Linux Synchronization Mechanism: spinlock

Adrian Huang | Dec, 2022

* Based on kernel 5.11 (x86_64) — QEMU
* 2-socket CPUs (4 cores/socket)

* 16GB memory

* Kernel parameter: nokaslr norandmaps
* KASAN: disabled

* Userspace: ASLR is disabled

* Legacy BIOS

Agenda

 Spinlock history — Approach evolution
v'Simple Approach: Spin on test-and-set
v'Test and test-and-set (spin on read)
v'Ticket spinlock
v'"MCS (Mellor-Crummey & Scott) lock

» Performance benchmark: Ticket spinlock vs MCS lock
» MCS Lock History in Linux Kernel

* Current spinlock approach in Linux kernel: gspinlock (Queue spinlock)
* spin_lock() SMP & UP

* spin_lock() API variants
v'How to use those variants in different scenarios

* Spinlock derivative: rwlock and seqlock

Simple Approach: Spin on test-and-set

Init lock : = CLEAR: Test-and-set (atomic):
Lock while (TestAndSet (lock) = BUSY); 1. old_value = read a memory location
Unlock lock : = CLEAR: 2. Write 1 to a memory location
3. Returnold_value
/3 /B
TestAndSet | | TestAndSet
Core O Core 1 Core 2 Core 3
!
TestAndSet Lock holder T
Core 4 Core 5 Core 6 Core 7 |—]estAndSet ook
/B
TestAndSet
Core 8 Core 9 Core 10 Core 11
'
TestAndSet
Core 12 Core 13 Core 14 Core 15 Memory

[Spinning Cores] Keep consuming memory bus (write 1): Cache coherence

Simple Approach: Spin on test-and-set

Init lock : = CLEAR: Test-and-set (atomic):
Lock while (TestAndSet (lock) = BUSY); 1. old_value =read a memory location
Unlock lock : = CLEAR; 2. Write 1 to a memory location

3. Returnold_value

3 , /3

TestAndSet ——n@lidate | festAndset
Core 0 Core 1 Core/Z/ Core 3

/—KA’&@ Invalidate
N
TestAndSet ¢ J Lock holder estAndsS
eStAndSet
Core 4 Core 5 Corj/én Core7 14— lock
TestAndSet
Core 8 Core 9 Core 10 Core 11
-
T TestAndSet

Core 12 Core 13 Core 14 Core 15 Memory

* Read Invalidate message of MESI Protocol Messages
v' Reference: C.2.2 MESI Protocol Messages of |s Parallel Programming Hard, And, If So, What Can You Do About It?

Due to the memory write, spinning cores invalidate cache copies of cores
even if the value is not changed

https://arxiv.org/abs/1701.00854

Simple Approach: Spin on test-and-set

Init lock : = CLEAR: Test-and-set (atomic):
Lock while (TestAndSet (lock) = BUSY); 1. old_value = read a memory location
Unlock lock : = CLEAR: 2. Write 1 to a memory location

3. Returnold_value

B /B
TestAndSet Cache miss: reload | TestAndSet
Core O Core 1 Cor Core 3
B

TestAndSet |-cache miss: reload | | ek holder |
Core 4 Core 5 Core 6 Core 7 \m»

3 CaChEIW lock
TestAndset —— >
Core 8 Core 9 Core 10 Core 11 ‘56._@\0
/3 e‘(\\
TestAndSet 4(\
Core 12 Core 13 Core 14 Core 15 Memory

[Spinning Cores] Cores reload the memory due to the cache miss: performance impact

Test and test-and-set (spin on read)

Lock while (lock = BUSY or TestAndSet (lock) = BUSY)
3 /3
TestAndSet TestAndSet
Core O Core 1 Core 2 Core 3
/3
TestAndSet Lock holder T
Core 4 Core 5 Core 6 Core 7 |—]—cstAndSet =
-
TestAndSet
Core 8 Core 9 Core 10 Core 11
TestAndSet
Core 12 Core 13 Core 14 Core 15 Memory

1. Spinning is done in the cache without consuming memory bus
2. Reduce the repeated test-and-set cost if the lock is held

Test and test-and-set (spin on read)

Lock while (lock = BUSY or TestAndSet (lock) = BUSY)
/3 /B
TestAndSet TestAndSet
Core O Core 1 Core 2 Core 3 T' .
nvplidate
- invalidate\ Lock holder:
TestAndSet release lock .
Core 4 Core 5 Core 6 Cord 7 [—{—Write back |
lock
InVa“datljInvalidate
TestAndSet
Core 8 Core 9 Core 10 Coref 11
v
TestAndSet
Core 12 Core 13 Core 14 Core 15 Memory

1. Spinning is done in the cache without consuming memory bus
2. Reduce the repeated test-and-set cost if the lock is held

Test and test-and-set (spin on read)

Lock while (lock = BUSY or TestAndSet (lock) = BUSY)
B B
TestAndSet NN TestAndSet \\

Core 0 Core 1 Core 2 Core3_ 3
- Lock holder: 2

TestAndSet release lock T %

Core 4 Core 5 Core 6 Core 7 —1T—=

5 lock

TestAndSet |

Core 8 Core 9 Core 10 Core 11 /
3

TestAndSet d
Core 12 Core 13 Core 14 Core 15

Memory

Spinning cores incur a read miss and fetch the new value back into cache

. Spinning cores compete for accessing memory bus

The first core to test-and-set will acquire the lock

Other spinning cores cannot get lock: invalidate caches & cache misses
 (Quiescence: These operations are finished

Performance Comparison

'E -
8 3
e — ideal -E—
= =% spin test&set E . .
? -4 spin on read E O quiesce time
& @
W 8
&
D v L] v L] v I v | T r T - T . T
1 S 9 13 V7 1 5 9 13 17
number of processors number of spinning processors
Fig. 1.Principal performance comparison: elapsed time (second) to execute Fig. 2. Time to quiesce, spin on read (microseconds).
benchmark (measured). Each processor loops one million/P times: acquire
lock, do critical section, release lock, and compute.

Reference from: T. E. Anderson, "The performance of spin lock alternatives for shared-money multiprocessors”,
IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp. 6-16, 1990.

Issue Statements about “Spin on test-and-set”
and “Test and test-and-set”

e Cache coherence
v'[Cache-line bouncing] Scalability issue

* All spinning cores compete the lock when the lock is freed by lock holder

v'Unfairness
» Ticket spinlock is proposed to fix the unfairness

Ticket spinlock (v2.6.25: released in April 2008

Concept: pseudo code

't spinlock t {

{

{

Zuthor:
Date:

Nick Piggin <npiggin@suse.de>
Wed Jan 30 13:31:21 2008 +0100

int current ticket;
int next ticket;
spin lock(spinlock t *lock)
int t = atomic_ fetch and inc(&lock->next ticket);
(t !'= lock -»current ticket)
; /% spin */
spin_unlock(spinlock t *lock)

lock —-»current ticket++;

x86: FIFO ticket spinlocks

Introduce ticket lock spinlocks for %86 which are FIFO. The implementation

is described in the comments. The straight-line lock/unlock instruction
sequence is slightly slower than the dec based locks on modern =86 CPUs,
however the difference is guite small on CoreZ and Opteron when working out of
cache, and becomes almost insignificant even on P4 when the lock misses cache.
trylock is more significantly slower, but they are relatively rare.

Oon an 8 core (2 socket) Opteron, spinlock unfairness is extremely noticable,
with a userspace test having a difference of up to 2Zx runtime per thread, and
some threads are starved or "unfairly™ granted the lock up to 1 000 000 (1)
times. After this patch, all threads appear to finish at exactly the sams
time.

The memory ordering of the lock does conform to =86 standards, and the
implementation has been reviewed by Intel and AMD engineers.

The algorithm also tells us how many CPUs are contending the lock, so
lockbreak becomes triwvial and we no longer have to waste 4 bytes per
spinlock for it.

After this, we can no longer spin on any locks with preempt enabled

and cannot reenable interrupts when spinning on an irg safe lock, because

at that point we have already taken a ticket and the would deadlock if

the same CPU tries to take the lock again. These are guestionable anyway:

if the lock happens to be called under a preempt or interrupt disabled section,
then it will just have the same latency problems. The real fix is to keep
critical sections short, and ensure locks are reasonably fair (which this
patch does).

Signed-off-by: Nick Piggin <npigginfsuse.de>
Signed-off-by: Thomas cGleixner <tglxz@linutronix.de>
Signed-off-by: Ingo Molnar <mingofelte.hu>

Ticket spinlock (v2.6.25: released in April 2008)

struct spinlock t {
int current ticket;
int next ticket;

volid spin lock(spinlock t *lock)
int t = atomic_ fetch and inc(&lock->next ticket);
(t !'= lock -»current ticket)
: ,."II"J" Sl:lin "’",."II
vold spin_unlockispinlock_t *lock)

lock —-»current ticket++;

}

v2.6.25 implementation
ypedef struct arch spinlock {

AZuthor: Nick Piggin <nplgginfsuse.de> T =

Date: TWed Jan 30 13:33:00 2008 +0100 unsigned int slock;
} arch spinlock t;

x86: big ticket locks

arch/x86/include/asm/spinlock types.

This implements ticket lock support for more than 255 CPUs on x86. The
code gets switched according to the configured NR _CPUS.

_ _ . . next_ticket current_ticket
Signed-off-by: MNick Piggin <npigginfisuse.de> = =
Signed-off-by: Ingo Molnar <mingofelte.hu> \ }
Signed-off-by: Thomas Gleixner <tglzf@linutronix.de> |

slock

Ticket spinlock: Acquire a spinlock

struct spinlock t {
int current ticket;
int next ticket;

¥
void spin lock(spinlock t *lock)
int t = atomic fetch and inc(&lock->next ticket):
(t != lock —->current ticket)
;7 /* spin */
vold spin unlock(spinlock t *lock)

lock —->current ticket++;

Core O Core 1l Core 2 Core 3

cache| current_ticket

next_ticket [“N_ v
Core 4 Core 5 Core 6 Core 7 0
lock holder \{current_ticket, next_ticket}
Core 8 Core 9 Core 10 Core 11 Memory

Core 12 Core 13 Core 14 Core 15

Ticket spinlock: Other cores acquire a locked spinlock

struct spinlock t {
int current ticket;
int next ticket;

vold spin lock(spinlock t *lock)
int t = atomic_ fetch and inc(&lock->next ticket);
(t != lock ->current ticket)
;i /* spin */
void spin unlock(spinlock t *lock)

lock -»current ticket++;

/N /[
current_ticket current_ticket
next_ticket T~ next_ticket
Core 0 Core 1 m Core 3
— spinning-cotre
spinning core
P g cache| current_ticket
next_tic %
Core 4 Core 5 Core 6 Core 7 %
current_ticket, next_ticket
C current_ticket W { - - !
next_ticket
Core 8 Core 9 Core 10 Core 11 Memory
Spinning co& current_ticket
next_ticket
Core 12 Core 13 Core 14 Core 15
spinning core

Ticket spinlock: Lock holder unlocks a spinlock and
accumulates current_ticket

/N M
current_ticket | invalidate current_ticket
next_ticket next_ticket
Core O Core 1l m in] ,ggre 3
v
~ 5 unlgck & update
cache| current_ticket
next_ticket
Core 4 Core 5 Core 6 Cor¢ 7
current_ticket, next_ticket
C current_ticket n‘/lg/%(holder { — = }
next_ticket dte
Core 8 Core 9 Core 10 Coreg 11 Memory
C current_ticket
next_ticket
Core 12 Core 13 Core 14 Core 15

Ticket spinlock: Cache miss = Reload

<
M C/;@,b. /[
current_ticket "@/O /Ss. current_ticket
next_ticket [0/ next_ticket e
— \ . /50
Core O Core 1 Core Core 3 & "o,

cache curre\n(§t3cI<e\t
next_ticket N

Core 4 Core 5 Core 6 Core 7 %
lock holder 3

C current ticket ¢*{current_ticket, next_ticket}

next_ticket |cache miss: reload
Core 8 Core 9 Core 10 Core 11 &
C current_ticket [,/ &(\Q’(Qrbb Memory
next_ticket g <?>0
Core 12 Core 13 Core 14 Core 15

[Ticket spinlock] Cache coherence issue: non-scalable spinlock (Cache-line bouncing)

Ticket spinlock: Perfor

opens/ms

finds/sec

1000

S0

a0

Cores

(a) Collapse for FOPS.

Cores

(c) Collapse for PFIND.

Figure 2: Sudden performance collapse with ticket locks.

mmaps/ms

messages/sec

400

300

200

10000

mance Measurement

Benchmarks

* FOPS: creates a single file and starts one
process on each core. Repeated system calls
“open() and close()”.

 MEMPOP
v" One process per core

v Each process mmaps 64 kB of memory
with the MAP_POPULATE flag, then
munmaps the memory

Cores

(b) Collapse for MEMPOP.

PFIND: searches for a file by executing several

L 1 instances of the GNU find utility

* EXIM (mail server): A single master process
listens for incoming SMTP connections via TCP
and forks a new process for each connection

Cores

(d) Collapse for EXIM.

Reference Paper: Boyd-Wickizer, Silas, et al. "Non-scalable locks
are dangerous." Proceedings of the Linux Symposium. 2012.

Ticket spinlock: Performance Measurement

Operation time . Acquires per Average critical section % of operation in
Benchmark _ Top lock instance name ; . ot .
(cycles) operation time (cycles) critical section
FOPS 503 d_entry 4 92 73%
MEMPOP 6852 anon_vma 4 121 1%
PFIND 2099 M address_space TOK 350 1%
EXIM 1156 K anon_vma 58 165 0.8%

Figure 3: The most contended critical sections for each Linux microbenchmark, on a single core.

Reference Paper: Boyd-Wickizer, Silas, et al. "Non-scalable locks
are dangerous." Proceedings of the Linux Symposium. 2012.

MCS (Mellor-Crummey & Scott) lock

struct mcs_ spinlock {
struct mcs spinlock *next;
int locked; /% 1 if lock acguired */
int count; /* nesting count, see gspinlock.c */

b

Ikernelflmckianmca spinlock.h

MCS Lock
e Adhere to fairness: FIFO (Implemented via linked list)

e Scalable spinlock: Prevent cache coherence issue

v’ Each core reference its own data ‘next’ (struct mcs_spinlock)
* Data ownership concept: Is Parallel Programming Hard, And, If So, What Can You Do About It?

https://arxiv.org/abs/1701.00854

MCS (Mellor-Crummey & Scott) lock

struct mcs spinlock | shtalbic inoane .)
Ei?::i mcs SIdJllocﬂ{ *next ; vold mcs_spin lock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
int locked:; /* 1 if lock acquired */ ¢ struct mecs spinlock *prevs
int count; /* nesting count, see gspinlock.c */ -
bi /% Init node */
node->locked = 0;
node—->next = NULL;

kernel/locking/mcs spinlock.h

transitivity implie
prev = xchg(lock, node);
(likely (prev == NULL)) {

* Lock acquired, don't need to set node->locked to 1. Threads
only spin on its own node->locked value for lock acguisition.
However, since this thread can immediately acguire the lock

&
%
m * and does not proceed to spin on its own node->locked, this
%
&
L

value won't be used. If a debug mode is needed to

Mes Sp"ﬂOCk > rncs_sphﬂock(core(n :faudlt lock status, then set node->locked wvalue here.
next —NgLL_|-Prev = xche(...) next = NULL :
— }
locked = 0 locked = 0 WRITE ONCE (prev->next, node);
Main MCS lock prev = NULL = lock acquired . .
/* Wait until the lock holder passes the lock down. */

(nC)spinning) arch mcs spin lock contended(&node->locked);

kernel/locking/mcs spinlock.h

1. Adhere to fairness
2. Scalable spinlock: Prevent cache coherence issue

MCS (Mellor-Crummey & Scott) lock

L

b

Ikernelﬁlﬂckingfmcs

_spinlock {

ruct mcs_spinlock *next;

locked; /* 1 if lock acquired */

count; /* nesting count, see gspinlock.c

mcs

. .

spinlock.h

1.
2.

prev = xchg(...)

mcs_spinlock **]lock, struct mcs_spinlock *node)

struct mcs_spinlock *prev;

/* Init node */
node->locked
node—->next

r

= NULL;

ly on the full barrier with gleobal transitivity implied by
prev = xchg(lock, node);
(likely (prev == NULL)) {
/I

* Lock acguired, don't need to set node->locked to 1. Threads

* only spin on its own node->locked value for lock acgquisition.
since this thread can immediately acguire the lock

‘ However,
this

&

&

* and does not proceed to spin on its own node—>locked,
* value won't be used. If a debug mode is needed to

* gudit lock status, then set node->locked wvalue here.
&

}
WRITE ONCE (prev->next, node);

ny

/* Wait until the lock holder passes the lock down.
arch mcs_spin lock_contended(sncde->locked) ;

kernel/locking/mcs spinlock.h

mcs_spinlock 1-=-» mcs_spinlock (core 0) \? mcs_spinlock (core 1)
next next =NULL next = NULL - .
locked = 0 Will be ripl(é;ced by locked =0 WRITE_ONCE(prev->next, node) locked = 0 SF::)"‘CT(':dg:T”
: xchg
Main MCS lock lock acquired (no spinning) © prev != NULL > locked by

[Spinning core] check its owner “locked

another core

‘next’ pointer of the main MCS lock indicates the tail of the queue of waiting cores

vold mes spin unlock(struct mes spinlock **lock, struct mcs spinlock *node)
{
struct mcs spinlock *next = READ ONCE (node->next) ;
(likely (!next)) {
* Release the lock by setting it to NULL
{likely{cmpxchg_release{lock, node, NULL) == node))
/* Wait until the next pointer is set */
(! (next = READ ONCE (node->next)))
cpu _relax();
}
/* Pass lock to next walter. */
arch mcs spin unlock contended (&next->locked);
}

kernel/locking/mcs spinlock.h

mcs_spinlock mcs_spinlock (core 0) » mcs_spinlock (core 1)
next next 0 next = NULL
locked = 0 locked = 0 next = READ_ONCE(node->next) E locked = 0 1
Main MCS lock @ next != NULL = Qlocked =1 - enter critical section

Set ‘next->locked = 1°

MCS (Mellor-Crummey & Scott) lock

mcs_spinlock mcs_spinlock (core 0) » mcs_spinlock (core 1)
next next o next = NULL
locked = 0 locked = O next = READ_ONCE(node->next) _a locked = O 1
Main MCS lock 9 next 1= NULL = 'n‘\ma\ '\mpacﬂ elocked =1 - enter critical section
AY _ = AN \
Set ‘next->locked = 1 [m o coher ence

Cach

Cache coherence only happens for the next core (will not
be spinning; will enter critical section)

vold mes spin unlock(struct mes spinlock **lock, struct mcs spinlock *node)
{
struct mcs spinlock *next = READ ONCE (node->next) ;
(likely (!next)) {
* Release the lock by setting it to NULL
{likely{cmpxchg_release{lock, node, NULL) == node))
/* Wait until the next pointer is set */
(! (next = READ ONCE (node->next)))
cpu _relax();
}
/* Pass lock to next walter. */
arch mcs spin unlock contended (&next->locked);
}

kernel/locking/mcs spinlock.h

mcs_spinlock mcs_spinlock (core 1)

next next = NULL
locked =0 locked =1 next = READ_ONCE(node->next)

Main MCS lock @ next = NULL = cmpxchg_release(lock, node, NULL)

A 4

vold mes spin unlock(struct mes spinlock **lock, struct mcs spinlock *node)
{
struct mcs spinlock *next = READ ONCE (node->next) ;
(likely (!next)) {
* Release the lock by setting it to NULL
{likely{cmpxchg_release{lock, node, NULL) == node))
/* Wait until the next pointer is set */
(! (next = READ ONCE (node->next)))
cpu _relax();
}
/* Pass lock to next walter. */
arch mcs spin unlock contended (&next->locked);
}

kernel/locking/mcs spinlock.h

mcs_spinlock © cmpxchg_release(lock, node, NULL) CoTTTTTTT T --» mcs_spinlock (core 1)
next=NULL [-------------------"-"-"---------"-"-"-"-"-"-~-~—~—~—~—-—-—-- ! next = NULL
locked = 0 locked = 1 next = READ_ONCE(node->next)

Main MCS lock @ next = NULL = cmpxchg_release(lock, node, NULL)

Ticket spinlock vs MCS lock

Throughput (opens/ms)

Throughput (finds/sec)

Benchmarks

500

200

&0

400

e Ticketlock | - 1 ¢ FOPS: creates a single file and starts one
, . 7 process on each core. Repeated system calls
/ | “open() and close()”.

300 - A .
I Ticket lock | v Executing the critical section increases

—=— MCS lock | 404

—a— MCS lock

200 - from 450 cycles on two cores to 852 cycles
on four cores
. v’ The critical section is executed multiple

times per-operation and modifies shared

Throughput (mma ps/ms)

1040

data, which incurs costly cache misses

1 18 24 i} 6 42 48 0 6 12 18 2 k1] 36 4 8
Cores Cores
(a) Performance for FOPS. (b) Performance for MEMPOP. ° MEMPOP
_ oo o v One process per core
. | o Ticketlock e v Each process mmaps 64 kB of memory
T il _ —+— MCS lock e .
s resnnans] PR fock | with the MAP_POPULATE flag, then
1 =
- % munmaps the memory
—s— Ticket lock h é 5000 i
—=— MCS lock -] .
£ . 1 * PFIND: searches for a file by executing several
| £ instances of the GNU find utility
L 1 * EXIM (mail server): A single master process
1 18 24 i i 42 48 0 6 12 18 24 3 36 4 8
. . listens for incoming SMTP connections via TCP
ores OTES
(¢) Performance for PFIND. (d) Performance for EXIM. and forks a new process for each connection
Figure 12: Performance of benchmarks using ticket locks and MCS locks. Reference Paper: Boyd-Wickizer, Silas, et al. "Non-scalable locks

are dangerous." Proceedings of the Linux Symposium. 2012.

MCS Lock History in Linux Kernel [===r o e,

int locked; /* 1 if lock acguired */
int count; /* nesting count, see gspinlock.c */

Yi

* Two variants
v’ Standard: v3.15

» None of Linux kernel subsystems uses it (No one calls mcs_spin_lock() and mcs_spin_unlock()) because:
* sizeof(struct mcs_spinlock) > 4
O Note: sizeof (msc spinlock struct) = 16
* spinlock struct is embedded into kernel structure. Example:
O struct page (size = 64) cannot tolerate the increased size
» kernel/locking/mcs_spinlock.h
» Replacement of ticket spinlock: gspinlock — based on standard MCS lock (v4.2)
* Asimple generic 4-byte queued spinlock
* qspinlock is the default spinlock mechanism

v’ Cancelable MCS lock (OSQ - Optimistic Spin Queue: MCS-like lock): v3.15

» Used by mutex implementation & rw-semaphores
» Mutex implementation paths:
* Fastpath: Uncontended case by using cmpxchg()
* Midpath (optimistic spinning) - The priority of the lock owner is the highest one
O Spin for mutex lock acquisition when the lock owner is running.
O The lock owner is likely to release the lock soon.
* Slowpath: The task is added to the waiting queue and sleeps until woken up by the unlock path.
» Mutex is a hybrid type (spinning & sleeping): Busy-waiting for a few cycles instead of immediately sleeping
» kernel/locking/{mutex.c, osq_lock.c}
» Reference: Generic Mutex Subsystem

Ikernelflﬂckingfmca spinlock.h

https://01.org/linuxgraphics/gfx-docs/drm/locking/mutex-design.html

gspinlock (Queue spinlock)

spin_lock(), spin_unlock()

struct spinlock or spinlock_t

rlock

A 4

struct raw_spinlock or raw_spinlock_t

A 4

raw_lock

struct gspinlock or arch_spinlock_t
atomic_t val
tail locked _pending
tail cpu |tail index pending locked
31 18 16 15 8 0

spin_lock

|-> raw_spin_lock

|—> _raw_spin_lock

|—> __raw_spin_lock

preempt_disable

do_raw_spin_lock

spin_unlock

|—> raw_spin_unlock

R

_raw_spin_unlock

|—> arch_spin_lock

L

gueued_spin_lock

R

__raw_spin_unlock

| do_raw_spin_unlock

\ 4

arch_spin_unlock

- preempt_enable

|-> gueued_spin_unlock

gspinlock (Queue spinlock) — First core to acquire the lock

struct gspinlock or arch_spinlock_t
atomic_t val
tail locked_pending
tail cpu [tail index pending =0 | locked=061
31 18 16 15 8 ! 0

atomic_try_cmpxchg_acquire()

Core O [Nobody occupies this lock]
spin_lock() = Lock owner

gspinlock — Second core to acquire the lock

struct gspinlock or arch_spinlock_t
atomic_t val
tail locked_pending Core O
tail cpu [tail index pending=081| locked =1 Lock owner
3é I18k I 16h() 15 8 0
queued_spin_lock_slowpath() -> . .
queued fetch_set_pending acquire() atomic_try_cmpxchg_acquire() = false
Core 1 atomic_cond_read_acquire(): spinning until ‘locked = 0
spin_lock() * Clear ‘pending field if "locked = 0°

[Second core for lock acquisition] Spinning by checking ‘locked" field of arch_spinlock_t
(Optimization: No need to configure a per-cpu MSC struct)

gspinlock — Third core to acquire the lock

struct gspinlock or arch_spinlock_t

atomic_t val Core O
tail locked_pending Lock owner

tail cpu [tail index pending=1| locked=1
1
31 18 6 15 8 0 Core
queued_spin_lock_slowpath() -> spinning until ‘locked =0
val = queued_fetch_set_pending_acquire() _ _
. if (val & ~_Q_LOCKED_MASK) atomic_try_cmpxchg_acquire()

queue this task Core 2 - false

gspinlock — Third core to acquire the lock

struct gspinlock or arch_spinlock_t

atomic_t val Core 0
tail locked pending Lock owner
locked =1 |4

tail cpu [tail index pending =1

rel
31 18 16 15 8 0 Core

spinning until "locked =0
xchg_tail()

mcs_spinlock (core 2)

next = NULL val = atomic_cond_read_acquire(&lock->val, (VAL & _Q_LOCKED PENDING_MASK));

locked =0 Core2 |, Spinning until “locked = 0 && pending = 0°
count |

percpu

[Third core for lock acquisition] Spinning until ‘locked = 0 && pending = 0

gspinlock — Forth core to acquire the lock

struct gspinlock or arch_spinlock_t

atomic_t val Core 0
tail locked_pending Lock owner

tail cpu [tail index pending=1| locked=1 [q

rel
31 18 16 15) 0 Core
xchg_tail() spinning until "locked = 0

mcs_spinlock (core 2) 9-» mcs_spinlock (core 3)
next next = NULL
C locked = 0 locked = 0 4——9)Spinning until its own ‘locked = 1
Core 2
count count Core 3
Spinning until “locked =0 PE€rcpu percpu

&& pending =0

[Forth and later core: N >= 4] Spinning until its own ‘locked = 1": Improve cache bouncing
 Who sets ‘mcs_spinlock.locked = 1°? (Hint: Adhere to MCS lock implementation)

gspinlock — queued spin unlock()

static always inline wvoid gueued spin unlock(struct gspinlock *lock)

,l"ll -
* nnlock() needs release semantics:

smp store release(&lock->locked, 0);

include/asm—generic/gspinlock.h

\0‘}\\
Oof
struct gspinlock or arch_spinlock_t (,Q\(\/
atomic_t val \)eoe g Core 0
tail locked_pending A““/G/ Lock-owner
tail cpu |tail index pending =1 | locked=20 (¢ 9 . - .
31 18 16 15 8 Core 1 |spinning untit-locked =0

0 -
lock acquisition Lock owner

mcs_spinlock (core 2) _|—> mcs_spinlock (core 3)
next next = NULL
C locked = 0 locked = 0 4—7Spinnig until its own “locked = 1
Core 2
ore count count Core 3
Spinning until “locked =0 P€rcpu percpu

&& pending =0’

gspinlock — queued spin unlock() & queued spin lock()

struct gspinlock or arch_spinlock_t

S
atomic_t val 0@\)@6/ Core 0
tail locked pending o Lock-owner

tail cpu |tail index pending =1 | locked =2 0 |4

31 18 16 15 8 9. ~_ 0 SEife &
%@ spinning until “locked =0
o4
NS .
%
AN

0 Core 4

mcs_spmloc}l: (core 2) _|—> mcs_spmlocI\II(LﬁtcEre 3) Cf/
nex next =
locked = 0 locked = 0 4—7Spinning until its own “locked = 1
C Core 2 count count Core 3
Spinning until “locked =0 PE€rcpu percpu

&& pending =0

What happens to core 4 for invoking queued_spin_lock() under this circumstance?

gspinlock — queued spin unlock() & ¢

ueued spin lock()

'''' = always_inline void 1ict gspinlock *lock)

int val = 0;

(likely(atomic try cmpxchg acguire (&lock->wval, &val, Q LOCEED VAL)))

atomic_try_cmpxchg_acquire(...)
B Can acquire the lock (set ‘locked=1)
when the 32-bit gspinlock (val) is O.

' B Otherwise, the core will go to the
queued spin lock slowpath(lock, wval); sanpath.
}
IincludefaEm—generichapinlmck.h 0@55
o
struct gspinlock or arch_spinlock_t SQ\(\/
, O~ Core 0
atomic_t val o
tail locked_pending o tock-owner
tail cpu |tail index ending=1 | locked=20
£ = = ° Core 1
31 15 8 0

spinning until ‘locked =0

mcs_spinlock (core 2) » mcs_spinlock (core 3) » mcs_spinlock (core 4)
next next next = NULL
locked = 0 locked = 0 locked = 0)
C Core 2 count C count count Core 4 | Spinning until its
Spinning until “locked =0 PE€rcpu oire percpu percpu own ‘locked =1
&& pending =0 Spinning until its

own locked =1"

1. Core 4 is queued: Adhere to the principle of ticket spinlock
2. Spin its own mcs_spinlock.locked : Improve cache bouncing

spin lock() SMP & UP

SMP spin_lock()

spin_lock

|—> raw_spin_lock

R

_raw_spin_lock

|—> __raw_spin_lock

preempt_disable

:

do_raw_spin_lock

|—> arch_spin_lock

L

queued_spin_lock

UP spin_lock()

spin_lock

|—> raw_spin_lock

R

_raw_spin_lock

|—> __LOCK

\ 4

preempt_disable

spinlock() variants

 spin_lock() & spin_unlock()

v'Multiple process contexts share the same data

spin_lock_irq() & spin_unlock_irg()

v'Process context and top halve (hardirg) share the same data

* spin_lock_irgsave() & raw_spin_unlock_irgrestore()
v'Process context and top halve (hardirg) share the same data
v'Save/restore eflags

spin_lock_bh() & spin_unlock_bh()

v Process context and bottom halve share the same data

* spin_lock nest lock() & spin_lock nested()

v'lockdep: Annotate places where we take multiple locks of the same class and avoid deadlock —
Commit b7d39aff9145 (“lockdep: spin_lock nest_ lock()”)

spinlock() variants

* spin_lock_irg() & spin_unlock_irq()

v'Process context and top halve (hardirg) share the same data

e spin_lock_irgsave() & raw_spin_unlock_irgrestore()
v'Process context and top halve (hardirg) share the same data
v'Save/restore eflags

Deadlock between process context and interrupt context
(the same core)

static DEFINE_SPINLOCK(lock);

o

Processor Core &@6 spinning: dead lock
spin_lock(&lock) /9/% spin_lock(&lock)

Critical Section — HW Interrupt Critical Section

7
OC‘

\

spin_unlock(&lock) spin_unlock(&lock)

Deadlock only happens on the same core in this circumstance

Deadlock between process context and interrupt context
(the same core)

static DEFINE_SPINLOCK(lock);

4
Processor Core \,}\@9 %
Process Context &S 09% ISR (hardirq) — Interrupt Context
/ & Y
N
spin_lock_irq(&lock) —__spin_lock(&lock) @

Critical Section ?HW Critical Section

spin_unlock(&lock)

spin_unlock_irg(&lock)
gl

v
Local interrupt disabled

unlock

e Use spin_{un}lock_irq() or spin_{un}lock _irgsave() to prevent deadlock
v" spin_lock_irq() or spin_lock_irgsave(): Disable local interrupt delivery
v' spin_unlock_irq() or spin_unlock_irgsave(): Enable local interrupt delivery

Deadlock between process context and interrupt context
(the Same CO r‘e) static DEFINE_SPINLOCK(lock);

Processor Core
Process Context

ISR (hardirg) — Interrupt Context

spin_lock_irg(&lock) / spin_lock(&lock) @

Critical Section ?HW

spin_unlock_irg(&lock)
gl

Critical Section

spin_unlock(&lock)

v
Local interrupE disabled

\
\

Who disables the local interrupt before entering ISR?

* Linux kernel common interrupt code?
e CPUHW?

unlock

Does Linux kernel disable local interrupt before entering ISR?

common_interrupt(): entry point for all normal device IRQs

/* Device interrupts common/spurious
DECLARE IDTENTRY IRQ(X86 TRAP OTHER,
#ifdef CONFIG_XG66_LOCAL APIC

DECLARE_IDTENTRY IRQ(X86 TRAP OTHER,

arch/x86¢/include/asm/idtentry.h

1

common_interrupt) ;

spuricus interrupt):;

/* Entries for common/spuriocus (device)

fsdefine DECLARE TDTENTEY TRQ(vector,
idtentry irqg vector func

arch/x86/include/asm/idtentry.h

func)

interrupts */

YM CODE_ START _{ Yasmsym) —»SYM_CODE_START(a;m_comn;on_interrupﬂ
{IND HINT IEET EREGS offset=‘\has error code*8

5-1 J* ORI
rt */

* If coming from kernel space, create
* int3 handler to emulate a call insti:
& ,l"ll

testk 53, CS-0ORIG ERAX (%rsp)

arch/x86/entry/entry €4.5

Does Linux kernel disable local interrupt before entering ISR?

SYM CODE_START (\asmsym) —»SYM_CODE_START(asm_common_interruptl
UNWIND HINT IRET REGS offset=\has error code*8 SELL SLLOL_Entry
Srsp, %rdi /* pt_regs pointer into lst argu
\has error code == 0 ment*/
pust 5-1 /* ORI
rt %/ \has error e =1
| ORIG _EAX (%¥rsp), %rsi /* get error code into 2nd argum
ent*/
\ o $-1, ORIG RAX(%rsp) /* no syscall to restart */
/* I
* If coming from kernel space, create call \cfunc
* int3 handler to emulate a call inst] ; L
2 N — -
testk 53, —ORIG RARX(%rsp)
-_:_: 'I..II@ ;’**
6 ' cy _64.5 320,18
pushdg S*8(%rsp)
T S o 9 5 objdump -D out/obj/linux/vmlinux
\@: fEFFEFFFB1400b00 <asm common interrupt>:
ffffffff81400b0O0: e8 fb 03 00 00 callg ffffffffR1400f00 <error entry>
fEffffff81400b05: 45 89 &7 mowv Srsp, $rdi
idtentrv bodv \cfunc \has error code Fffffff£81400b0OS: 483 Bb 74 24 78 mowv 0x78 ($rsp), %rsi
T - _ _ ffffffff81400b0d: 48 <7 44 24 78 ff ff mov SOxffffffffffffffff, 0x78 (Srsp)
S SKPROBE (\asmsvm ffffffff81400bl4: £ff ff
— 'T_'__"_-';-f;'i 2 Smsym) FEfFffffa1400bl6: e8 65 b0 fé ff callg ffffffff8136bb80 <common interrupt>
SYM_CODE_END (\asmsym) fffffff£81400blb: e9 d0 04 00 00 jmpg ffffffff81400ff0 <error return>
fff£f£f£££81400b20: o6 €6 Ze 0f 1f 54 00 datalé nopw %cs:0x0(%rax, $ra=x,1)
ffffffff81400b27: oo 00 00 OO0
fffff£f£f£f81400b2b: &6 66 2= 0f 1f 84 00 datalé nopw %cs:0x0(%rax, $ra=x, 1)
FTrffffff81400b32: oo 00 00 OO
fffff£££81400b36: o6 Ze 0f 1f£f 84 00 0O nopw $cs:0x0(%rax, Srax, 1)
ffffffff81400b3d: oo 00 00

Does Linux kernel disable local interrupt before entering ISR?

5 objdump -D out/obj/linux/vmlinux

fEFFEFFFE1400b00 <asm common interrupt>:

TEfffEff81400b00: el fb 03 00 00 callg Iffffffff81400f00 <error entry>

ffffffff81400b0O5: 48 B89 =7 mow Ersp, rdi

fEfffFFffE1400b0OE: 48 8b 74 24 T8 mowv 0x78 (%rsp) ,5rsi

TEffffff81400b0d: 48 <7 44 Z4 78 f£f ff mowvg SOxffffffffffffffff, 0x78 (%rsp)

Tfffffff81400bl4: ff £f

ffffffff81400bléE: =8 65 b0 fe ff callg ffffffff8136bb80 <common interrupt>

fEffffffE1400blb: eS 4di 04 00 00 Jmpog LEEff£ffF81400££0 <error return>

tfff£f£ff81400b20: 66 66 2e 0Of 1f B84 00 datalé nopw %cs:0x0(%rax, $rax,1)

fTfffffff81400b27: oo o0 00 0o

fEfffff£f81400b2b: 66 66 2= 0f 1f B84 00 datalé nopw %cs:0x0(%rax, $rax,1)

fEfffFffE1400b32: 00 00 00 oo

ffff££££81400b36: 66 Ze 0Of 1f B84 00 00 nopw Fcs:0x0(%rax, %$rax, 1)

ffffffff81400b3d: oo 00 a0

fgdb) bt 3

if giﬁggﬁgggﬁégggﬁgg E 0 () Tk_le current s_tack is not switched yet:

42 OxfFEFEFEF813764d5 in (flags=582) at /home/adrian/git-repoc|| Will be done in error_entry()

fgdb—linux-real-mode/src/ linux-5.11/arch/xte/1nclude/asm/1rgrilags.h:o4

(More stack frames follow...)

(gdb) info b

Num Type Disp Enb Address What

1 breakpoint keep vy OxffffffFff81400b00 <asm common interrupt>
breakpoint already hit 1 time

2 breakpoint keep v Oxffffffff8136bba0 in at /home/

adrian/git-repo/gdb-linux-real-mode/src/linux-5.11/arch/=x86/kernel/i1rg.c:239

(gdb) info registers eflags

eflags_ 0x46 [TOPL=0 ZF PF]<— |F (Interrupt Enable Flag) is disabled!

Local interrupt has been disabled before entering asm_common_interrupt(): CPU disables it.

Does Linux kernel disable local interrupt before entering ISR?

% objdump -D out/obj/linux/vmlinux

fEFFFEFFE1400b00 <asm common interrupt>:

fTEfEffFFfFE1400b0O0: ed fb 03 00 00 callg f£fffffff81400£f00 <error entry>
TEffffff81400b05: 48 B9 =7 mowv $rsp, $rdi

Tfffffff81400b0OG: 48 Bb 74 24 78 mow 0x78 (%rsp),%rsi

ffffffff81400b0d: 48 <7 44 24 78 ff ff MoV SOxffffffffffffffff, 0x78 (3rsp)
fEffFFFfFE1400b14: ff ££f

TEffffff81400ble: e8 65 b0 fe ff callg ffffffffE136bbi0 <common interrupt>
fTfffffff81400blb: 29 40 04 00 00 Jmpg fEEEFFFFR1400££f0 <error_ return>
fEffE££££81400b20: 66 66 Ze 0Of 1f B84 00 datalé nopw %cs:0x0(%rax, $rax,1)
fEffFFFfFE1400b2ET: 00 00 00 oo

fffff£££81400bZb: 66 66 Ze 0Of 1f B84 00 datalé nopw %cs:0x0(%rax, $raxz,1)
ffffffff81400b32: oo o0 00 0o

fEfff£f£f£f81400b36: 66 2= 0f 1f B84 00 00 nopw Scs:0x0(Srax,%rax, 1)
fEffFFFfFE1400b3d: 00 00 oo

Thread 1 hit Breakpoint 2, =Tl fffffffBlaGEdBB error_ code
=48} at /home/adrian/git-repo/gdb- mode/ / .1l/arch/=xz86/kernel
firg.c:239

235 DEFINE IDTENTRY IRQ(common interrupt)

(gdb) bt

#0 (regs= fofffffffﬂlaﬂSdBB, home/adrian/ga
t—repo/gdb-linux-real-mode/src/linux-5.11/arch/x8¢/kernel/irg.c:239

#1 Oxffffffff81400blb in ()

#2 0x0000000000000000 in ()

Does Linux kernel disable local interrupt before entering ISR?

DEFINE_IDTENTRY IRQ(common_ interrupt)

-t pt_regs *old regs = set_irqg regs(regs);
uct irg desc *descs

#define DEFINE IDTENTRY IRQ(func)
static _ always_inline void _ ##func(struct pt_regs *regs, ul wvector);

visible noinstr void func(struct pt regs *regs,
unsigned long error_code)

common_interrupt(...)

irgentry state t state = irgentry enter (regs);

instrumentation begin () ;

irg enter rcul():;

kvin set cpu 11tf flush 11d():
___#wfunc (regs, (uf)error code);
irg exit rcul);

instrumentation end();

irgentry exit(regs, state);

__common_interrupt(...)

T i

static always inline wvoid ##func (struct pt _regs *regs, uf wvector)

arch/x86/include/asm/idtentry.h

Does Linux kernel disable local interrupt before entering ISR?

asm_common_interrupt

Common Interrupt Call Path: Serial Driver

L common_interrupt

R

__common_interrupt

R

handle_irq

L,

run_irq_on_irgstack _cond

L

__run_irq_on_irgstack

asm_call_on_stack

|-> handle_edge_irq

\ 4

handle_irq_event

R

handle_irg_event_percpu

__bhandle_irg_event_percpu

A 4

serial8250 interrupt

Common interrupt in Linux kernel: Handle vector number 32-255

Common Interrupt Code Path

(gdb) bt

#0 serizlsls0 interrupt (irg=4, dev 1d=0xffff888240d52780) at /home/adrian/git-
*E?OchQ—L_nux—“ea_—nocefs::f__nux—~.¢¢f nclude/linux/spinlock.h:354

#1 Oxfffff£f££f810822e0 in handle irg svent percpu (desc=desclentry=0xff£ff88810
004fa00, flags=flagsBentry= DxfffchDDDDDD3f9c} at /home/adrian/git-repo/gdb-linu
¥-real-mode/src/linux-5.11/kernel/irg/handle.c:156

#2 OxfEffffFFF8108236f in handle irg event percpu (desc=desclentry=0xffff8881000
4fa00) at /home/adrian/git-repo/gdb-linux-real-mode/src/linux-5.11/kernel/irg/ha
ndle.c:196

#3 (Oxffffffff810823d47 in handle irg event (desc=desclentry=0xffff88810004£a00)
at /home/adrian/git-repo/gdb-linux-real-mode/src/linux-5.11/kernel/irg/handle.c:
213

#4 Oxffffffff81085ee5 in handle edge irg [cFu:—DKffffBBBlDDD%faDD} at /home/adr
ian/gi t—?@?ofgcQ—L_nux—?ea_—nocefs::f__nux—~ 11/kernel/irqg/chip.c:819

#5 Oxffffffff81400ddf in asm c2ll on stack () at fhonefac:ianfg t—*E?ofgcm—L_nu
x—:ea_—mogefsrzf__nux—:.Lifar;ve sfttyfse:;a /8250/8250 core.c:842

#6 Oxffffffff813€bc38 in run ir irgstack {CQhT—DxffffBBBlDDD4faDD func=<
optimized out>) at Hhomefac_ianfg t—?@?ofgcQ—L_nux—?ea_—nocefs::f__nux—~ 11/arch
/=x86/1 n:Lucefasmf;:g stack.h:48

#7 run irg irgstack cond (regs=0=zffffc00018a3a78, desc=0xffff88810004£fa00,
fLI,—{Opt1MlZEd out>) at /home/adrian/git-repo/gdb-linux-real-mode/src/linux-5.1
1/arch/=86/include/asm/irg stack.h:101

#8 handle irg (regs=0xffffc900018a3a78, cpu:—DxffffBBBlDDD4faDD} at /home/adria
n/gi t—*e?ofgcD—__nux—*ea_—mocefs::f__nux—~ 11/arch/=x86/kernel/irg.c:230

#9 common interrupt (vector=36 '$', regs=0xffffc900018a3a78) at /home/adrian/
gi t—?@?ofgcQ—L_nux—?ea_—nocefs::f__nux—~ 11/arch/x86/kernel/irqg.c:249

#10 common interrupt (regs=0xffffc900018a3a78, error J.CP—3E} at /home/adrian/g1i
t—*e?ofgcD—__nux—*ea_—mocefs::f__nux—~ 11/arch/x86/kernel/irqg.c:239

#11 Oxffffffff81400blb in zsm con interrupt () at fhonefac:ianfg t-repo/gdb-1
inux-real-mode/src/linux-5. iLHc:ife sfttyfse:ia /8250/8250 core.c:842

#12 0x0000000000000000 in 27 ()

CPU disables local interrupt if the interrupt handle is called via
an interrupt gate

6.5.1 Call and Return Operation for Interrupt or Exception Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to another protection level (see
Section 6.4.6, "CALL and RET Operation Between Privilege Levels”). Here, the vector references one of two kinds
of gates in the IDT: an interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in that they
provide the following information:

* Access rights information
* The segment selector for the code segment that contains the handler procedure
* An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt or exception handler is called
through an interrupt gate, the processor clears the interrupt enable (IF) flag in the EFLAGS register to prevent
subsequent interrupts from interfering with the execution of the handler. When a handler is called through a trap
gate, the state of the IF flag is not changed.

[Reference] Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4

Deadlock between process context and interrupt context
(the same core)

Processor Core
Process Context

spin lock irg(&lockl)

- : ISR (hardirg) — Interrupt Context
spin_lock_irg(&lock2)

e“a\o\e(NQ& dea.dlock
spin_unIock_irq(&|0Ck2)9?\3@3\'\“’qa |~ spin_lock(&lock1)
/94 . .
\N\“xe‘ Critical Section
Critical Section AW
spin_unlock(&lock1)

v

Local interrupt disabled

spin_unlock_irg(&lock1)

Deadlock between process context and interrupt context
(the same core) — Solution 1

Processor Core
Process Context

spin_lock_irg(&lock1)

ISR (hardirq) — Interrupt Context
spin_lock_irgsave(&lock2) (q) p

spin_unlock_irgrestore(&lock?2) €’Restoreirq flags: Still disable spin_lock(&lock1)
— — lodal interrupt because of

spin_lock_irg(&lock1)

Critical Section
Critical Section

spin_unlock(&lock1)

Local interrupt disabled

spin_unlock_irg(&lock1)

Deadlock between process context and interrupt context
(the same core) — Solution 2

Processor Core
Process Context

spin_lock_irgsave(&lock1)

ISR (hardirq) — Interrupt Context
spin_lock_irgsave(&lock2) (q) p

spin_unlock_irgrestore(&lock?2) €’Restoreirq flags: Still disable spin_lock(&lock1)
— — lodal interrupt because of

spin_lock_irg(&lock1)

Critical Section
Critical Section

spin_unlock(&lock1)

v

Local interrupt disabled

spin_unlock_irgrestore(&lock1)

spinlock() variants

 spin_lock bh() & spin_unlock_bh()

v Process context and bottom halve share the same data

Deadlock between process context and bottom halve (the
same core)

static DEFINE_SPINLOCK(lock);

ﬂ@v\wmg: dead lock

Processor Core &
Process Context \00&) ISR (hardirq) - Interrum\ Bottom halve: softirq or tasklet
@)
/\O |~ spin_lock(&lock2) spin_lock(&lock)
spin_lock(&lock) /a/
Critical Section Critical Section
Critical Section [~ | HW Interrupt © /J
spin_unlock(&lock?2) / spin_unlock(&lock)
spin_unlock(&lock) v’

Deadlock between process context and bottom halve (the

same core)

static DEFINE_SPINLOCK(lock);

spinning: dead lock

Processor Core
Process Context

spin_lock(&lock)

Critical Section HW Interrupt

ISR (hardirq) — Interrupt Context.
spin_lock(&lock2)

///7

Critical Section

(3)
spin_unlock(&lock2)

/

Bottom halve: softirq or tasklet

/ spin_lock(&lock)

Critical Section

%

spin_unlock(&lock)

spin_unlock(&lock) v
:1linux-5.115% grep -r _ ARCH IRQ EXIT IRQS DISABLED

Bottom halve is mvoked when returnlng from ISR kernel/softirg.c #ifndef
static 1n-.ine id _ irg exit_rcu(void) arch/arméd/include/asm/hardirg.h: #define
y _ o a::hfuM:_n__u fasm/hardirg.h:#define 1
rifndef ARCH IRQ EXIT IROS DISABLED a::hfa:mfinzlu fasm/hardirg.h:#define

local 1rq_d15able{], a::hf;owe:;.,_nflu fasm/hardirg.h:#define
TELsE . . arch/s390/include/asm/hardirg.h: #define

lockdep assert irgs disabled();
fendif /*E

account_hardirq_exit{current]; * ?he.following macros are depre?ated a?d shou}d not be used in new code:

preempt count sub (HARDIRQ OFFSET) ; * in irq() - Obsolete version of in hardirg() . .

. T - - . . * 1n softirg() — We hawve BH disabled, or are processing softirgs
(!in interrupt() && local softirg pendingl()) . T) :
—. . — in interrupti) - We're in NMI, IRQ,SoftIRQ context or have BH disabled
invoke softirgl(): xy
. . . fdefine in irg() (hardirg count())

tick irg exit(); #define in softirg() (softirg count ())
} fdefine in interrupt () (irg counti())
ke

/linux/preem

Deadlock between process context and bottom halve (the
Same CO re) static DEFINE_SPINLOCK(lock);

spinning: dead lock

Processor Core
Process Context

P
o(@b
N\
\&&*} ISR (hardirq) — Interrupt Context.
@)
/\O |~ spin_lock(&lock?2)

P

L—1 HwW Interrupt

Bottom halve: softirq or tasklet

/ spin_lock(&lock)

Critical Section

spin_lock(&lock)

Critical Section)

%

Critical Section

spin_unlock(&lock2) /

spin_unlock(&lock)
spin_unlock(&lock) v

Softirq is mvoked when returning from ISR Softirq is invoked when running ksoftirqd

account hardirg exit (current);
preempt_count_ sub (HARDIRQ OFFSET);

invoke softirg():;

tick irg exit ()

(!in interrupt() && local softirg pending())

static inline void _ irq exit_rcu(void) static wvold run ksoftirgd{unsigned int cpu)
{
sifndef _;—'.F.E‘.HT_F.Q_FX_T__RQE_[-_E:E-LEE local irg disable();
local 1irqg disable(); {local softirg pending()) {
TELSE)) can safely run softirg on
lockdep assert irgs disabled(); _ do_softirg()
Fendif r

local _irg enable();
cond resched();

r

}

local irg enable();

Deadlock between process context and bottom halve (the
Same CO re) staticDEFINE@SPINLOCK(Iock);

Processor Core &
Process Context \&&9 ISR (hardirq) — Interrupt Context Bottom halve: softirq or tasklet
@)
/\0 |~ spin_lock(&lock2) spin_lock(&lock)
spin_lock_bh(&lock) /e/
Critical Section Critical Section
Critical Section | HW Interrupt 3
? spin_unlock(&lock2) spin_unlock(&lock)
spin_unlock_bh(&lock) 1
Returh because in_interrupt() is true

Softqu is mvoked when returning from ISR

tatic inline wvoid _ irg exit rcu(wvoid)

ifndef ARCH IRQ FXIT IRQS DISABLED
local irg disable();

lockdep assert irgs disabled();

account hardirg exit (current);
preempt_count_ sub (HARDIRQ OFFSET);
(!in interrupt() && local softirg pending())
invoke softirg():;

tick irg exit ()

rwlock (reader-writer spinlock)
| writers

task O
: task O
| read_lock() write_lock() ~— |
task 1 - _
N(eadevs Critical Section Critical Section | 1 Writer task 1
| 1 read_unlock() -
write_unlock()
task N T~ S
* Concept

v" [Without readers] Only one writer can enter CS
v" [Without writer] N-readers can enter CS simultaneously
v' Readers and writer can enter CS simultaneously
v' Reader(s) in CS = The writer needs to wait (spinning)
v" Writer in CS = Readers need to wait (spinning)
* Mutual exclusion between reader and writer
* Writer might be starved!
* Reader has higher priority than writer
* Useful scenario: search for linked list without changing the list
v' Example: tasklist_lock 2 _ cacheline_aligned DEFINE_RWLOCK(tasklist_lock);
e Linux kernel developers are trying to remove rwlock in most cases.

[Reference] Lesson 2: reader-writer spinlocks

https://www.kernel.org/doc/html/latest/locking/spinlocks.html#lesson-2-reader-writer-spinlocks

rwlock (reader-writer spinlock): Data structure

read_lock(), read_unlock()
write_lock(), write_unlock()

rwlock_t

raw_lock

\ 4

struct qrwlock or arch_rwlock_t

atomic_t cnts

arch_spinlock_t wait_lock

* wait_lock: for spinning

A 4

cnts

Reader count W

writer lock

31

9 8

* W: A writer is waiting

0

seqglock (Sequential lock)

|

l

__ Writers
N1/

prev_count = read count

prev_count = read count

spinlock

A
Critical Section Y

prev_count != current count

Critical Section

A

A

Y

count++

IN

prev_count != current count

Critical Section

IN

count++

spinunlock

!

* Lockless readers (only retry loop)
* No writer starvation
v" Writer has higher priority than reader
v" No mutual exclusion between reader and writer
» Mutual exclusion between writers because of writers’ spinlock
e Scenario: lots of readers and few writers
v' Example: jiffies = Check get_jiffies_64(), tick_setup_periodic() and so on.

spinlock derivative

Reader(s)

spinlock derivative and RCU

Reader(s)

Reference

* Boyd-Wickizer, Silas, et al. "Non-scalable locks are dangerous." Proceedings of the Linux
Symposium. 2012. http://pdos.csail.mit.edu/papers/linux:lock.pdf

* T. E. Anderson, "The performance of spin lock alternatives for shared-money
multiprocessors”, IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp.
6-16, 1990.

* J. M. Mellor-Crummey and M. L. Scott. “Algorithms for scalable synchronization on shared-
memory multiprocessors”, ACM Transactions on Computer Systems, 9(1):21-65, 1991.

* MCS locks and gspinlocks, LWN
* |s Parallel Programming Hard, And, If So, What Can You Do About It?

http://pdos.csail.mit.edu/papers/linux:lock.pdf
https://lwn.net/Articles/590243/
https://arxiv.org/abs/1701.00854

