positive(&vm_committed_as);

[A
/home/ubuntu/meminfo/livepatch-meminfo.c:20:51: note: each undeclared identifie
/home/ubuntu/meminfo/livepatch-meminfo.c:23:25: error: implicit declaration of

23 | total_swapcache_pages() - i.bufferram;
[A
/home/ubuntu/meminfo/livepatch-meminfo.c:34:9: error: implicit declaration of f
34 | show_val_kb(m, "MemTotal: ", i.totalram);
[Arsmomimsrmsmsmimirnires
/home/ubuntu/meminfo/livepatch-meminfo.c:90:44: error: implicit declaration of
90 | show_val_kb(m, "CommitLimit: ", vm_commit_1imit());
I Aot
/home/ubuntu/meminfo/livepatch-meminfo.c:117:44: error: ‘totalcma_pages’ undecl
117 | show_val_kb(m, "CmaTotal: ", totalcma_pages);
[A

| totalram_pages
/home/ubuntu/meminfo/livepatch-meminfo.c:122:9: error: implicit declaration of
122 | hugetlb_report_meminfo(m);
[A
| arch_report_meminfo
ccl: some warnings being treated as errors
make[2]: *** [scripts/Makefile.build:275: /home/ubuntu/meminfo/livepatch-meminf
make[1]: *** [Makefile:1719: /home/ubuntu/meminfo] Error 2
make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-21-generic’
make: *** [Makefile:5: default] Error 2

Not to worry! We are just missing some header files. Look at the symbols and use cscope to
find what header files they live in, and #include them:

#include <linux/seq_file.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/cma.h>
#include <linux/hugetlb.h>

Now lets build:

$ make
make -C /1ib/modules/5.4.0-21-generic/build M=/home/ubuntu/meminfo modules
make[1]: Entering directory '/usr/src/linux-headers-5.4.0-21-generic’

CC [M] /home/ubuntu/meminfo/livepatch-meminfo.o
/home/ubuntu/meminfo/livepatch-meminfo.c: In function ‘livepatch_meminfo_proc_s
/home/ubuntu/meminfo/livepatch-meminfo.c:38:9: error: implicit declaration of f

38 | show_val_kb(m, "MemTotal: ", i.totalram);
[Aomsmsmimsrsmimirsnns
ccl: some warnings being treated as errors
make[2]: *** [scripts/Makefile.build:275: /home/ubuntu/meminfo/livepatch-meminf
make[1]: *** [Makefile:1719: /home/ubuntu/meminfo] Error 2
make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-21-generic’
make: *** [Makefile:5: default] Error 2

Unfortunately for us, this basic example calls show_val_kb() . This isn't defined in any
header files, and is actually local to fs/proc/meminfo.c .

static void show_val_kb(struct seq_file *m, const char *s, unsigned long num)

{
seq_put_decimal_ull_width(m, s, num << (PAGE_SHIFT - 10), 8);

seq_write(m, " kB\n", 4);

So close but so far! Now, these functions which are local to their modules don’t actually
export their symbols to a stripped vmlinuz, which means we have a problem. Even if we try
be cheeky and make a forward declaration and label it extern :

extern void show_val_kb(struct seq_file *m, const char *s, unsigned long num);

The compiler is onto us!

$ make
make -C /1ib/modules/5.4.0-21-generic/build M=/home/ubuntu/meminfo modules
make[1]: Entering directory '/usr/src/linux-headers-5.4.0-21-generic’

CC [M] /home/ubuntu/meminfo/livepatch-meminfo.o

Building modules, stage 2.

MODPOST 1 modules
ERROR: "arch_report_meminfo" [/home/ubuntu/meminfo/livepatch-meminfo.ko] undefi
ERROR: "hugetlb_report_meminfo" [/home/ubuntu/meminfo/livepatch-meminfo.ko] unc
ERROR: "totalcma_pages" [/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: "num_poisoned_pages" [/home/ubuntu/meminfo/livepatch-meminfo.ko] undefin
ERROR: "pcpu_nr_pages" [/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: "vmalloc_nr_pages" [/home/ubuntu/meminfo/livepatch-meminfo.ko] undefinec
ERROR: "vm_commit_limit" [/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: "show_val_kb" [/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: "total_swapcache_pages" [/home/ubuntu/meminfo/livepatch-meminfo.ko] unde
ERROR: "vm_committed_as" [/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
ERROR: "si_swapinfo" [/home/ubuntu/meminfo/livepatch-meminfo.ko] undefined!
make[2]: *** [scripts/Makefile.modpost:94: __modpost] Error 1
make[1]: *** [Makefile:1632: modules] Error 2
make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-21-generic’
make: *** [Makefile:5: default] Error 2

While the module object builds, it cannot be linked, since the compiler does not know the
offsets or locations of the functions which reside in the unstripped vmlinux / stripped
vmlinuz binaries.

So, how do we fix this? | struggled with this issue for quite a long time, until | went back and
read the Livepatch documentation more closely.

From Documentation/livepatch/livepatch.txt:

The patch contains only functions that are really modified. But they
might want to access functions or data from the original source file
that may only be locally accessible. This can be solved by a special
relocation section in the generated livepatch module, see
Documentation/livepatch/module-elf-format.txt for more details.

If you go ahead and read Documentation/livepatch/module-elf-format.txt, we find that we
need to add ELF sections to the object file which tell the kernel Livepatch subsystem how to
apply relocations for each of these functions into the kernel we are targeting.

There are two ELF sections that need adding;

e SHF_RELA_LIVEPATCH
e SHN_LIVEPATCH

SHF_RELA_LIVEPATCH is used to declare the functions which need to be redirected with
ftrace, that is, the functions that are actually being Livepatched.

https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://www.kernel.org/doc/Documentation/livepatch/module-elf-format.txt

SHN_LIVEPATCH are all the local symbols that the fixed function calls, and need to be fixed
up.

Each section needs entries of the from:

.klp.rela.objname.section_name

An example for SHF_RELA_LIVEPATCH would be:

.klp.rela.vmlinux.text.meminfo.proc_show

These ELF sections need to know the addresses and offsets from the vmlinux binary.
Now, inserting these by hand is actually really hard, and does not scale at all.

This is the idea behind kpatch-build , and automated build program which can generate
Livepatches from source diffs, and programatically fetch and insert these ELF sections which
contain the symbol relocation tables.

Using kpatch-build to Generate the Livepatch
Firstly we need to download and build kpatch-build:

sudo apt install dpkg-dev devscripts elfutils ccache
sudo apt build-dep linux

git clone https://github.com/dynup/kpatch.git

cd kpatch

make

A A A A A

The next step is to download the ddeb (debug-deb) package for the kernel we wish to
make a Livepatch module for. A list of all kernel ddeb packages can be found at the ddeb
package repository.

| will be targeting 5.4.0-24-generic, so | need to download linux-image-unsigned-5.4.0-24-
generic-dbgsym_5.4.0-24.28_amd64.ddeb.

$ wget http://ddebs.ubuntu.com/ubuntu/pool/main/1/1linux/linux-image-unsigned-5.
$ sudo dpkg -i linux-image-unsigned-5.4.0-24-generic-dbgsym_5.4.0-24.28_amd64.c

http://ddebs.ubuntu.com/ubuntu/pool/main/l/linux/
http://ddebs.ubuntu.com/ubuntu/pool/main/l/linux/linux-image-unsigned-5.4.0-24-generic-dbgsym_5.4.0-24.28_amd64.ddeb

The resulting debug vmlinux will be placed at /1ib/debug/boot/vmlinux-5.4.0-24-
generic .

kpatch-build operates on source diffs. Save the diff to ~/meminfo-string.patch like so:

$ cat ~/meminfo-string.patch
diff --git a/fs/proc/meminfo.c b/fs/proc/meminfo.c
index 8clflbbla5ce..3053clbce50d 100644
--- a/fs/proc/meminfo.c
+++ b/fs/proc/meminfo.c
@@ -117,7 +117,7 @@ static int meminfo_proc_show(struct seq_file *m, void *v)
seq_printf(m, "VmallocTotal: %8lu kB\n",
(Cunsigned 1ong)VMALLOC_TOTAL >> 10);

show_val_kb(m, "VmallocUsed: ", vmalloc_nr_pages());
- show_val_kb(m, "VmallocChunk: ", Qul);
+ show_val_kb(m, "VMALLOCCHUNK: ", Qul);

show_val_kb(m, "Percpu: , pcpu_nr_pages());

#ifdef CONFIG_MEMORY_FAILURE

Now we are ready to build!

Run the following command:

$ kpatch/kpatch-build/kpatch-build -t vmlinux --vmlinux /1lib/debug/boot/vmlinux
Using cache at /home/matthew/.kpatch/src

Testing patch file(s)

Reading special section data

readelf: Error: LEB value too large

readelf: Error: LEB value too large

Building original source

Building patched source

Extracting new and modified ELF sections
meminfo.o: changed function: meminfo_proc_show
Patched objects: vmlinux

Building patch module: livepatch-meminfo-string.ko
SUCCESS

kpatch-build works by first downloading the source archive of the kernel you are
targeting, which is determined by the vmlinux package you pass in. From there, the standard
vmlinux is built normally. Once that completes, the source tree is patched with the patch you
specified, and rebuilt. Since most patches are small, only changed object files are rebuilt. In
this case, only meminfo.o gets rebuilt.

Since we now know that only meminfo.o got changed, the single object is compiled again
with -ffunction-sections -fdata-sections in both the patched and unpatched forms.

Then each unpatched and patched object set is then analysed by create-diff-object to
determine what functions have been modified, and to extract the changed functions. This
program also checks for Livepatch compatibility.

The really special part of create-diff-object is that it creates the necessary ELF symbol
relocation sections to the patched objectfile.

It adds kpatch.funcs and .rela.kpatch.funcs which tell ftrace what functions are
actually going to be Livepatched.

It adds .kpatch.dynrelas and .rela.kpatch.dynrelas which are used to fixup symbol
relocations for local function calls in the fixed function to symbols in vmlinux.

From there, kpatch-build generates a new kernel module containing all Livepatches,
which is ready to be used.

Let's test it out shall we?

$ sudo insmod livepatch-meminfo-string.ko
$ grep -i chunk /proc/meminfo
VMALLOCCHUNK : 0 kB

It worked! Great! Let's see what dmesg has to say:

[5611.674220] livepatch_meminfo_string: loading out-of-tree module taints kerr
[5611.674223] livepatch_meminfo_string: tainting kernel with TAINT_LIVEPATCH

[5611.674259] livepatch_meminfo_string: module verification failed: signature
[5611.856109] livepatch: enabling patch 'livepatch_meminfo_string'

[5611.859603] livepatch: 'livepatch_meminfo_string': starting patching transit
[5611.860277] livepatch: 'livepatch_meminfo_string': patching complete

Pretty much the same as last time.

As for those ELF sections, we can examine the kernel module to see them:

$ readelf --sections livepatch-meminfo-string.ko
There are 52 section headers, starting at offset @xac7e8:

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align

[20] .kpatch.funcs PROGBITS 0000000000000000 ©00001fa8
0000000000000038 0000000000000000 A 0 0 8

[21] .rela.kpatch.func RELA 0000000000000000 00001fed

0000000000000048 ©0000000000000018 I 48 20 8

[51] .klp.rela.vmlinux RELA 0000000000000000 000ac308
00000000000004e@ 0000000000000018 Alo 48 10 8

$ readelf --relocs livepatch-meminfo-string.ko

Relocation section '.klp.rela.vmlinux..text.meminfo_proc_show' at offset @xac3€

Offset Info Type Sym. Value Sym. Name + Adder
00000000003f 005400000004 R_X86_64_PLT32 0000000000000000 .klp.sym.vmlinux.
000000000046 005500000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.

Using Livepatch to Fix A Real Bug

Now, | really wanted to make a Livepatch to fix a real bug, but for the moment | must admit
defeat.

| went into writing this blog post thinking that Livepatch could be an awesome tool to help
fix customer issues, but the problem is, there are some severe limitations as to what can be
Livepatched, and even when you believe a patch could be compatible, a GCC optimisation
could completely ruin your plans.

| have two examples.

Example One: Inline Functions

The first, is a bug that was actually a regression to the SRU | made for the bug fixed by my
previous blog post, Resolving Large NVMe Performance Degradation in the Ubuntu 4.4
Kernel.

Anyway, the bug is documented by my colleague who | worked the case with:

Mounting LVM snapshots with xfs can hit kernel BUG in nvme driver.

commit 5a8d75a1b8c99bdc926ba69b7b7dbedfae8la5af

Author: Ming Lei <ming.lei@redhat.com>

Date: Fri Apr 14 13:58:29 2017 -0600

Subject: block: fix bio_will_gap() for first bvec with offset

You can read the commit here: block: fix bio_will_gap() for first bvec with offset.

The important part is the three function prototypes in each changed function:

https://ruffell.nz/programming/writeups/2019/07/20/resolving-nvme-performance-degradation.html
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1869229
https://github.com/torvalds/linux/commit/5a8d75a1b8c99bdc926ba69b7b7dbe4fae81a5af

-static inline bool bio_will_gap(struct request_queue *q, struct bio *prev,
- struct bio *next)
+static inline bool bio_will_gap(struct request_queue *q,

+ struct request *prev_rq,
+ struct bio *prev,
+ struct bio *next)

static inline bool req_gap_back_merge(struct request *req, struct bio *bio)

static inline bool req_gap_front_merge(struct request *req, struct bio *bio)

Inlined functions. Sometimes these will work, as the callers will just embed the code in them.
Most of the time they won't though.

The thing is, the kernel redefines the meaning of inline in
include/1inux/compiler_types.h :

#if ldefined(CONFIG_OPTIMIZE_INLINING)
#define inline inline __attribute__((__always_inline__)) __gnu_inline \
__inline_maybe_unused notrace

#else

#define inline inline __gnu_inline \
__inline_maybe_unused notrace

#endif

We see that if you select inline , you also get notrace . Only tracable functions can be
Livepatched as we know, meaning that this is a dead end if you are not using tools like
kpatch-build . Most patches like this will mostly error out with kpatch-build too.

Example Two: GCC Optimisations

The next bug is a neat little Null pointer dereference if you have the sysctl
kernel.core_pattern setto “|" and run a program which crashes.

You can read all about it here:
unkillable process (kernel NULL pointer dereference)

There's a patch made by Sudip Mukherjee which was more elegant than the one | put
forward in the process of getting mainlined now. You can see it here:

diff --git a/fs/coredump.c b/fs/coredump.c

index f8296a82d01d..408418e6aal3 100644

--- a/fs/coredump.c

+++ b/fs/coredump.c

@@ -211,6 +211,8 @@ static int format_corename(struct core_name *cn, struct cor
return -ENOMEM;

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1863086

(*argv)[(*argc)++] = 0;

++pat_pt

rs

if (VCpat_ptr))

}

return -ENOMEM;

/* Repeat as long as we have more pattern to process and more output

Now, if we run kpatch-build over this:

$ kpatch/kpatch-build/kpatch-build -t vmlinux --vmlinux /1lib/debug/boot/vmlinux
Using cache at /home/matthew/.kpatch/src
Testing patch file(s)
Reading special section data
readelf: Error: LEB value too large
readelf: Error: LEB value too large
Building original source
Building patched source
Extracting new and modified ELF sections
coredump.o: changed function: do_coredump
/home/matthew/work/kernel/kpatch/kpatch-build/create-diff-object: ERROR: coredu
ERROR: 1 error(s) encountered. Check /home/matthew/.kpatch/build.log for more c

It fails! Why does it say the changed function was do_coredump() , when the above patch

clearly patches format_corename() ? There are no inlined functions here.

To get some answers, we need to look at the vmlinux binaries to see what symbols are

exported.

$ readelf -s /1ib/debug/boot/vmlinux-5.
29993:
29994
29995:
29996:
29997:
29998:
29999:
30000:
30001 :
30002:
30003:
30004 :
30005:
30006:
30007 :
30008:
30009:
30010:
30011:
30012:
30013:

0000000000000000
FFFFFFFF8247FO38
fFFFFFFFF824a80eb
FFFFFFFF8247F95C
FFFFFFFF824a80el
FFFFFFFF8247F92C
FFFFFFFF824080d6
FFFFFFFF8247FO74
FFFFFFFF824a80cC8
FFFFFFFF813610b0
FFFFFFFF81361150
FFFFFFFF81361260
FFFFFFFF827144C0
FFFFFFFF81361350
FFFFFFFF81361420
FFFFFFFF81361490
FFFFFFFF82d3F560
FFFFFFFF81361660
FFFFFFFF81361bdO
FFFFFFFF82d40560
FFFFFFFF82d40560

0

0
10
0
10
0
11
0
14
156
208
100

195
106
247
4096
1383
36

FILE
NOTYPE
OBJECT
NOTYPE
OBJECT
NOTYPE
OBJECT
NOTYPE
OBJECT
FUNC
FUNC
FUNC
OBJECT
FUNC
FUNC
FUNC
OBJECT
FUNC
FUNC
OBJECT
OBJECT

LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL

4.0-24-generic

DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT

ABS
13
17
13
17
13
17
13
17

PR RARPRRPRRREARLRRERR

54

coredump.c
__ksymtab_dump_emit
__kstrtab_dump_emit
__ksymtab_dump_skip
__kstrtab_dump_skip
__ksymtab_dump_aligr
__kstrtab_dump_aligr
__ksymtab_dump_trunc
__kstrtab_dump_trunc
umh_pipe_setup
zap_process
expand_corename.isrc
core_name_size
cn_vprintf
cn_printf
cn_esc_printf
zeroes.62762
format_corename.isrc
kmalloc_array.constp
__key.10435
core_dump_count.6271

30014: ffffffff81362730 56 FUNC LOCAL DEFAULT 1 do_coredump.cold
30015: ffffffff82079530 12 OBJECT LOCAL DEFAULT 7 __func__.62732

Next, the freshly built vmlinux:

$ readelf -s ~/.kpatch/src/vmlinux

92711: 0000000000000000 @ FILE LOCAL DEFAULT ABS coredump.c

92712: ffffffff8248f918 @ NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_emit
92713: ffffffff824b80ch 10 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_emit
92714: ffffffff8248f93c @ NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_skig
92715: ffffffff824b80cl 10 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_skig
92716: ffffffff8248f90c @ NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_alic
92717: ffffffff824b80b6 11 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_alig
92718: ffffffff8248f954 @ NOTYPE LOCAL DEFAULT 97899 __ksymtab_dump_trur
92719: ffffffff824b80a8 14 OBJECT LOCAL DEFAULT 97903 __kstrtab_dump_trun
92720: ffffffff81l4baff@ 156 FUNC LOCAL DEFAULT 8647 umh_pipe_setup
92721: ffffffff81761a1@ 208 FUNC LOCAL DEFAULT 32162 zap_process

92722: ffffffff81761ba®@ 100 FUNC LOCAL DEFAULT 32166 expand_corename.isr
92723 ffffffff8276d518 4 OBJECT LOCAL DEFAULT 106303 core_name_size
92724 ffffffff81761c1@ 195 FUNC LOCAL DEFAULT 32168 cn_vprintf

92725: ffffffff81761lce®@ 106 FUNC LOCAL DEFAULT 32170 cn_printf

92726: ffffffff81761d50 247 FUNC LOCAL DEFAULT 32172 cn_esc_printf
92727: ffffffff83017fc@ 4096 OBJECT LOCAL DEFAULT 117495 zeroes.62762
92728: ffffffff82ec62d0 @ OBJECT LOCAL DEFAULT 116793 __key.10435

92729: ffffffff83018160 4 OBJECT LOCAL DEFAULT 117496 core_dump_count.62
92730: ffffffff81761f16 27 FUNC LOCAL DEFAULT 32178 do_coredump.cold
92731: ffffffff822adba0d 12 OBJECT LOCAL DEFAULT 97893 __func__.62732

If you look closely, the original vmlinux has the following two symbols:

30010: ffffffff81301660 1383 FUNC LOCAL DEFAULT 1 format_corename.isrc
30011: ffffffff81361bdo 36 FUNC LOCAL DEFAULT 1 kmalloc_array.constp

While the built one does not! There are missing symbols in our freshly built vmlinux binaries.
This is likely down to the "ISRA" optimisation round which GCC does. Maybe compiler flags
are slightly different between builds. I am not sure. All | do know, is that this patch has
problems.

Limitations in Livepatch

As we can see, there are some real limitations to which patches are suitable for Livepatch.
This is probably the biggest reason why Livepatches are reserved for security fixes only, since
most normal fixes won't work.

The best cheat sheet for what patches work is the Patch Author Guide in the kpatch
repository.

As soon as | can fix a real bug with Livepatch, | will write a follow up blogpost.

Installing and Configuring Livepatch on
Ubuntu

Interested in using Livepatch in your production environment, but don’t want to navigate all
the complexity behind researching compatible patches, writing or generating Livepatch
modules, testing for regressions or scaling deployment?

Well, you can use the Canonical Livepatch Service.

The Canonical Livepatch Service is easy to set up, and automatically delivers critical security
fixes to your machines. These Livepatches have been thoroughly tested and are safe to use.

You can find a list of supported distribution releases and kernel versions on the Livepatch
Wiki page.

The rule of thumb is that Livepatch is available for LTS GA kernels, and HWE kernels which
are from the next LTS GA kernel.

So for example, 4.4 GA kernel on Xenial, or the 4.15 HWE kernel on xenial, since it was
Bionic's GA kernel. Bionic will have 4.15 and soon, the 5.4 HWE kernel from Focal.

The Canonical Livepatch service is pretty easy to set up. All you need to do is:

1. Visit the Canonical Livepatch Portal to generate your API key.

2. Install the Livepatch system daemon with $ sudo snap install canonical-
livepatch

3. Setup Livepatch with the APl key: $ sudo canonical-livepatch enable <TOKEN>

You can try Livepatch for free for up to 3 machines, which is pretty neat if you want to use it
on your own personal PC or server. If you need to scale for your production environment,
then you can sign up for Ubuntu Advantage which includes the Canonical Livepatch Service.

The Datasheet covers any more questions you might have, such as on-premise availability or
pricing.

So how do we tell if the Canonical Livepatch Service is working? Well, you can run:

$ canonical-livepatch status
last check: 1 minute ago
kernel: 4.4.0-168.197-generic
server check-in: succeeded

https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md
https://ubuntu.com/livepatch
https://wiki.ubuntu.com/Kernel/Livepatch
https://auth.livepatch.canonical.com/
https://ubuntu.com/support
https://assets.ubuntu.com/v1/ef19ede0-Datasheet_Livepatch_AW_Web_30.07.18.pdf

patch state: v all applicable livepatch modules inserted
patch version: 65.1

We can also check dmesg, to see if the module has been inserted correctly:

234.112955] 1lkp_Ubuntu_4_4_0_168_197_generic_65: loading out-of-tree module

234.113077] 1lkp_Ubuntu_4_4_0_168_197_generic_65: module verification failed:

237.331850] livepatch: tainting kernel with TAINT_LIVEPATCH
237.331852] 1livepatch: enabling patch 'lkp_Ubuntu_4_4_0_168_197_generic_65"

D

We can see that we are running patch version 65.1. What does that mean? How do we see
what is in each patch?

Well, you can sign up for the Ubuntu Security Announce mailing list. All new Livepatches are
announced here, under [LSN-VERSION] tags. For example, the patch we just installed
above is documented here:

[LSN-0065-1] Linux kernel vulnerability
Otherwise you can also browse the source code repositories.

e Xenial Livepatch Source Code

e Bionic Livepatch Source Code

If we have a look at the Xenial 65.1 patch for 4.4.0-168-generic, we have vmx fixes, mwifiex
wifi driver fixes, btrfs fixes, and 1915 graphics fixes. We can also see that they are built with
kpatch-build : Makefile for Xenial 65.1 patch.

Most users probably aren’t interested in what are in their Livepatches, but if you are
interested, feel free to review.

Conclusion

Well, there we have it. We looked into how Livepatch works at a semi-technical level, we
implemented a few Livepatches of our own and got them working.

It's a pity that | haven't managed to make a Livepatch to fix a real bug just yet, since | keep
selecting fixes which aren’t compatible, but as soon as | find one which is, | will write another
blog post about it.

We also had a look at the Canonical Livepatch Service, and | was pretty happy with how easy
it is to operate, compared to the endless trouble of making these modules yourself.

| think Livepatch is a very cool kernel technology, so keep an eye out on future blog posts
where | delve into it some more.

https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce
https://lists.ubuntu.com/archives/ubuntu-security-announce/2020-April/005391.html
https://git.launchpad.net/~ubuntu-livepatch/+git/xenial-livepatches/
https://git.launchpad.net/~ubuntu-livepatch/+git/bionic-livepatches/
https://git.launchpad.net/~ubuntu-livepatch/+git/xenial-livepatches/tree/Ubuntu-4.4.0-168.197/Ubuntu-4.4.0-168.197.diff
https://git.launchpad.net/~ubuntu-livepatch/+git/xenial-livepatches/tree/Ubuntu-4.4.0-168.197/Makefile

| hope you enjoyed the read, and as always, feel free to contact me.

Matthew Ruffell

Related Posts

Debugging a Zero Page Reference Counter Overflow on the Ubuntu
4.15 Kernel 02 sep 2020

Deploying an OpenStack Cluster in Ubuntu 19.10 13 Feb 2020

Analysis of an Out Of Memory Kernel Bug in the Ubuntu 4.15 Kernel
13 Dec 2019

https://ruffell.nz/about
https://ruffell.nz/programming/writeups/2020/09/02/debugging-a-zero-page-reference-counter-overflow-on-4-15-kernel.html
https://ruffell.nz/programming/writeups/2020/02/13/deploying-a-openstack-cluster-in-ubuntu-19.10.html
https://ruffell.nz/programming/writeups/2019/12/13/analysis-of-out-of-memory-kernel-bug-in-ubuntu-4-15-kernel.html

