
* Based on kernel 5.11 (x86_64) – QEMU
* 2-socket CPUs (4 cores/socket)
* 16GB memory
* Kernel parameter: nokaslr norandmaps
* KASAN: disabled
* Userspace: ASLR is disabled
* Legacy BIOS

Linux Synchronization Mechanism: spinlock

Adrian Huang | Dec, 2022

Agenda
• Spinlock history – Approach evolution
✓Simple Approach: Spin on test-and-set

✓Test and test-and-set (spin on read)

✓Ticket spinlock

✓MCS (Mellor-Crummey & Scott) lock
➢Performance benchmark: Ticket spinlock vs MCS lock

➢MCS Lock History in Linux Kernel

• Current spinlock approach in Linux kernel: qspinlock (Queue spinlock)

• spin_lock() SMP & UP

• spin_lock() API variants
✓How to use those variants in different scenarios

• Spinlock derivative: rwlock and seqlock

Simple Approach: Spin on test-and-set

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15 Memory

lock

Lock holder

TestAndSet

TestAndSet

TestAndSet TestAndSet

TestAndSet

[Spinning Cores] Keep consuming memory bus (write 1): Cache coherence

Test-and-set (atomic):
1. old_value = read a memory location
2. Write 1 to a memory location
3. Return old_value

Simple Approach: Spin on test-and-set

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15 Memory

lock

Lock holder

TestAndSet

TestAndSet

TestAndSet TestAndSet

TestAndSet

Due to the memory write, spinning cores invalidate cache copies of cores
even if the value is not changed

Invalidate

Invalidate

Test-and-set (atomic):
1. old_value = read a memory location
2. Write 1 to a memory location
3. Return old_value

• Read Invalidate message of MESI Protocol Messages
✓ Reference: C.2.2 MESI Protocol Messages of Is Parallel Programming Hard, And, If So, What Can You Do About It?

https://arxiv.org/abs/1701.00854

Simple Approach: Spin on test-and-set

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15 Memory

lock

Lock holder

Test-and-set (atomic):
1. old_value = read a memory location
2. Write 1 to a memory location
3. Return old_value

TestAndSet

TestAndSet

TestAndSet TestAndSet

TestAndSet

[Spinning Cores] Cores reload the memory due to the cache miss: performance impact

Cache miss: reload

Cache miss: reload

Test and test-and-set (spin on read)

1. Spinning is done in the cache without consuming memory bus
2. Reduce the repeated test-and-set cost if the lock is held

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15 Memory

lock

Lock holder

TestAndSet

TestAndSet

TestAndSet TestAndSet

TestAndSet

1. Spinning is done in the cache without consuming memory bus
2. Reduce the repeated test-and-set cost if the lock is held

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15 Memory

lock

Lock holder:
release lock

TestAndSet

TestAndSet

TestAndSet TestAndSet

TestAndSet

Invalidate

Invalidate

Invalidate

Invalidate

Test and test-and-set (spin on read)

1. Spinning cores incur a read miss and fetch the new value back into cache
2. Spinning cores compete for accessing memory bus
3. The first core to test-and-set will acquire the lock
4. Other spinning cores cannot get lock: invalidate caches & cache misses

• Quiescence: These operations are finished

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15 Memory

lock

Lock holder:
release lock

TestAndSet

TestAndSet

TestAndSet TestAndSet

TestAndSet

Test and test-and-set (spin on read)

Performance Comparison

Reference from: T. E. Anderson, "The performance of spin lock alternatives for shared-money multiprocessors",
IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp. 6-16, 1990.

Issue Statements about “Spin on test-and-set”
and “Test and test-and-set”

• Cache coherence
✓[Cache-line bouncing] Scalability issue

• All spinning cores compete the lock when the lock is freed by lock holder
✓Unfairness

➢Ticket spinlock is proposed to fix the unfairness

Ticket spinlock (v2.6.25: released in April 2008)

Concept: pseudo code

Ticket spinlock (v2.6.25: released in April 2008)
Concept: pseudo code

current_ticketnext_ticket

slock

v2.6.25 implementation

Ticket spinlock: Acquire a spinlock

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15

Memory

{current_ticket, next_ticket}

current_ticket
next_ticket

cache

lock holder

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15

Memory

{current_ticket, next_ticket}

current_ticket
next_ticket

cache

lock holder

current_ticket
next_ticket

current_ticket
next_ticket

current_ticket
next_ticket

current_ticket
next_ticket

spinning core

spinning core

spinning core

spinning core

Ticket spinlock: Other cores acquire a locked spinlock

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15

Memory

{current_ticket, next_ticket}

current_ticket
next_ticket

cache

lock holder

current_ticket
next_ticket

current_ticket
next_ticket

current_ticket
next_ticket

current_ticket
next_ticket

unlock & update

invalidate

Ticket spinlock: Lock holder unlocks a spinlock and
accumulates current_ticket

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Core 8 Core 9 Core 10 Core 11

Core 12 Core 13 Core 14 Core 15

Memory

{current_ticket, next_ticket}

current_ticket
next_ticket

cache

lock holder

current_ticket
next_ticket

current_ticket
next_ticket

current_ticket
next_ticket

current_ticket
next_ticket

cache miss: reload

Ticket spinlock: Cache miss → Reload

[Ticket spinlock] Cache coherence issue: non-scalable spinlock (Cache-line bouncing)

Ticket spinlock: Performance Measurement

Reference Paper: Boyd-Wickizer, Silas, et al. "Non-scalable locks

are dangerous." Proceedings of the Linux Symposium. 2012.

Benchmarks
• FOPS: creates a single file and starts one

process on each core. Repeated system calls
“open() and close()”.

• MEMPOP
✓ One process per core
✓ Each process mmaps 64 kB of memory

with the MAP_POPULATE flag, then
munmaps the memory

• PFIND: searches for a file by executing several
instances of the GNU find utility

• EXIM (mail server): A single master process
listens for incoming SMTP connections via TCP
and forks a new process for each connection

Ticket spinlock: Performance Measurement

Reference Paper: Boyd-Wickizer, Silas, et al. "Non-scalable locks

are dangerous." Proceedings of the Linux Symposium. 2012.

MCS (Mellor-Crummey & Scott) lock

MCS Lock
• Adhere to fairness: FIFO (Implemented via linked list)
• Scalable spinlock: Prevent cache coherence issue

✓ Each core reference its own data ‘next’ (struct mcs_spinlock)
• Data ownership concept: Is Parallel Programming Hard, And, If So, What Can You Do About It?

https://arxiv.org/abs/1701.00854

MCS (Mellor-Crummey & Scott) lock

1. Adhere to fairness
2. Scalable spinlock: Prevent cache coherence issue

mcs_spinlock

next = NULL
locked = 0

mcs_spinlock (core 0)

next = NULL
locked = 0

mcs_spin_lock(…)

prev = xchg(…)

prev = NULL → lock acquired
(no spinning)

Main MCS lock

MCS (Mellor-Crummey & Scott) lock

1. [Spinning core] check its owner `locked`
2. ‘next’ pointer of the main MCS lock indicates the tail of the queue of waiting cores

mcs_spinlock

next
locked = 0

Main MCS lock

mcs_spinlock (core 0)

next = NULL
locked = 0

prev = xchg(…)

lock acquired (no spinning)

mcs_spinlock (core 1)

next = NULL
locked = 0

mcs_spin_lock(…)

prev != NULL → locked by
another core

Will be replaced by
xchg()

1

2

3

4
WRITE_ONCE(prev->next, node) 5 Spinning until

locked = 1

prev

MCS (Mellor-Crummey & Scott) lock

mcs_spinlock

next
locked = 0

mcs_spinlock (core 0)

next
locked = 0

next != NULL ➔
Set `next->locked = 1`

mcs_spinlock (core 1)

next = NULL
locked = 0 1

2

next = READ_ONCE(node->next)

4 locked =1 → enter critical section

mcs_spin_unlock(…)

1
3

Main MCS lock

MCS (Mellor-Crummey & Scott) lock

Cache coherence only happens for the next core (will not
be spinning; will enter critical section)

mcs_spinlock

next
locked = 0

mcs_spinlock (core 0)

next
locked = 0

next != NULL ➔
Set `next->locked = 1`

mcs_spinlock (core 1)

next = NULL
locked = 0 1

2

next = READ_ONCE(node->next)

4 locked =1 → enter critical section

mcs_spin_unlock(…)

1
3

Main MCS lock

MCS (Mellor-Crummey & Scott) lock

mcs_spinlock

next
locked = 0

mcs_spinlock (core 1)

next = NULL
locked = 1 next = READ_ONCE(node->next)

2

mcs_spin_unlock(…)

1

Main MCS lock next = NULL ➔ cmpxchg_release(lock, node, NULL)

MCS (Mellor-Crummey & Scott) lock

mcs_spinlock

next = NULL
locked = 0

mcs_spinlock (core 1)

next = NULL
locked = 1 next = READ_ONCE(node->next)

2

mcs_spin_unlock(…)

1

Main MCS lock next = NULL ➔ cmpxchg_release(lock, node, NULL)

3 cmpxchg_release(lock, node, NULL)
4

Ticket spinlock vs MCS lock

Reference Paper: Boyd-Wickizer, Silas, et al. "Non-scalable locks

are dangerous." Proceedings of the Linux Symposium. 2012.

Benchmarks
• FOPS: creates a single file and starts one

process on each core. Repeated system calls
“open() and close()”.

✓ Executing the critical section increases
from 450 cycles on two cores to 852 cycles
on four cores

✓ The critical section is executed multiple
times per-operation and modifies shared
data, which incurs costly cache misses

• MEMPOP
✓ One process per core
✓ Each process mmaps 64 kB of memory

with the MAP_POPULATE flag, then
munmaps the memory

• PFIND: searches for a file by executing several
instances of the GNU find utility

• EXIM (mail server): A single master process
listens for incoming SMTP connections via TCP
and forks a new process for each connection

MCS Lock History in Linux Kernel

• Two variants
✓Standard: v3.15

➢ None of Linux kernel subsystems uses it (No one calls mcs_spin_lock() and mcs_spin_unlock()) because:
• sizeof(struct mcs_spinlock) > 4

 Note: sizeof (msc spinlock struct) = 16
• spinlock struct is embedded into kernel structure. Example:

 struct page (size = 64) cannot tolerate the increased size

➢ kernel/locking/mcs_spinlock.h
➢ Replacement of ticket spinlock: qspinlock – based on standard MCS lock (v4.2)

• A simple generic 4-byte queued spinlock
• qspinlock is the default spinlock mechanism

✓Cancelable MCS lock (OSQ - Optimistic Spin Queue: MCS-like lock): v3.15
➢ Used by mutex implementation & rw-semaphores
➢ Mutex implementation paths:

• Fastpath: Uncontended case by using cmpxchg()
• Midpath (optimistic spinning) - The priority of the lock owner is the highest one

 Spin for mutex lock acquisition when the lock owner is running.
 The lock owner is likely to release the lock soon.

• Slowpath: The task is added to the waiting queue and sleeps until woken up by the unlock path.

➢ Mutex is a hybrid type (spinning & sleeping): Busy-waiting for a few cycles instead of immediately sleeping
➢ kernel/locking/{mutex.c, osq_lock.c}
➢ Reference: Generic Mutex Subsystem

https://01.org/linuxgraphics/gfx-docs/drm/locking/mutex-design.html

qspinlock (Queue spinlock)

lockedpending

locked_pending

tail indextail cpu

tail

0

atomic_t val

815161831

struct qspinlock or arch_spinlock_t

spin_lock

_raw_spin_lock

__raw_spin_lock

raw_spin_lock

rlock

struct spinlock or spinlock_t

raw_lock

struct raw_spinlock or raw_spinlock_t

spin_lock(), spin_unlock()

preempt_disable

do_raw_spin_lock

arch_spin_lock

queued_spin_lock

spin_unlock

_raw_spin_unlock

__raw_spin_unlock

raw_spin_unlock

do_raw_spin_unlock

preempt_enable

arch_spin_unlock

queued_spin_unlock

qspinlock (Queue spinlock) – First core to acquire the lock

locked = 0 1pending = 0

locked_pending

tail indextail cpu

tail

0

atomic_t val

815161831

struct qspinlock or arch_spinlock_t

Core 0 [Nobody occupies this lock]
spin_lock() → Lock owner

atomic_try_cmpxchg_acquire()

qspinlock – Second core to acquire the lock

locked = 1pending = 0 1

locked_pending

tail indextail cpu

tail

0

atomic_t val

815161831

struct qspinlock or arch_spinlock_t

Core 0
Lock owner

Core 1
spin_lock()

1 atomic_try_cmpxchg_acquire() → false2queued_spin_lock_slowpath() ->
queued_fetch_set_pending_acquire()

3
• atomic_cond_read_acquire(): spinning until `locked = 0`
• Clear `pending` field if `locked = 0`

[Second core for lock acquisition] Spinning by checking `locked` field of arch_spinlock_t
(Optimization: No need to configure a per-cpu MSC struct)

qspinlock – Third core to acquire the lock

locked = 1pending = 1

locked_pending

tail indextail cpu

tail

0

atomic_t val

815161831

struct qspinlock or arch_spinlock_t
Core 0

Lock owner

Core 2

atomic_try_cmpxchg_acquire()
→ false

Core 1

spinning until `locked = 0`
1

2queued_spin_lock_slowpath() ->
val = queued_fetch_set_pending_acquire()
• if (val & ~_Q_LOCKED_MASK)

queue this task

qspinlock – Third core to acquire the lock

locked = 1pending = 1

locked_pending

tail indextail cpu

tail

0

atomic_t val

815161831

struct qspinlock or arch_spinlock_t
Core 0

Lock owner

percpu

[Third core for lock acquisition] Spinning until `locked = 0 && pending = 0`

Core 1

spinning until `locked = 0`

mcs_spinlock (core 2)

next = NULL
locked = 0

count

3

val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
• Spinning until `locked = 0 && pending = 0`

Core 2

4

4

xchg_tail()
3

qspinlock – Forth core to acquire the lock

locked = 1pending = 1

locked_pending

tail indextail cpu

tail

0

atomic_t val

815161831

struct qspinlock or arch_spinlock_t
Core 0

Lock owner

percpu

[Forth and later core: N >= 4] Spinning until its own `locked = 1`: Improve cache bouncing
• Who sets `mcs_spinlock.locked = 1`? (Hint: Adhere to MCS lock implementation)

Core 1

spinning until `locked = 0`

mcs_spinlock (core 2)

next
locked = 0

countCore 2

Spinning until `locked = 0
&& pending = 0`

percpu

mcs_spinlock (core 3)

next = NULL
locked = 0

count Core 3

11 xchg_tail()

2

3 Spinning until its own `locked = 1`

qspinlock – queued_spin_unlock()

locked = 1 0pending = 1

locked_pending

tail indextail cpu

tail

0

atomic_t val

815161831

struct qspinlock or arch_spinlock_t
Core 0

Lock owner

percpu

Core 1 spinning until `locked = 0`

mcs_spinlock (core 2)

next
locked = 0

countCore 2

Spinning until `locked = 0
&& pending = 0`

percpu

mcs_spinlock (core 3)

next = NULL
locked = 0

count Core 3

Spinnig until its own `locked = 1`

1

2

Lock owner

qspinlock – queued_spin_unlock() & queued_spin_lock()

locked = 1 0pending = 1

locked_pending

tail indextail cpu

tail

0

atomic_t val

815161831

struct qspinlock or arch_spinlock_t
Core 0

Lock owner

percpu

Core 1

spinning until `locked = 0`

mcs_spinlock (core 2)

next
locked = 0

countCore 2

Spinning until `locked = 0
&& pending = 0`

percpu

mcs_spinlock (core 3)

next = NULL
locked = 0

count Core 3

Spinning until its own `locked = 1`

1

Core 4

2

What happens to core 4 for invoking queued_spin_lock() under this circumstance?

qspinlock – queued_spin_unlock() & queued_spin_lock()

locked = 1 0pending = 1

locked_pending

tail indextail cpu

tail

0

atomic_t val

815161831

struct qspinlock or arch_spinlock_t
Core 0

Lock owner

percpu

Core 1

spinning until `locked = 0`

mcs_spinlock (core 2)

next
locked = 0

countCore 2

Spinning until `locked = 0
&& pending = 0`

percpu

mcs_spinlock (core 3)

next
locked = 0

count
Core 3

Spinning until its
own `locked = 1`

1

1. Core 4 is queued: Adhere to the principle of ticket spinlock
2. Spin its own `mcs_spinlock.locked`: Improve cache bouncing

percpu

mcs_spinlock (core 4)

next = NULL
locked = 0

count Core 4

• atomic_try_cmpxchg_acquire(…)
◼ Can acquire the lock (set ‘locked=1)

when the 32-bit qspinlock (val) is 0.
◼ Otherwise, the core will go to the

slowpath.

Spinning until its
own `locked = 1`

spin_lock() SMP & UP

spin_lock

_raw_spin_lock

__raw_spin_lock

raw_spin_lock

preempt_disable

do_raw_spin_lock

arch_spin_lock

queued_spin_lock

spin_lock

_raw_spin_lock

__LOCK

raw_spin_lock

preempt_disable

SMP spin_lock() UP spin_lock()

• spin_lock() & spin_unlock()
✓Multiple process contexts share the same data

• spin_lock_irq() & spin_unlock_irq()
✓Process context and top halve (hardirq) share the same data

• spin_lock_irqsave() & raw_spin_unlock_irqrestore()
✓Process context and top halve (hardirq) share the same data
✓Save/restore eflags

• spin_lock_bh() & spin_unlock_bh()
✓Process context and bottom halve share the same data

• spin_lock_nest_lock() & spin_lock_nested()
✓lockdep: Annotate places where we take multiple locks of the same class and avoid deadlock –

Commit b7d39aff9145 (“lockdep: spin_lock_nest_lock()”)

spinlock() variants

• spin_lock() & spin_unlock()
✓Multiple process contexts share the same data

• spin_lock_irq() & spin_unlock_irq()
✓Process context and top halve (hardirq) share the same data

• spin_lock_irqsave() & raw_spin_unlock_irqrestore()
✓Process context and top halve (hardirq) share the same data
✓Save/restore eflags

• spin_lock_bh() & spin_unlock_bh()
✓Process context and bottom halve share the same data

• spin_lock_nest_lock() & spin_lock_nested()
✓lockdep: Annotate places where we take multiple locks of the same class and avoid deadlock –

Commit b7d39aff9145 (“lockdep: spin_lock_nest_lock()”)

spinlock() variants

Critical Section

spin_lock(&lock)

static DEFINE_SPINLOCK(lock);

spin_unlock(&lock)

Critical Section

Process Context

Critical Section

spin_lock(&lock)

spin_unlock(&lock)

Critical Section

ISR (hardirq) – Interrupt Context1

2
HW Interrupt

spinning: dead lockProcessor Core 3

Deadlock only happens on the same core in this circumstance

Deadlock between process context and interrupt context
(the same core)

Critical Section

spin_lock_irq(&lock)

static DEFINE_SPINLOCK(lock);

spin_unlock_irq(&lock)

Critical Section

Process Context

Critical Section

spin_lock(&lock)

spin_unlock(&lock)

Critical Section

ISR (hardirq) – Interrupt Context1

2 HW Interrupt

Processor Core

• Use spin_{un}lock_irq() or spin_{un}lock_irqsave() to prevent deadlock
✓ spin_lock_irq() or spin_lock_irqsave(): Disable local interrupt delivery
✓ spin_unlock_irq() or spin_unlock_irqsave(): Enable local interrupt delivery

Deadlock between process context and interrupt context
(the same core)

Local interrupt disabled

4

3
unlock

5

6

Critical Section

spin_lock_irq(&lock)

static DEFINE_SPINLOCK(lock);

spin_unlock_irq(&lock)

Critical Section

Process Context

Critical Section

spin_lock(&lock)

spin_unlock(&lock)

Critical Section

ISR (hardirq) – Interrupt Context1

2 HW Interrupt

Processor Core

Deadlock between process context and interrupt context
(the same core)

Local interrupt disabled

4

3
unlock

5

5

Who disables the local interrupt before entering ISR?
• Linux kernel common interrupt code?
• CPU HW?

Does Linux kernel disable local interrupt before entering ISR?

SYM_CODE_START(asm_common_interrupt)

common_interrupt(): entry point for all normal device IRQs

SYM_CODE_START(asm_common_interrupt)

Does Linux kernel disable local interrupt before entering ISR?

The current stack is not switched yet:
will be done in error_entry()

IF (Interrupt Enable Flag) is disabled!

Does Linux kernel disable local interrupt before entering ISR?

Local interrupt has been disabled before entering asm_common_interrupt(): CPU disables it.

Does Linux kernel disable local interrupt before entering ISR?

common_interrupt(…)

__common_interrupt(…)

Does Linux kernel disable local interrupt before entering ISR?

asm_common_interrupt

__common_interrupt

common_interrupt

Common Interrupt Call Path: Serial Driver

handle_irq

run_irq_on_irqstack_cond

__run_irq_on_irqstack

asm_call_on_stack

handle_edge_irq

handle_irq_event

handle_irq_event_percpu

__handle_irq_event_percpu

serial8250_interrupt

Does Linux kernel disable local interrupt before entering ISR?

Common interrupt in Linux kernel: Handle vector number 32-255

Common Interrupt Code Path

[Reference] Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4

CPU disables local interrupt if the interrupt handle is called via
an interrupt gate

spin_lock_irq(&lock1)

spin_unlock_irq(&lock1)

Process Context

Critical Section

spin_lock(&lock1)

spin_unlock(&lock1)

Critical Section

ISR (hardirq) – Interrupt Context

Processor Core

Deadlock between process context and interrupt context
(the same core)

Local interrupt disabled

deadlock
spin_lock_irq(&lock2)

spin_unlock_irq(&lock2)

Critical Section

1

2

3

spin_lock_irq(&lock1)

spin_unlock_irq(&lock1)

Process Context

Critical Section

spin_lock(&lock1)

spin_unlock(&lock1)

Critical Section

ISR (hardirq) – Interrupt Context

Processor Core

Deadlock between process context and interrupt context
(the same core) – Solution 1

Local interrupt disabled

spin_lock_irqsave(&lock2)

spin_unlock_irqrestore(&lock2)

Critical Section

1
Restore irq flags: Still disable
local interrupt because of
spin_lock_irq(&lock1)

spin_lock_irqsave(&lock1)

spin_unlock_irqrestore(&lock1)

Process Context

Critical Section

spin_lock(&lock1)

spin_unlock(&lock1)

Critical Section

ISR (hardirq) – Interrupt Context

Processor Core

Deadlock between process context and interrupt context
(the same core) – Solution 2

Local interrupt disabled

spin_lock_irqsave(&lock2)

spin_unlock_irqrestore(&lock2)

Critical Section

1
Restore irq flags: Still disable
local interrupt because of
spin_lock_irq(&lock1)

• spin_lock() & spin_unlock()
✓Multiple process contexts share the same data

• spin_lock_irq() & spin_unlock_irq()
✓Process context and top halve (hardirq) share the same data

• spin_lock_irqsave() & raw_spin_unlock_irqrestore()
✓Process context and top halve (hardirq) share the same data
✓Save/restore eflags

• spin_lock_bh() & spin_unlock_bh()
✓Process context and bottom halve share the same data

• spin_lock_nest_lock() & spin_lock_nested()
✓lockdep: Annotate places where we take multiple locks of the same class and avoid deadlock –

Commit b7d39aff9145 (“lockdep: spin_lock_nest_lock()”)

spinlock() variants

Critical Section

spin_lock(&lock)

static DEFINE_SPINLOCK(lock);

spin_unlock(&lock)

Critical Section

Process Context

Critical Section

spin_lock(&lock2)

spin_unlock(&lock2)

Critical Section

ISR (hardirq) – Interrupt Context1

2

HW Interrupt

Processor Core

Deadlock between process context and bottom halve (the
same core)

3
Critical Section

spin_lock(&lock)

spin_unlock(&lock)

Critical Section

Bottom halve: softirq or tasklet

4

5 spinning: dead lock

Critical Section

spin_lock(&lock)

static DEFINE_SPINLOCK(lock);

spin_unlock(&lock)

Critical Section

Process Context

Critical Section

spin_lock(&lock2)

spin_unlock(&lock2)

Critical Section

ISR (hardirq) – Interrupt Context1

2

HW Interrupt

Processor Core

Deadlock between process context and bottom halve (the
same core)

3
Critical Section

spin_lock(&lock)

spin_unlock(&lock)

Critical Section

Bottom halve: softirq or tasklet

4

5 spinning: dead lock

Bottom halve is invoked when returning from ISR

Critical Section

spin_lock(&lock)

static DEFINE_SPINLOCK(lock);

spin_unlock(&lock)

Critical Section

Process Context

Critical Section

spin_lock(&lock2)

spin_unlock(&lock2)

Critical Section

ISR (hardirq) – Interrupt Context1

2

HW Interrupt

Processor Core

Deadlock between process context and bottom halve (the
same core)

3
Critical Section

spin_lock(&lock)

spin_unlock(&lock)

Critical Section

Bottom halve: softirq or tasklet

4

5 spinning: dead lock

Softirq is invoked when returning from ISR Softirq is invoked when running ksoftirqd

Critical Section

spin_lock_bh(&lock)

static DEFINE_SPINLOCK(lock);

spin_unlock_bh(&lock)

Critical Section

Process Context

Critical Section

spin_lock(&lock2)

spin_unlock(&lock2)

Critical Section

ISR (hardirq) – Interrupt Context1

2

HW Interrupt

Processor Core

Deadlock between process context and bottom halve (the
same core)

3
Critical Section

spin_lock(&lock)

spin_unlock(&lock)

Critical Section

Bottom halve: softirq or tasklet

Softirq is invoked when returning from ISR

Return because in_interrupt() is true

4

task 0

task 1

task N
read_unlock()

read_lock()

Critical Section

write_unlock()

write_lock()
task 0

task 1

task N

Readers Writers

• Concept
✓ [Without readers] Only one writer can enter CS
✓ [Without writer] N-readers can enter CS simultaneously
✓ Readers and writer can enter CS simultaneously
✓ Reader(s) in CS → The writer needs to wait (spinning)
✓ Writer in CS → Readers need to wait (spinning)

• Mutual exclusion between reader and writer
• Writer might be starved!

• Reader has higher priority than writer
• Useful scenario: search for linked list without changing the list

✓ Example: tasklist_lock→ __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);

• Linux kernel developers are trying to remove rwlock in most cases.

Critical Section

[Reference] Lesson 2: reader-writer spinlocks

rwlock (reader-writer spinlock)

https://www.kernel.org/doc/html/latest/locking/spinlocks.html#lesson-2-reader-writer-spinlocks

writer lockReader count
0831

cnts

raw_lock

rwlock_t

atomic_t cnts

struct qrwlock or arch_rwlock_t

read_lock(), read_unlock()
write_lock(), write_unlock()

arch_spinlock_t wait_lock 9

* W: A writer is waiting

W

rwlock (reader-writer spinlock): Data structure

* wait_lock: for spinning

seqlock (Sequential lock)

prev_count != current count

prev_count = read count

Critical Section

spinunlock

spinlock

Critical Section
Y

N
prev_count != current count

prev_count = read count

Critical Section Y

N

count++

count++

Readers Writers

• Lockless readers (only retry loop)
• No writer starvation

✓ Writer has higher priority than reader
✓ No mutual exclusion between reader and writer

➢ Mutual exclusion between writers because of writers’ spinlock

• Scenario: lots of readers and few writers
✓ Example: jiffies → Check get_jiffies_64(), tick_setup_periodic() and so on.

spinlock derivative

spinlock rwlock seqlock

Reader(s) 1 N N

Writer(s) 1 1 1

spinlock rwlock seqlock RCU

Reader(s) 1 N N N

Writer(s) 1 1 1 1

spinlock derivative and RCU

Reference
• Boyd-Wickizer, Silas, et al. "Non-scalable locks are dangerous." Proceedings of the Linux

Symposium. 2012. http://pdos.csail.mit.edu/papers/linux:lock.pdf

• T. E. Anderson, "The performance of spin lock alternatives for shared-money
multiprocessors", IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp.
6-16, 1990.

• J. M. Mellor-Crummey and M. L. Scott. “Algorithms for scalable synchronization on shared-
memory multiprocessors”, ACM Transactions on Computer Systems, 9(1):21–65, 1991.

• MCS locks and qspinlocks, LWN

• Is Parallel Programming Hard, And, If So, What Can You Do About It?

http://pdos.csail.mit.edu/papers/linux:lock.pdf
https://lwn.net/Articles/590243/
https://arxiv.org/abs/1701.00854

