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A B S T R A C T

Network softwarization is paving the way for the design and development of Next-Generation Networks
(NGNs), which are demanding profound improvements to existing communication infrastructures. Two of the
fundamental pillars of NGNs are flexibility and intelligence to create elastic network functions capable of
managing complex communication systems in an efficient and cost-effective way. In this sense, the extended
Berkeley Packet Filter (eBPF) is a state-of-the-art solution that enables low-latency traffic processing within the
Linux kernel in commodity hardware. When combined with Machine Learning (ML) algorithms, it becomes a
promising enabler to perform smart monitoring and networking tasks at any required place of the fog-edge-
cloud continuum. In this work, we present a solution that leverages eBPF to integrate ML-based intelligence
with fast packet processing within the Linux kernel, enabling the execution of complex computational tasks
in a flexible way, saving resources and reducing processing latencies. A real implementation and a series of
experiments have been carried out in an Internet of Things (IoT) scenario to evaluate the performance of the
solution to detect attacks in a 6LowPAN system. The performance of the in-kernel implementation shows a
considerable reduction in the execution time (-97%) and CPU usage (-6%) of a Multi-Layer Perceptron (MLP)
model in comparison with a user space development approach; thus positioning our proposal as a promising
solution to embed ML-powered fast packet processing within the Linux kernel.

1. Introduction

The advent of Next-Generation Networks (NGNs) will demand sig-
nificant improvements to communication infrastructures in terms of
speed, flexibility, intelligence, and latency. This will enable the further
development of novel use cases through all verticals [1]. To cope
with this explosion, multiple network and traffic management solutions
are currently emerging as the complexity for coordinating the differ-
ent network segments composing the disaggregated Beyond-5G (B5G)
architecture will notably increase [2]. Besides, the transition to this
new generation of networks poses a significant challenge due to the
necessary investment in new hardware, software, and infrastructure.

Advanced and novel technologies will be needed to provide flexi-
bility and intelligence to NGN infrastructures by adopting a network-
softwarization approach. A state-of-the-art technology in this regard is
the extended Berkeley Packet Filter (eBPF), which allows efficient traf-
fic processing in commodity hardware by enabling the safe execution of
code inside the Linux kernel [3]. This is of prominent importance given
the capabilities enabled to equipment not specialized in networking
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tasks, concretely in scenarios considering the fog-edge-cloud contin-
uum. With the help of Machine Learning (ML) techniques, eBPF is an
enabler for NGNs to perform intelligent networking and monitoring
tasks at any point of the infrastructure, which is a fundamental pillar to
manage the expected high-throughput and low latency traffic that will
be generated by new services and applications. Besides, this technology
is also useful for security purposes, as it permits fast traffic inspection
to detect attacks or intrusions in real-time, also crucial for NGNs
as new attack vectors will appear within upcoming infrastructures.
It is well-known that ML is one of the key technologies to provide
intelligent decision making to the management and orchestration of the
network [4]. It enables network devices to automatically adapt to the
changing network conditions given that ML-powered mechanisms can
detect anomalies, predict network behavior, or anticipate failures and
bottlenecks [5]. In this way, this proactivity can be used to automate
network management tasks to optimize the networks in real time
without human intervention [6].
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The synergies between eBPF and ML have been explored in the
literature in recent years [7,8]. Their convergence makes possible to
perform fast packet processing in a proactive and intelligent way,
automatically adapting the network functions to the requirements de-
manded by services and applications, leading to an overall improve-
ment in network performance, flexibility, and reliability. Typically,
they are used together in the following way: eBPF is in charge of
collecting data from traffic-flows at Linux’s kernel level, and ML models
in Linux’s user plane analyze that information and make predictions
or decisions. However, decoupling traffic handling and ML processing
is not the best approach as performing computation tasks in the user
space presents reduced performance in comparison with a complete in-
kernel implementation. Other implementation alternatives such as Data
Plane Development Kit (DPDK) and AF_XDP also aim at improving the
performance of data traffic processing [9,10]. AF_XDP is an extension
of the Linux XDP that permits bypassing the Linux kernel network stack
and, therefore, it enables the straight delivery of raw packet data from
the NIC to user space avoiding its copy. Nevertheless, to implement
this zero-copy mode with Direct Memory Access, the NIC driver must
support the XDP_REDIRECT action, which might not be available in
inexpensive and constrained hardware. In turn, DPDK is a framework
for fast packet processing in data plane applications that enables more
efficient computing than the traditional interruption scheme available
in the Linux kernel. However, the development and maintenance of
DPDK applications is not trivial and it needs specific equipment usually
not available in commodity hardware.

In this context, as the main contribution of this work, we present a
solution that integrates intelligent traffic inspection models within the
Linux kernel, leveraging the capabilities provided by eBPF to combine
fast packet processing and ML-based intelligent decision-making at
the same level. This strategy permits to save resources in the device
performing such computation and notably reduces processing latencies
which, as aforementioned, is highly relevant in edge-enabled B5G sys-
tems. Concretely, to the authors’ knowledge, this is the first work that
presents a functional implementation of a neural network model (Multi
Layer Perceptron, MLP) within the Linux kernel for packet processing
purposes. By doing so, we provide intelligence to the packet processing
capabilities of eBPF, enhancing the performance and reducing the
latency of this task in a flexible and lightweight way. This proposal is
validated in an Internet of Things (IoT) scenario, in which a resource-
constrained device at the edge is able to efficiently handle a notable
traffic load aiming at detecting a cyber-attack through ML processing.

The rest of the paper is organized as follows. Section 2 provides
background regarding works exploiting both eBPF and ML algorithms.
Section 3 presents the system architecture, as well as the design and
implementation details of the proposed solution. In Section 4, we
discuss and analyze the results obtained in the conducted experiments.
Finally, Section 5 concludes the paper and introduces future research
lines.

2. Background

eBPF is a technology integrated into the Linux kernel with the abil-
ity to enable sandboxed programs to run in a privileged context. It can
safely extend the capabilities of the kernel without losing efficiency or
requiring kernel source code changes. eBPF programs can target a wide
set of use cases, but are mainly developed for security, observability,
and networking [11]. For the latter scenarios, it is usually combined
with the Linux eXpress Data Path (XDP), resulting in a powerful tool
to implement flexible, efficient, and portable network functions, for
example in the form of Virtualized Network Functions (VNFs).

NGNs are expected to handle a vast range of applications, tech-
nologies, and devices. This inherent heterogeneity makes it difficult
to efficiently cope with changes in the network conditions. In con-
sequence, it is necessary to integrate intelligent functions within the
network architecture. eBPF is gaining momentum recently due to its

flexibility and portability. For that reason, different works have pro-
posed the use of eBPF programs as the enforcement tool directed by
ML-powered frameworks operating at application/control level. In this
line, authors of [12] developed an ML-based framework to dynamically
select and deploy congestion control algorithms. The solution is based
on two eBPF modules, one to collect information about the TCP flows
and forward it to a user space framework, and another that implements
a congestion control algorithm, which can be reconfigured in run time
by the mentioned framework. Experiments performed both in emulated
and production networks showed its effectiveness over baseline solu-
tions. Work in [13] developed a prediction model based on eBPF and
Long Short-Term Memory (LSTM) to monitor the Linux network stack
status. The solution used an eBPF program to track HTTP requests and
responses in the kernel network stack. These data were then forwarded
to the LSTM model to predict the subsequent network situation. When
compared to similar methods, the proposal showed more accuracy to
perform real-time predictions. In [14], a monitoring system at the
kernel level was introduced. It was composed of a non-intrusive eBPF
program that collected application layer traffic. The gathered informa-
tion was then analyzed using ML methods to obtain a performance
diagnosis, hence enabling the localization of network bottlenecks. Work
in [15] developed an automatic Redis tuning model based on eBPF and
random forest. An eBPF program was used to identify different working
scenarios. These data are sent to a random forest module, which sorts
the memory parameters to find those with higher efficiency. Then,
this information is sent directly to the operating system to optimize
the hardware resource usage. Authors in [16] proposed a solution to
fingerprint and classify microservices. The fingerprinting is performed
using an eBPF module to trace system calls. Then, a combination of
Bayesian learning and LSTM autoencoders can fingerprint many real-
world microservices with a 99% of accuracy, using only a 1%–2% of
additional CPU usage.

As can be seen through existing works, eBPF has emerged as a
highly suitable solution to perform monitoring and networking within
the Linux kernel. Together with ML algorithms, they provide a powerful
tool to automatically detect disruptions in the network and act in
consequence in real time. However, there is still no integration of
complex ML models within the Linux kernel using eBPF capabilities.
We just have found a preliminary work in which a simple decision
tree model is implemented by using a series of concatenated if/else
instructions [7]. However, as aforementioned, it is common to find
frameworks that use eBPF programs to collect data from the network
and then forward them to the user space, where the ML algorithms are
fed and generate the decisions [17]. This incurs in extra overhead, as
the ML-based processing is taken out of the kernel space. Therefore, to
our knowledge, this is the first integration within the Linux kernel of a
complex ML algorithm, namely, a MLP neural network, embedded in an
eBPF program to enable low-latency and intelligent traffic processing.

3. Use case

One of the areas where eBPF has enormous potential is IoT. Typi-
cal IoT devices are notably constrained, presenting limited processing
power, memory, and energy resources. These restrictions pose a chal-
lenge for implementing effective cybersecurity functions, as traditional
security solutions are resource-intensive and may not be feasible for
IoT devices. This is especially notorious considering the new wave
of ML-based cybersecurity schemes that, although they are showing
great performance for detecting many types of attacks [18,19], their
integration in constrained end-devices remains a challenge [20].

In IoT deployments, every end node is a possible entry point towards
the entire network infrastructure, hence improving their robustness
against attacks is crucial for the overall system security. As a result, it
is critical to develop defense mechanisms specifically designed for IoT
devices, taking into account their limitations and the particular threats
they face in their operational environments. Since eBPF allows the
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efficient execution of code within the Linux kernel, it has the potential
to improve the security of IoT elements by enabling the development
of sophisticated and lightweight security solutions that can be fully in-
tegrated within the operative system, i.e., in its kernel. Therefore, eBPF
can be used to enforce security policies at the kernel level, providing
an additional layer of self-protection against attacks on the end device.
Thus, it is possible to build self-protection mechanisms that are tailored
to the specific needs of IoT nodes, allowing them to autonomously
detect and respond to security threats in a timely and efficient manner,
thus reducing their dependence on fixed infrastructure.

IoT devices have countless applications and it is common to have
several devices working together in what is called a Wireless Sensor
Network (WSN). One of the most employed technologies for enabling
these systems is 6LoWPAN (IPv6 over Low-Power Wireless Personal
Area Networks), which is an open standard defined by the IETF to
enable IPv6 packets to be carried on top of low-power wireless net-
works such as the ones defined by IEEE 802.15.4 [21]. 6LoWPAN was
designed to make IPv6 usable by highly constrained devices, hence
enabling their direct connection to the Internet [22]. Highly related
to 6LoWPAN, RPL (Routing Protocol for Low-Power and Lossy Net-
works) [23] is a routing protocol for wireless networks with low power
consumption and generally susceptible to packet loss. It is a proactive
protocol based on distance vectors and operates on top of IEEE 802.15.4
and 6LoWPAN. This protocol can quickly create network routes, share
routing information, and adapt to topology changes in an efficient way,
making it very suitable for WSN with constrained devices, thus being
one the most employed routing protocols in these kinds of systems [24].

Considering these aspects, the goal of this use case is to demonstrate
and validate the potential of eBPF to enable the self-protection of
IoT devices by permitting the execution within the Linux kernel of
attack-detection algorithms powered by complex ML algorithms such as
neural networks, namely, MLP models. Aiming at allowing experiment
reproducibility, the steps followed to implement the use case under
consideration are presented in the next subsections.

3.1. Dataset generation

In order to generate the ML models that will be embedded within
the end-devices kernel, a dataset is needed for their training. To gen-
erate that dataset, a controlled test scenario has been configured. This
testbed provides the ability to gather reliable data without having to
compromise the security of any in-production WSN. This environment
has been deployed using Cooja [25], which is a tool that allows the
emulation of networks of devices running Contiki, an open-source
operating system specifically designed for IoT devices that implements
both 6LoWPAN and RPL.

The studied scenario focuses on the detection of the ‘‘Hello Flood’’
attack on the RPL protocol. To implement this attack, the RPL-Attack-
Framework [26] has been used. This includes the modules for root,
malicious, and benign nodes within the RPL-managed WSN. In this use
case, the ‘‘Hello Flood’’ attack involves one or more malicious nodes
periodically generating routing information requests to make the other
nodes respond to those messages, intending to waste their resources
such as their battery power.

As shown in Fig. 1, the simulation consists of one root node (green
device), ten sensor nodes (yellow devices), and one malicious node
within the range of communication of the root node (purple device).
The Radio Messages Tool of Cooja is used to capture all the traffic
generated during a ten-minute simulation, generating a .pcap file from
which the dataset is generated. In our experiments we have focused
on enabling the self-protection of the root node, as it is the most
important element of the RPL network. To this end, the raw .pcap file
is processed to extract the RPL packets exclusively received by the root
node, with each row representing the number of packets (segregated

Fig. 1. Cooja scenario.

by RPL message type,1 namely, DODAG Information Solicitation (DIS),
DODAG Information Object (DIO), Destination Advertisement Object
(DAO), and other) generated by the same source and received by the
root node within a given time window. Tests have been conducted
with time windows of 1 s, 5 s, and 10 s to evaluate the most adequate
data aggregation to maximize the accuracy of the ML models and the
performance of the end-device. Therefore, three datasets of 1919, 1047,
and 572 rows, respectively, are obtained. In these datasets, each row
also includes the address of the corresponding source node, although
this field is just informative and has not been employed for training the
ML models, and a label indicating whether the source is a malicious
node or not. With this process, note that we are generating datasets
that make use of data that can be perfectly collected by each node
(the root node in this case) in real-time during its operation, i.e., the
number of DIS, DIO, DAO, and other messages (input features for the
ML model) received for each neighbor within a time frame (1 s, 5 s, and
10 s). Therefore, the training datasets and, consequently, the generated
models, are completely realistic and can be used in a real WSN scenario.
The message handling and data aggregation in the IoT node during
the normal operation of the device is later explained, when the eBPF
implementation is detailed.

3.2. ML model development

In this step, we make use of the generated datasets that gather the
RPL protocol messages received by the root node from its neighboring
nodes over certain time windows. As aforementioned, the ultimate
objective is to implement an in-kernel ML-based solution powered by
eBPF capable of identifying certain attacks (‘‘Hello Flood’’ attack in this
case). While different types of ML algorithms could have been consid-
ered for this purpose, we have considered the use of MLP models giving
the flexibility and good accuracy provided by neural networks for an-
alyzing traffic and detecting anomalies [27]. As previously mentioned,
recent research has successfully developed a decision tree implementa-
tion in eBPF by means of a number of if/else statements [7]. However,
we go one step further by implementing a much more complex ML al-
gorithm like MLP. In the context of detecting cyber-attacks, MLP neural
networks have been historically used due to their ability to handle non-
linear relationships between input features and output labels, which
is a common characteristic of network traffic data. MLPs can learn
complex patterns in the data, making them suitable for detecting subtle

1 https://datatracker.ietf.org/doc/html/rfc6550

https://datatracker.ietf.org/doc/html/rfc6550
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attack behaviors that may not be immediately apparent. Moreover,
MLPs can achieve high accuracy and speed, making them ideal for
real-time attack detection in online security systems [28].

For this particular use case, we have made use of a Python’s Scikit-
Learn-based MLP implementation, which has shown good performance
results with our generated datasets when using the Rectified Linear
Unit (ReLU) activation function. This function is useful for binary
classification tasks, such as detecting whether the traffic received by
a node from a neighbor constitutes an attack or not. Furthermore, it
is a suitable choice for eBPF, as it is effective in pattern detection,
but computationally efficient for applications that require near real-
time processing. Regarding the training process, the generated dataset
was split with an 80% allocation of samples for training and a 20%
allocation for testing. The choice of an 80/20 split strikes a balance
between providing sufficient data for model training and maintaining
a sizable test set for meaningful performance evaluation. In addition,
we included stratification in the split to ensure that the original class
distribution is maintained in both the training and test sets. This
decision is particularly important due to the dataset is quite unbalanced
as it contains more negatives than positives samples. This procedure
helps to avoid bias in the model performance evaluation by ensuring
proportional representation of both classes in both training and test
sets.

After several tests with different MLP configurations (hidden layers
and neurons per layer), a neural network architecture with a limited
number of layers and neurons is sufficient. This is because loss of
linearity is not necessary to obtain good results. Adding too many
layers or neurons potentially leads to overfitting, which would reduce
the model’s generalization performance. Concretely, for our tests, we
have finally adopted an MLP model consisting of two hidden lay-
ers, precisely composed of three and two perceptrons. In each layer,
the ReLU activation function is utilized, while the sigmoid function
is employed in the final layer. It is worth noting that, as detailed
in the next section, the adopted development procedure enables the
implementation of solutions with more complex neural networks and
other activation functions. With the MLP selected configuration, we
attain an accuracy of 0.99, 1, and 1, with the models trained using
the aggregation windows of 1 s, 5 s, and 10 s, respectively. Recall that,
although the accuracy achieved is very high, the focus of this work is
on the challenge of running neural network models within the Linux
kernel.

Finally, in order to port the obtained MLP model from Scikit-Learn
1.2.0 to eBPF, we have made use of the TinyML’s emlearn 0.14.0
library [29], which transforms the Python model into C code, which
notably eases the integration of the model within an eBPF program.
This library provides conversion utilities to generate float arrays that
contain the weights and biases of each neural network’s layer, as well as
a complete structure that represents the trained model. The next section
gives more details about the adopted approach considering the final
step: the eBPF implementation of the attack-detection solution.

3.3. eBPF-based implementation

The integration of the C-coded MLP model within an eBPF program
is not a trivial process given the great restrictions imposed by the
eBPF verifier [11]. In the following, we detail the development process
and all the challenges faced during this process and how we have
overcome them. The resulting code has been made available in a public
repository.2

As a first step, we have made use of the header files provided by the
emlearn library, which contain functions that implement the logic of the
neural network. Specifically, for each layer of the neural network, a lin-
ear combination is made between the outputs of the previous layer with

2 https://github.com/irenebru/eBPF-neural-network

the weights and biases of the current layer, followed by the application
of a non-linear activation function (ReLU activation function in our
case). Despite the benefits provided by the emlearn library, integrating
the MLP model into eBPF is not feasible in a straightforward way due to
the aforementioned constraints in eBPF programs. Therefore, to address
these limitations, several modifications have been introduced in the
emlearn library to adapt its generated code to a valid one accepted by
the eBPF verifier. The main implementation challenges are described
in the following.

Firstly, eBPF programs cannot make use of floating-point operations
[30]. This is a great limitation given that neural network’s weights
and biases are non-integer numbers. To tackle this challenge, we have
introduced a fixed-point representation with 16 bits designated for
the integer part, 15 bits for the fractional part, and 1 bit for the
number’s sign. In order to facilitate this transformation, we have also
incorporated tailored conversion functions to systematically convert all
floating-point values into 32-bit fixed-point integers using this implicit
representation.

Executing this conversion process requires a series of adjustments to
our neural network implementation. Specifically, we have developed
new arithmetical functions (addition, subtraction, multiplication, and
division) that work with this type of representation. While adaptation
for addition proved to be straightforward, multiplication and division of
fixed-point integers required the adoption of 64-bit integers in order not
to lose precision and scaling the result using powers of two. Moreover,
adaptations have been made to the activation functions within the neu-
ral network. In our implementation, the ReLU function is exclusively
employed between layers, while the sigmoid function is utilized for
the final classification. Regarding ReLU, additional adjustments have
been implemented to facilitate its acceptance of fixed-point integers as
input and to validate whether they surpass zero. Simultaneously, opti-
mizations have been introduced to the sigmoid function to streamline
the final classification process during inference. It is important to note
that in order to incorporate any desired activation function, careful
consideration of a fixed-point implementation is imperative. This may
involve direct use of the newly introduced arithmetical functions,
approximation using numerical methods, or the optimization of the
function, especially in the context of final classification tasks.

Besides, the eBPF verifier impose limitations when working with
loops, as it has to guarantee the termination of all programs loaded
into the kernel, for example, to avoid Denial of Service (DoS) attacks.
At first, their use was not allowed, but the 5.3 version of the Linux
kernel introduced support for bounded loops,3 although within the
boundaries dictated by the maximum number of eBPF instructions
permitted per program (1 million from version 5.2). Following this
enhancement, version 5.17 added the bpf_loop() helper function,4 which
trades some execution time for a much faster verification process and
allows the use of bigger bounded loops (up to 8 millions of iterations),
as it is not restricted by the eBPF instruction limit. However, it is still
necessary to comply with the verifier stack limit to avoid programs
that run for too long time due to nested loops. In our implementation,
given that we do not need loops with a large number of iterations,
we have adjusted the loops to make them bounded following the first
approach, so that the number of iterations is known at compile time.
This allows loop unrolling directives from the compiler to transform
them into a sequence of independent instructions. To accomplish this,
variables that represented the number of layers, the lengths of auxiliary
buffers, and neural network outputs were replaced with MACROS, and
for loops were modified accordingly. This approach not only enables
loop unrolling but also improves the code’s readability and maintain-
ability, making it easier to reuse for other types of neural networks.
Additionally, constant static arrays that contain the number of inputs

3 https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.3
4 https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.17

https://github.com/irenebru/eBPF-neural-network
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.3
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Fig. 2. Packet headers structure.

and outputs for each neural network layer are used to properly apply
the linear combination of weights and biases for each layer. Considering
this, our implementation has been designed to permit the use of neural
networks with different numbers of layers, neurons, and activation
functions, hence proving generalization capabilities.

In order to use the MLP model for detecting ‘‘Hello Flood’’ attacks
to the RPL protocol, a header parsing procedure has also been im-
plemented in eBPF to analyze incoming network packets. The parsing
process in eBPF requires bound checking to ensure that memory ac-
cesses are within the expected boundaries. Otherwise, the eBPF verifier
does not permit the program to run. To successfully implement the
parsing process, it is important to consider that the link level header is
IEEE 802.15.4, followed by the 6LoWPAN header, which contains the
compressed IPv6 address (see Fig. 2). Note that the 6LoWPAN header
may not include the entire address, as it usually omits the prefix or
includes only the last few bytes. The RPL message type is determined
by a byte in its header with a value of 0 for DIS, 1 for DIO, and 2 for
DAO messages.

3.4. Experiments

After parsing the headers, the collected data need to be stored per-
sistently between eBPF program executions as there is no maintained
state between them. To accomplish this, pinned eBPF maps have been
utilized, which enables the tracking of the messages sent by each IPv6
address to the root node over different time windows (1 s, 5 s, and 10
s). Concretely, the eBPF maps used are of type BPF_MAP_TYPE_HASH,
which provides hash map storage for general purposes. We use them as
a hash map where the key is the IP address of the source device, and
the value is an array of 4 integers. Each of these integers represents the
number of packets of each type received from that IP address, namely,
DIS (0), DIO (1), DAO (2), and other types of packets (3). Regarding
the computation of time windows, we make use of the bpf_ktime_get_ns()
function, which returns the machine time in ns. To implement the time
windows, we use again an eBPF map of type BPF_MAP_TYPE_HASH.
Thus, each time the neural network is executed, the time from the
machine is taken and stored in the map. At each execution of the
eBPF program, this saved time is compared with the current time, so it
is checked whether the time-window has expired. Once the window
arrives to end, the MLP model is applied to analyze the collected
data and determine whether an attack has occurred. This process is
repeated over time to guarantee the continuous protection of the device
(the WSN root node in our case). It is worth mentioning that all the
described behavior has been implemented in a single eBPF program,
therefore no tail calls have been used in our solution.

Once the implementation is ready, the eBPF program is then com-
piled, verified and loaded to the generic XDP eBPF hook. XDP permits
the attachment of programs to the NIC using different models, being
the offloaded and native alternatives the most efficient. However, these
two models need the NIC driver to support this kind of operation [31].
Commodity hardware is often equipped with more limited NICs with
no support for these drivers. In this case, XDP allows the attachment
of eBPF programs to generic hooks that run after the device driver.
This permits the execution of eBPF programs on constrained commodity
hardware, enabling advanced packet processing in these devices.

As a result of this process, we obtained our eBPF program ready to
be validated through the experimentation phase. To better understand

Fig. 3. State diagram of the eBPF program.

and summarize the functioning of this tool, Fig. 3 depicts the state
diagram of the program. Note that it runs in an event-based manner,
thus the whole process will be repeated per each packet received in
the eBPF/XDP hook, just after its reception by the NIC. When a packet
arrives, its headers are parsed and the RPL packet type is identified,
the packet type count and its source are then stored in an eBPF hash
map as explained before, so these data can be accessed from subsequent
executions. Then, the program checks whether the time window has
expired or not. If that is not the case, the execution ends. Otherwise,
the ML model gathers the packet count information from the persistent
map and infers if an attack has happened or not. Finally, noting
that considering advanced countermeasures to the attack is out of the
scope of this paper, hence in our implementation, when an attacker is
detected a new rule is instantiated, so the root node directly drops the
packets coming from this device, identified by its IPv6 address, to avoid
wasting unnecessary resources.

The experiments were conducted using two elements, namely, a
regular computer to generate traffic and an IoT device running the
eBPF program, which processes the received packets and executes
the embedded neural network. The first one was a desktop computer
powered by an Intel i5-3470 CPU with four cores and 8 GB of RAM,
while the latter was a Raspberry Pi 3 Model B V1.2, with a four-core
CPU and 1 GB of RAM, using Ubuntu 22.04 LTS and the GNU/Linux
5.15.0-1034-raspi kernel. Both were directly connected via an Ethernet
cable, with a maximum theoretical throughput speed of 100 Mbps, as
the network interface of the Raspberry Pi is limited to that rate. The
traffic was generated and injected using the tcpreplay [32] tool, which
was used to replicate the captured traffic of the raw dataset presented
previously. In this way, the traffic extracted from the original .pcap
file (see Section 3.1) left the desktop computer at a desired speed and
arrived at the Raspberry Pi’s Ethernet port, to whose interface was
attached the eBPF program.

Besides the eBPF implementation of the neural network, another
version of our program has also been developed to decouple the neural
network from the parsing mechanism and execute it in Linux’s user
space. Hence, we can compare the performance of the ML model
operating in both kernel and user spaces (Fig. 4). In this way, two
scenarios were prepared for the experiments, one in which the parsing
of the packets and the neural network execution were performed in
a privileged context inside the kernel, and another one in which the
neural network calculations were moved to the user space. The neural
network implementation in user space uses the same C code that the
in-kernel implementation, with 125 Lines of Code (LoC). The eBPF
program has 176 LoC, and the hybrid solution is divided in the eBPF
parsing program (141 LoC) and the ML model handling in user space
with 63 LoC. Besides, the binary sizes of the eBPF program with the
whole implementation, the eBPF program only with the parser, and
the user space program are 26 KB, 16 KB, and 546 KB, respectively.
The time that the Kernel needs to load the eBPF program with the ML
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Fig. 4. Conceptual diagram of the two implementations.

Fig. 5. Maximum data rate supported by the physical link between both ends.

model is 830,2 ±53, 4 εs, and it takes 788,8 ±57, 9 εs to load the eBPF
program that only contains the packet parsing mechanism.

As explained previously, three different time windows (1 s, 5 s, and
10 s) have been chosen to assess the best data aggregation in terms
of ML model’s accuracy and to inspect the impact on the end-device
performance. Each experiment was executed 10 times during 60 s, to
avoid singularities in the attained outcomes and to obtain statistical
wealth.

4. Results

This section presents the performance of the developed solution in
the testbed described above. The first conducted test aimed at evaluat-
ing the maximum data rate supported by the physical link between both
devices without executing the eBPF program (baseline performance).
This consisted in measuring the maximum bandwidth achieved with
multiple packet sizes (TCP traffic) by using the iPerf tool. As can be
seen in Fig. 5, with lower packet sizes, the data rate decreases as can
be expected. This is because the IoT device’s NIC has to process a huge
number of packets per second, exceeding its capabilities. The maximum
attained rate is above 90 Mbps with big packets, which decreases down
to 28,5 Mbps with packets of 64 B. Note that in this experiment and the
following ones, we made use of high data rates to stress both the IoT
device and the eBPF function in order to study their performance with
demanding conditions. Nevertheless, this is not the usual behavior of
typical IoT systems, which usually present more sporadic and limited
traffic.

Once the eBPF program is embedded and executed in the IoT node,
Table 1 presents the maximum data rates achieved per configuration

Fig. 6. CPU usage.

Table 1
Maximum data rate per configuration.
ML execution
space

Window (s) Data rate
(Mbps)

Kernel 1 43,1
Kernel 5 43,6
Kernel 10 44,5
User 1 45,5
User 5 45,5
User 10 45,5

without packet loss. The variables of the configurations are whether
the neural network is executed in kernel or user space (first column),
and the duration of the time window to aggregate data and execute the
neural network (second column). Firstly, considering that the average
packet length employed in our experiments (extracted from the raw
traffic captured during the dataset generation) is 90 B, there is not an
appreciable decrease in the attained data rate in comparison with the
baseline scenario (Fig. 5). Therefore, it can be inferred that the eBPF
program is not acting as a bottleneck for the IoT device. Comparing
both implementation approaches, the highest speeds are obtained when
the neural network execution is performed in the user space, that is,
when the parsing of the packets is executed by the eBPF program,
and the ML model is executed in the user space, gathering its input
data from a shared map in a decoupled way (Fig. 4). When the neural
network is executed in the Linux kernel, the data rate decreases in
comparison with the other configuration, with a difference of around
5% in the worst case (aggregation window of 1 s). This is due to the
requirement by the eBPF program to execute the neural network each
time the time window expires, a period during which the program
remains ‘‘busy’’ and unable to receive additional packets. Likewise, this
is the reason why the data rate increases with the increment of the time
window in the in-kernel scenarios. This outcome is expected, as the ML
model is executed less frequently with longer time windows, therefore
the eBPF program is capable of processing more packets as it is not busy
with the other task. This can be understood as a drawback of the in-
kernel implementation although, as aforementioned, the performance
decrease with highly demanding traffic conditions is just of 5%, and
this scenario does not seem likely in IoT environments.

Considering computational performance, Fig. 6 shows a real-time
graph of CPU consumption during the execution of an experiment in
terms of software interruptions in both scenarios with an aggregation
time window of 5 s. This result aims at showing the stability of both
implementations and compare their performances at runtime. It can
be seen that, although the range in which both graphs oscillate is
similar (60%–80%), on average the CPU consumption using the in-
kernel implementation is lower than the user space one. Concretely,
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Fig. 7. Execution time comparison.

by running the neural network in the kernel, a reduction of 6% of
CPU usage is attained. Besides, there are notable low peaks that do not
appear when it is run from the user space. A reduced use of CPU is of
high importance in IoT environments given the notable computation
constraints of end nodes. Note that the experiments showed that the
CPU consumption does not reach 100% usage of the core resources.
This is because the experiments were performed at the maximum
lossless data rate possible in each configuration, which means that this
graph represents the stable behavior of the CPU just before reaching a
data rate where packet drops start to occur due to CPU saturation (CPU
usage of 100%).

Finally, Fig. 7 shows the average execution time of the ML model
in both implementations and depending on the chosen time window.
These measurements have been obtained in real-time using OS’s tools
(bpf_ktime_get_ns() and clock()) that permit to compute the time machine
in nanoseconds before and after the call to the ML model. This call en-
compasses both the handling of inputs from the map and the execution
of the neural network itself. It can be seen the notable decrease in the
execution time of this process when it is run in kernel space in com-
parison with the case of running it in user space (reduction of around
97% for the three time windows under consideration). This remarkable
difference is because the execution is faster in the privileged context
where eBPF can run sandboxed programs in a very efficient way.
Other OS activities when running the program in user-space add extra
overhead in comparison with its execution in the Kernel’s environment,
e.g., context switches, I/O operations, syscalls, etc. As expected, the
execution time does not hardly vary with the length of the window,
as it is not affected by the frequency of data aggregation. We consider
this outcome of relevant importance, as it evidences the advantages of
executing complex tasks within the kernel in order to achieve a clear
performance improvement in comparison with their execution in the
user space.

Therefore, the attained results demonstrate the advantages eBPF
provides to run programs in kernel space to enhance packet processing
time and computing resource usage. In this way, this kind of solution
can be interesting in fog/edge scenarios where performing any kind
of ML-based processing is relevant such as the considered case of
self-detection of cyberattacks. Besides, it also arises as a cost-effective
workaround to handle traffic in an intelligent way without needing
expensive hardware, as it has been showcased that the performance
in commodity hardware with notable resource constraints is more than
acceptable for certain kinds of scenarios.

5. Conclusions

NGNs are calling upon network and traffic management solutions
able to enhance the intelligence and flexibility of the underlying infras-
tructures. With the softwarization of the network, multiples technolo-
gies are emerging to address the demanding requirements of B5G archi-
tectures in this regard. Consequently, a flexible and portable technology
arises as an enabler for low-latency traffic processing in unexpensive
hardware: eBPF. It permits the execution of programs within a privi-
leged context in the Linux kernel, permitting the treatment of traffic
flows in a quick and flexible way at any point of the network infras-
tructure (fog-edge-cloud). So far, eBPF has been used in combination
with ML models by employing eBPF programs as mere data collectors
at kernel level and feeding a ML algorithm running in user space.
As the main contribution of this work, we presented a solution that
integrates ML processing within the Linux kernel to provide intelligent
fast packet inspection. Concretely, we have implemented a complex
model such as MLP. By leveraging eBPF, we achieve high-performance
and low-latency processing within the network data plane, enabling
real-time traffic classification tasks without relying on a powerful ex-
ternal support. Considering an IoT cybersecurity use case, the attained
results showed a clear improvement in comparison with a classical user
space implementation approach. Concretely, we attained considerable
reductions of 97% and 6% in the execution time and CPU usage of the
ML model, respectively, when operating within the Linux kernel, rather
than in user space. This paves the way for the development of novel
network functions with high efficiency and portability able to run in a
plethora of devices.

Several directions can be explored to enhance and extend our work.
In first place, the integration in eBPF of more complex neural network
models, such as convolutional neural networks, may increment the
classification capabilities of the solution. Besides, alternative imple-
mentation methodologies may be adopted aiming at increasing the
achieved data-rate and improve the fixed-point arithmetic in eBPF to
boost the accuracy of the implemented neural networks. Addition-
ally, the potential of hardware acceleration for eBPF-based neural
networks is a promising line for future research. Specific hardware,
such as FPGAs or SmartNICs can potentially increase the performance
of eBPF-based classifiers, enabling its application in more demanding
use cases.
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